JPH069260B2 - Method for manufacturing thermoelectric conversion element - Google Patents

Method for manufacturing thermoelectric conversion element

Info

Publication number
JPH069260B2
JPH069260B2 JP60040995A JP4099585A JPH069260B2 JP H069260 B2 JPH069260 B2 JP H069260B2 JP 60040995 A JP60040995 A JP 60040995A JP 4099585 A JP4099585 A JP 4099585A JP H069260 B2 JPH069260 B2 JP H069260B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
type semiconductor
conversion element
type
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60040995A
Other languages
Japanese (ja)
Other versions
JPS61201484A (en
Inventor
雍典 丹治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP60040995A priority Critical patent/JPH069260B2/en
Publication of JPS61201484A publication Critical patent/JPS61201484A/en
Publication of JPH069260B2 publication Critical patent/JPH069260B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【発明の詳細な説明】 1)産業上の利用分野 ゼーベック効果を原理とする熱電気変換素子の開発は古
くから行われている。最近そのユニット化の技術が開発
され比較的大電力の熱電気変換素子が得られる様になっ
た。その利用分野としては宇宙開発用,海洋開発用,仮
地用並に廃熱利用の電源として熱電気変換サーモユニッ
トの応用が注目されるに至った。
[Detailed Description of the Invention] 1) Fields of industrial application The thermoelectric conversion element based on the Seebeck effect has been developed for a long time. Recently, the unitization technology has been developed, and a thermoelectric conversion element of relatively high power can be obtained. As a field of application, the application of thermoelectric conversion thermo-units has been drawing attention as a power source for waste heat utilization as well as space development, marine development, temporary land.

また熱電気変換素子は温度センサーとして実用化されて
いる。
Further, the thermoelectric conversion element has been put to practical use as a temperature sensor.

2)従来の技術 これまで知られている代表的な熱電気変換サーモユニッ
トの一つにはBi2(TeSe)3と(SbBi)2Te3のN型およびP型
半導体が用いられ,その素子を製作するために前記半導
体の粉末を400℃で焼結させ4×4×(mm)の板に切断
された。この素子を複数個電気的に直列に,熱的には並
列に結合し,この結合部を2枚の熱伝導板(材質アルミ
ニューム)で挾みユニット化し大電力の出力を得てい
た。
2) Conventional technology Bi 2 (TeSe) 3 and (SbBi) 2 Te 3 N-type and P-type semiconductors are used as one of the typical thermoelectric conversion thermounits known so far, The semiconductor powder was sintered at 400 ° C. and cut into 4 × 4 × (mm) plates in order to manufacture A plurality of these elements were electrically connected in series and thermally connected in parallel, and this connecting part was sandwiched by two heat conduction plates (aluminum material) to form a unit and obtain a large power output.

ユニットの形状は目的に応じて異なるが,両熱伝導板の
間隙は約6mmに設計されている。上述のBi2Te3を基本組
成とする素子は非常に脆いため上記のユニットの構成で
は,これ以上素子の厚みを増すことは困難である。ユニ
ットの厚みが6mm程度ではAl熱伝導板を通し熱電気変換
素子の両先端の温度差を約200℃にするためには両熱
伝導板の表面温度を300℃以上まで上げねばならな
い。この温度差を間隙6mmの処で作り出すためには冷熱
源側に大型の放熱器をつけねばならない。以上の様に従
来のこの種熱電気変換ユニットがその機能を果すために
は新に冷却放熱のためのエネルギーが投入されなければ
ならない。これは本来の廃熱を利用して発電すると云う
熱電気変換素子利用の趣旨にも反する。
The shape of the unit differs depending on the purpose, but the gap between both heat conducting plates is designed to be about 6 mm. Since the above-mentioned element using Bi 2 Te 3 as the basic composition is extremely brittle, it is difficult to increase the thickness of the element any more with the above unit configuration. When the thickness of the unit is about 6 mm, the surface temperature of both heat conducting plates must be raised to 300 ° C. or more in order to pass the Al heat conducting plate and make the temperature difference between both ends of the thermoelectric conversion element about 200 ° C. In order to create this temperature difference with a gap of 6 mm, a large radiator must be attached to the cold heat source side. As described above, in order for this conventional thermoelectric conversion unit to fulfill its function, new energy for cooling and heat radiation must be input. This is contrary to the purpose of using the thermoelectric conversion element, which is to generate power by using the original waste heat.

