JPS63226882A - Nonaqueous solvent secondary cell - Google Patents

Nonaqueous solvent secondary cell

Info

Publication number
JPS63226882A
JPS63226882A JP62060044A JP6004487A JPS63226882A JP S63226882 A JPS63226882 A JP S63226882A JP 62060044 A JP62060044 A JP 62060044A JP 6004487 A JP6004487 A JP 6004487A JP S63226882 A JPS63226882 A JP S63226882A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode body
less
battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62060044A
Other languages
Japanese (ja)
Other versions
JPH0793151B2 (en
Inventor
Yuichi Sato
祐一 佐藤
Kuniaki Inada
稲田 圀昭
Katsuharu Ikeda
克治 池田
Hiroyoshi Nose
博義 能勢
Mitsutaka Miyabayashi
宮林 光孝
Akira Itsubo
明 伊坪
Hiroshi Yui
浩 由井
Megumi Komada
駒田 恵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Mitsubishi Petrochemical Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP62060044A priority Critical patent/JPH0793151B2/en
Publication of JPS63226882A publication Critical patent/JPS63226882A/en
Publication of JPH0793151B2 publication Critical patent/JPH0793151B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To make a secondary cell small-sized and high capacity and improve the charge and discharge cycle characteristic and the overcharge and discharge characteristic by specifying the Li quantity contained in a positive electrode at the charged state or the discharged state respectively in the cell incorporating a negative electrode and the positive electrode with the preset component. CONSTITUTION:In a cell incorporating a positive electrode using noncrystalline V2O3 as the main component and a negative electrode using a carbon material with the G value of less than 2.5 shown by the equation I in the Raman spec trum analysis using argon ion laser rays with the H/C atom ratio of less than 0.15, the face spacing (d002) of the (002) plane by the X-ray wide angle diffraction method of 3.37Angstrom or more, the crystallite size (Lc) in the C-axis direction of 150Angstrom or less, and the wavelength of 5145Angstrom , the Li quantity contained in the positive electrode is set to 0.4-0.8 mol against 1.0mol of V2O5. The Li quantity contained in the positive electrode is set to 1.4-1.8 mol against 1.0 mol of V2O5 when the cell voltage is less than 2.0V.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は非水溶媒二次電池に関し、更に詳しくは、過充
放電に関係なく放電することができ、その容量劣化が小
さく充放電サイクル寿命が著しく長く、小型で安定な高
容量を有する非水溶媒電池に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a non-aqueous solvent secondary battery, and more specifically, the present invention relates to a non-aqueous solvent secondary battery that can be discharged regardless of overcharging and discharging, and that reduces capacity deterioration. The present invention relates to a small, stable, high-capacity non-aqueous solvent battery that has a significantly long charge/discharge cycle life.

(従来の技術) 正極体の主要成分がTiS2.MoS2のような遷移金
属のカルコゲン化合物であり、負極体がLi又はLiを
主体とするアルカリ金属である非水溶媒二次電池は、高
エネルギー密度を有するので商品化の努力が払われてい
る。
(Prior art) The main component of the positive electrode body is TiS2. Efforts are being made to commercialize nonaqueous solvent secondary batteries, which are chalcogen compounds of transition metals such as MoS2, and whose negative electrodes are Li or an alkali metal mainly composed of Li, because they have high energy density.

このような二次電池の1例を第4図に示す。An example of such a secondary battery is shown in FIG.

図はボタン形非水溶媒二次電池の縦断面図である。The figure is a longitudinal cross-sectional view of a button-shaped non-aqueous solvent secondary battery.

図において、1が正極体である。正極体lは。In the figure, 1 is a positive electrode body. The positive electrode body l is.

上記したような金属カルコゲン化合物の粉末とポリテト
ラフルオロエチレンのような結着剤との混合物をペレッ
ト化又はシート化したものである。
A mixture of the metal chalcogen compound powder as described above and a binder such as polytetrafluoroethylene is formed into pellets or sheets.

2はセパレータで、例えば多孔質ポリプロピレン薄膜、
ポリプロピレン不織布のような保液性を有する材料で構
成され、正極体1の上に載置される。そして、このセパ
レータ2には、プロピレンカーボネート、1.2−ジメ
トキシエタンのような非プロトン性有機溶媒に、LiC
交04+LiAlO4,LiBF4.LiPF6.Li
AsF。
2 is a separator, for example, a porous polypropylene thin film,
It is made of a liquid-retentive material such as polypropylene nonwoven fabric, and is placed on the positive electrode body 1 . This separator 2 contains LiC in an aprotic organic solvent such as propylene carbonate or 1,2-dimethoxyethane.
Cross04+LiAlO4, LiBF4. LiPF6. Li
AsF.

のような電解質を溶解せしめた所定儂度の非水電解液が
含浸されている。
It is impregnated with a non-aqueous electrolyte of a predetermined strength in which an electrolyte such as the following is dissolved.

3は、セパレータ2を介して正極体に載置されている負
極体で、Li箔又はLiを主体とするアルカリ金属箔で
構成されている。
Reference numeral 3 denotes a negative electrode body placed on the positive electrode body through the separator 2, and is made of Li foil or an alkali metal foil mainly composed of Li.

これら正極体l、セパレータ(非水電解液)2、及び負
極体3は全体として発電要素を構成する。そして、この
発電要素が正極缶4及び負極缶5から成る電池容器に内
蔵されて電池が組立てられる。6は絶縁バッキングであ
り、7は正極体1と正極缶4の間に介在せしめられた集
電体である。この集電体7は、通常、ニッケルネット、
ステンレス鋼製の金属金網、パンチトメタル、フオーム
メタルで構成され、ペレット化又はシート化された正極
体lの片面に圧着されている。
These positive electrode body 1, separator (non-aqueous electrolyte) 2, and negative electrode body 3 constitute a power generation element as a whole. Then, this power generation element is housed in a battery container consisting of a positive electrode can 4 and a negative electrode can 5, and a battery is assembled. 6 is an insulating backing, and 7 is a current collector interposed between the positive electrode body 1 and the positive electrode can 4. This current collector 7 is usually made of nickel net,
It is composed of a stainless steel wire mesh, punched metal, or foam metal, and is crimped onto one side of a pelletized or sheeted positive electrode body l.

(発明が解決しようとする問題点) 上記したような従来構造の二次電池においては、次のよ
うな問題が生じており、その改善が求められている。
(Problems to be Solved by the Invention) In the secondary battery having the conventional structure as described above, the following problems have occurred, and improvement thereof is required.

それは、負極体がLi箔又はLiを主体とするアルカリ
金属の箔そのものであることに基づく問題である。すな
わち、電池の放電時には負極体からLiがLiイオンと
なって電解液に移動し、充電時にはこのLiイオンが金
属Liとなって再び負極体に電析するが、この充放電サ
イクルを反復させるとそれに伴って電析する金属Liは
デンドライト状となりかつ成長していき、最後には、こ
のデンドライト形状の金属Li電析物がセパレータを貫
通して正極体に達し、短絡現象を起すという問題である
。別言すれば、充放電サイクル寿命が短いという問題で
ある。
This is a problem based on the fact that the negative electrode body is a Li foil or an alkali metal foil mainly composed of Li. In other words, when the battery is discharged, Li from the negative electrode body becomes Li ions and moves to the electrolyte, and during charging, these Li ions become metal Li and are deposited on the negative electrode body again, but if this charge-discharge cycle is repeated, Along with this, the metal Li deposited becomes dendrite-like and grows, and finally, this dendrite-shaped metal Li deposit penetrates the separator and reaches the positive electrode body, causing a short circuit phenomenon. . In other words, the problem is that the charge/discharge cycle life is short.

このような問題を回避するために、負極体を、各種の有
機化合物を焼成した炭素質物の担持体にLi又はLiを
主体とするアルカリ金属を担持せしめて構成することが
試みられている。
In order to avoid such problems, attempts have been made to construct the negative electrode body by having Li or an alkali metal mainly composed of Li supported on a carbonaceous material support made by firing various organic compounds.

このような負極体を用いることにより、Liデンドライ
トの析出は防止されるようになったが、しかし一方では
、この電池は同サイズの一次電池に比べてその放電容量
が1/Zoo程度と非常に小さく、しかも自己放電が大
きく、またこの電池を搭載した機器の動作期間は非常に
短くかつ大電流放電は不可能であるなど、実用面におい
て種々の問題がある。
By using such a negative electrode body, the precipitation of Li dendrites has been prevented, but on the other hand, this battery has a very low discharge capacity of about 1/Zoo compared to a primary battery of the same size. There are various problems in practical use, such as the small size and large self-discharge, and the operating period of equipment equipped with this battery is very short and large current discharge is impossible.