3)発明が解決しようとする問題点 上述のような脆い素材から作られるN型およびP型半導
体熱電変換素子の成型方法に新技術を導入し,素子の脆
弱性を補い低温度熱源によって熱電気変換素子の両先端
に,所定の温度差例えば200℃の差を生ぜこめて効率
の良い熱電気変換ユニットを得んとするものである。
3) Problems to be solved by the invention By introducing a new technology into the molding method of the N-type and P-type semiconductor thermoelectric conversion elements made of the above-mentioned brittle materials, the weakness of the elements is compensated for by the thermoelectricity of the low temperature heat source. A thermoelectric conversion unit with high efficiency is obtained by causing a predetermined temperature difference, for example, a difference of 200 ° C., at both ends of the conversion element.

4)問題点を解決するための手段 N型半導体を溶融し,この溶湯に石英又はガラスの細管
を挿入して溶湯を吸い上げ,そのまま凝固するのを待っ
て所定の長さに載断し棒状の素子を得る。P型半導体に
ついても同様にガラス細管にその溶湯を吸い上げ,その
まま凝固するのを待って前記N型の場合と同長に載断し
て棒状の素子を得る。上記N型とP型の棒状素子1組を
もって熱電気変換素子を構成する。素子の厚み(軸方向
の長さ)と同等の厚みを有する耐熱性絶縁板に前記細管
と略々同径の穴を多数あけ,この穴に前記N型とP型の
棒状素子を交互に規則正しく挿入し,N型棒状素子とP
型棒状素子の上下両端を導電体でN−P−N−P…と電
気的に直列に接続する。その上下両面にシリコンゴムの
如き熱伝導性で電気的絶縁物を薄く塗布し,更にその一
面に高熱源他面に低熱源を伝達する金属例えばAl板を密
着させて熱電気変換ユニットが構成される。
4) Means for solving the problem Melting the N-type semiconductor, inserting a quartz or glass thin tube into this molten metal, sucking up the molten metal, waiting for it to solidify, and cutting it into a predetermined length Get the element. Similarly, for a P-type semiconductor, the molten metal is sucked up into a glass capillary, waits for solidification as it is, and is cut into the same length as in the case of the N-type to obtain a rod-shaped element. A thermoelectric conversion element is constituted by one set of the N-type and P-type rod-shaped elements. A large number of holes of approximately the same diameter as the thin tube are made in a heat-resistant insulating plate having a thickness equivalent to the thickness of the element (axial length), and the N-type and P-type rod-shaped elements are alternately and regularly formed in these holes. Insert N type rod element and P
The upper and lower ends of the die rod element are electrically connected in series with N-P-N-P ... A thermoelectric conversion unit is constructed by applying a thin layer of thermally conductive and electrically insulating material such as silicon rubber to the upper and lower surfaces, and further closely adhering a metal, such as an Al plate, to the high heat source and the low heat source to the other surface. It

5)作 用 N型半導体素子もP型半導体素子も棒状であり,且つ石
英(又は硝子)管内に封入されているから機械的強度に
優る。従って低温度差が得られ効率よく大電圧を得るこ
とができる。
5) Operation Both the N-type semiconductor element and the P-type semiconductor element are rod-shaped, and because they are enclosed in a quartz (or glass) tube, they have excellent mechanical strength. Therefore, a low temperature difference can be obtained and a large voltage can be obtained efficiently.

6)実施例 N型半導体Bi2(TeSe)3とP型半導体(SbBi)2Te3の素材を
夫々融点約600℃で溶融しその溶湯を作る。7φ×5
φ×600mmの石英細管を夫々前記N型半導体の溶湯と
P型半導体の溶湯に挿入し,スポイトで吸い上げその侭
凝固させる。これをカッターで厚さ6mmに切断し基本素
子を作る。また2種類の半導体粉末(N型又はP型)を
石英(又はガラス)細管の中に装入し,それらを400
℃で焼結成型することによって基本素子を作ることもで
きる。
6) Example The materials of N-type semiconductor Bi 2 (TeSe) 3 and P-type semiconductor (SbBi) 2 Te 3 are melted at melting points of about 600 ° C. to make molten metal. 7φ x 5
The φ × 600 mm quartz capillaries are inserted into the N-type semiconductor melt and the P-type semiconductor melt, respectively, and sucked up with a dropper to solidify them. This is cut with a cutter to a thickness of 6 mm to make a basic element. In addition, two kinds of semiconductor powder (N type or P type) are charged into a quartz (or glass) thin tube and the
The basic element can also be made by sintering at ℃.

第1図(A)Bはこの様にして構成された熱電気変換ユニ
ットの上面図で2は前記熱電気変換半導体素子で対熱性
絶縁板1の穴にP−N−P−N…の順で規則正しく貫入
保持されている。3は前記P型半導体素子とN型半導体
素子の端縁をP−N−P−N…と直列に接続する導電体
(銅板)を示す高温半田で電気的に接続し最后に第1図
(C)に示す如く出力端子4,4′に導く。これらの上下
両平面に対熱性絶縁物としてシリコンゴムを薄く塗布,
更にその上にAL板を接着し高熱源及び低熱源の伝導板と
する。なお説明を簡略するため,図では対熱性絶縁物シ
リコンゴムと熱源の伝導板Alは省略してある。
FIG. 1 (A) B is a top view of the thermoelectric conversion unit constructed in this way, and 2 is the thermoelectric conversion semiconductor element in the order of P-N-P-N ... It is kept in place regularly. 3 is a conductor (copper plate) for connecting the edges of the P-type semiconductor element and the N-type semiconductor element in series with P-N-P-N ...
Lead to output terminals 4, 4'as shown in (C). Silicon rubber is applied thinly on both upper and lower planes as a heat resistant insulator,
Further, an AL plate is adhered on it to form a high heat source and low heat source conductive plate. In order to simplify the description, the heat-resistant insulating material silicone rubber and the heat source conductive plate Al are omitted in the figure.

7)発明の効果 第2図はBi2(TeSe)3と(SbBi)2Te半導体からなる従来の
ユニットと上述した本発明によって製造し熱電気変換素
子の特性を比較するため測定装置の概略図を示す。
7) Effect of the invention Fig. 2 is a schematic diagram of a measuring device for comparing the characteristics of the thermoelectric conversion element manufactured by the present invention described above with the conventional unit composed of Bi 2 (TeSe) 3 and (SbBi) 2 Te semiconductors. Indicates.

図において11は熱電気変換ユニット,12はこのユニ
ットの上面を接着された低温熱源を伝導するAl板12′
は同高温熱源を伝導するAl板,13は高温熱源である円
筒状のヒータで中心にAl板12′の温度を計測する熱電
対16を挿入する小孔を有し熱電対16はAl板12′に
接する。14は低熱源となる氷水を満したバット,15
は氷水の温度を測定する温度計,17は熱電変換ユニッ
トの出力端子を示す。
In the figure, 11 is a thermoelectric conversion unit, and 12 is an Al plate 12 'that adheres the upper surface of this unit and conducts a low temperature heat source.
Is an Al plate that conducts the same high temperature heat source, 13 is a cylindrical heater that is a high temperature heat source, and has a small hole at the center for inserting a thermocouple 16 that measures the temperature of the Al plate 12 '. Touch ‘ 14 is a bat filled with ice water which is a low heat source, 15
Is a thermometer for measuring the temperature of ice water, and 17 is an output terminal of the thermoelectric conversion unit.

従来方法で製造した熱電気変換ユニットと本発明によっ
て製造したユニットの実測値は下記のとおりであって出
力電圧1.8Vを得るには従来例では300℃の温度差
を必要としたが本発明では200℃で足り効率よく発電
することが実測された。また,本発明ではP型並にN型
熱電気変換素子は素子が石英管で保持されているので機
械的にも極めて堅牢で長時間の使用に耐えることは明で
ある。
The measured values of the thermoelectric conversion unit manufactured by the conventional method and the unit manufactured by the present invention are as follows, and a temperature difference of 300 ° C. was required in the conventional example to obtain an output voltage of 1.8 V. Then, it was actually measured that the power generation was sufficiently efficient at 200 ° C. Further, in the present invention, since the P-type and N-type thermoelectric conversion elements are held by the quartz tube, it is clear that they are mechanically extremely robust and can be used for a long time.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明によって製造した熱電気変換素子によっ
て組立たユニットでAは上面図Bは裏面図Cは断面図を
示す。何れもAl板を剥離し,また表面に耐熱性電気的絶
縁材料シリコンゴムを塗布しない状態である。 第2図は熱電気変換ユニットの出力電圧を測定する装置
の概略断面図を示す。 1:対熱性電気的絶縁板,2:熱電気変換素子,3:導
電体(銅板),4,4′:出力端子,11:熱電気変換
ユニット,12,12′:Al板,13:ヒータ,14:
氷水バット,15:温度計,16:熱電対,17:出力
FIG. 1 shows a unit assembled by a thermoelectric conversion element manufactured according to the present invention. A is a top view, B is a back view, and C is a sectional view. In both cases, the Al plate was peeled off, and the surface was not coated with the heat-resistant electrically insulating material silicone rubber. FIG. 2 shows a schematic sectional view of an apparatus for measuring the output voltage of the thermoelectric conversion unit. 1: Thermoelectric insulating plate, 2: Thermoelectric conversion element, 3: Conductor (copper plate), 4, 4 ': Output terminal, 11: Thermoelectric conversion unit, 12, 12': Al plate, 13: Heater , 14:
Ice water vat, 15: Thermometer, 16: Thermocouple, 17: Output

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】石英又はガラス細管の中に,夫々N型又は
P型半導体の溶湯を吸い上げ,そのまま凝固させ所定の
長さに切断して棒状の素子を得ることを特徴とする熱電
気変換素子の製造方法
1. A thermoelectric conversion element characterized in that a rod-shaped element is obtained by sucking a molten N-type or P-type semiconductor into a quartz or glass capillary tube respectively, solidifying the molten metal and cutting it into a predetermined length. Manufacturing method
【請求項2】N型半導体はBi(TeSb),P型
半導体は(SbBi)Teである特許請求の範囲第
1項記載の熱電気変換素子の製造方法
2. The method for manufacturing a thermoelectric conversion element according to claim 1, wherein the N-type semiconductor is Bi 2 (TeSb) 3 and the P-type semiconductor is (SbBi) 2 Te 3.
【請求項3】石英又はガラス細管の中に,夫々N型又は
P型半導体の粉末を挿入し,該粉末を焼結成型した後所
定の長さに切断して棒状の素子を得ることを特徴とする
熱電気変換素子の製造方法
3. A rod-shaped element is obtained by inserting N-type or P-type semiconductor powder into quartz or glass capillaries, sintering the powder and then cutting it into a predetermined length. For producing thermoelectric conversion element
【請求項4】N型半導体はBi(TeSb),P型
半導体は(SbBi)Teである特許請求の範囲第
3項記載の熱電気変換素子の製造方法
4. The method of manufacturing a thermoelectric conversion element according to claim 3 , wherein the N-type semiconductor is Bi 2 (TeSb) 3 and the P-type semiconductor is (SbBi) 2 Te 3.
JP60040995A 1985-03-04 1985-03-04 Method for manufacturing thermoelectric conversion element Expired - Lifetime JPH069260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60040995A JPH069260B2 (en) 1985-03-04 1985-03-04 Method for manufacturing thermoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60040995A JPH069260B2 (en) 1985-03-04 1985-03-04 Method for manufacturing thermoelectric conversion element

Publications (2)

Publication Number Publication Date
JPS61201484A JPS61201484A (en) 1986-09-06
JPH069260B2 true JPH069260B2 (en) 1994-02-02

Family

ID=12596006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60040995A Expired - Lifetime JPH069260B2 (en) 1985-03-04 1985-03-04 Method for manufacturing thermoelectric conversion element

Country Status (1)

Country Link
JP (1) JPH069260B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0773592A2 (en) 1995-11-13 1997-05-14 Ngk Insulators, Ltd. Thermoelectric conversion module and method of manufacturing the same
US20130269744A1 (en) * 2012-04-11 2013-10-17 Panasonic Corporation Thermoelectric conversion module

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9219216B2 (en) 2010-11-18 2015-12-22 Panasonic Intellectual Property Management Co., Ltd. Thermoelectric conversion element, thermoelectric conversion element module, and method of manufacturing the same
JP5235038B2 (en) 2011-04-12 2013-07-10 パナソニック株式会社 Thermoelectric conversion device manufacturing apparatus and manufacturing method
DE102011084442B4 (en) * 2011-10-13 2018-05-03 Schott Ag Thermoelectric component with glass coated n- and p-conductors
WO2013119284A2 (en) * 2011-11-08 2013-08-15 Ut-Battelle, Llc Manufacture of thermoelectric generator structures by fiber drawing
JP5650770B2 (en) * 2012-04-03 2015-01-07 パナソニックIpマネジメント株式会社 Thermoelectric conversion module
JP6008293B2 (en) * 2012-04-09 2016-10-19 パナソニックIpマネジメント株式会社 Thermoelectric conversion element and thermoelectric conversion module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0773592A2 (en) 1995-11-13 1997-05-14 Ngk Insulators, Ltd. Thermoelectric conversion module and method of manufacturing the same
US20130269744A1 (en) * 2012-04-11 2013-10-17 Panasonic Corporation Thermoelectric conversion module
CN103378283A (en) * 2012-04-11 2013-10-30 松下电器产业株式会社 Thermoelectric conversion module

Also Published As

Publication number Publication date
JPS61201484A (en) 1986-09-06

Similar Documents

Publication Publication Date Title
JP2014013919A (en) Thermoelectric transducer module
JPH1074986A (en) Production of thermoelectric conversion element, pi-type thermoelectric conversion element pair and thermoelectric conversion module
JPH11317548A (en) Thermoelectric conversion material and manufacture thereof
JPH069260B2 (en) Method for manufacturing thermoelectric conversion element
JP2010157645A (en) Thermoelectric power generation unit
JPH09199766A (en) Manufacture of thermoelectric conversion module
JPH10303469A (en) Thin film thermoelectric transducer, semiconductor device using the transducer and printed board using the semiconductor
JP2006196727A (en) Thermoelectric conversion device and manufacturing method thereof
JPH11261118A (en) Thermoelectric conversion module, semiconductor unit, and manufacture of them
EP3062358A1 (en) Thermoelectric conversion device having thermoelectric conversion element connected thereto via wiring pattern, and method for manufacturing thermoelectric conversion device having thermoelectric conversion element connected thereto via wiring pattern
KR20200010784A (en) Flexible thermoelectric module and fabrication method thereof
JP6708339B2 (en) Thermoelectric conversion element, thermoelectric conversion module
GB1110411A (en) Thermionic energy converter tube and method of manufacture
JPH10313134A (en) Manufacture of thermoelectric module
JPH05152616A (en) Manufacture of chip of semiconductor element forming material and its thermoelectric conversion module
US3885992A (en) Thermocouple and method of making same
US3005861A (en) Thermoelements and thermoelectric devices embodying the same
JP4011692B2 (en) Thermoelectric element
JP6595320B2 (en) Thermoelectric module assembly
JPS5864075A (en) Manufacture of thermopile
JP2000294840A (en) Manufacture of thermoelectric element and thermoelectric module
KR102333422B1 (en) Bulk thermoelectric element and manufacturing method thereof
JP3007904U (en) Thermal battery
CN218824055U (en) Gas sensor based on Peltier effect
US3460996A (en) Thermoelectric lead telluride base compositions and devices utilizing them