また、正極体に関しては、それが金属カルコゲン化合物
を主成分としているため、充放電深度が深くなるにつれ
て金属カルコゲン化合物の不活性化が急速に進行し、結
果的には数回の充放電サイクルの反復で電池容量が大幅
に低下するという問題もある。
In addition, as for the positive electrode body, since it is mainly composed of metal chalcogen compounds, as the depth of charge and discharge increases, the metal chalcogen compounds become inactivated rapidly, and as a result, after several charge and discharge cycles. There is also the problem that battery capacity decreases significantly with repeated use.

その結果、この種の二次電池の実用化が遅れている。As a result, the practical application of this type of secondary battery has been delayed.

本発明は、上記した問題点を解決し、小型・高容量で、
充放電サイクル特性、過充放電特性に優れ、かつ自己放
電が小さく大電流放電が可能な非水溶媒二次電池の提供
を目的とする。
The present invention solves the above-mentioned problems and has a small size and high capacity.
The purpose of the present invention is to provide a nonaqueous solvent secondary battery that has excellent charge/discharge cycle characteristics and overcharge/discharge characteristics, has low self-discharge, and is capable of large current discharge.

[発明の構成] (問題点を解決するための手段串作用)本発明の非水溶
媒電池は、H/Cのの原子比が0.15未満;X線広角
回折法による(002)面の面間隔(d 002)が3
.37Å以上、C軸方向の結晶子の大きさくL c)が
150λ以下、波長5145人のアルゴンレーザ光を用
いたラインスペクトル分析において1次式:1380±
100cm−1の波数域におけるスペクトル強度の積分
値で示されるG値が2.5未満である有機物焼成体から
成る負極体;非晶質のV2O,を主体とする正極体;及
び活物質であるLj;を具備する非水溶媒二次電池であ
って、電池電圧が2.OV以上の場合には、正極体にお
いてV2O,1モル量に対しLiが0.4〜0.8モル
量含有されており、電池電圧が2.0v以下の場合には
、正極体においてV2O,1モル量に対しLiが1.8
〜1.4モル量含有されていることを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) The non-aqueous solvent battery of the present invention has an H/C atomic ratio of less than 0.15; Surface spacing (d 002) is 3
.. 37 Å or more, the crystallite size in the C-axis direction (L c) is 150 λ or less, and the wavelength is 5145. In line spectrum analysis using argon laser light, linear equation: 1380 ±
A negative electrode body made of a fired organic material having a G value of less than 2.5 as an integral value of spectral intensity in a wavenumber region of 100 cm; a positive electrode body mainly composed of amorphous V2O; and an active material. Lj; A non-aqueous solvent secondary battery having a battery voltage of 2. OV or more, the positive electrode body contains 0.4 to 0.8 molar amount of Li per 1 molar amount of V2O, and when the battery voltage is 2.0v or less, the positive electrode body contains V2O, Li is 1.8 per mol amount
It is characterized in that it is contained in an amount of ~1.4 mol.

本発明の電池においては、活物質はLiであり、この活
物質が電池の充放電動作に対応して上記した負極体と正
極体との間を往復移動する。
In the battery of the present invention, the active material is Li, and this active material moves back and forth between the above-described negative electrode body and positive electrode body in response to charging and discharging operations of the battery.

まず負極体は、水素/炭素(H/C)の原子比が0.1
5未満; X線広角回折法による(OO2)面の面間隔(d 00
2)が3.37Å以上;及びC軸方向の結晶子の大きさ
くL c)が150Å以下;波長s l 45Aのアル
ゴンイオンレーザ光ヲ用いたラマンスペクトル分析にお
いて、下記式:1360±100c層°1の波数域にお
けるスペクトル強度の積分値で示されるG値が2.5未
満; である有機物焼成体(炭素質物)である。
First, the negative electrode body has a hydrogen/carbon (H/C) atomic ratio of 0.1.
Less than 5; Interplanar spacing of (OO2) plane (d 00
2) is 3.37 Å or more; and the crystallite size L c) in the C-axis direction is 150 Å or less; in Raman spectrum analysis using an argon ion laser beam with a wavelength s l of 45 A, the following formula: 1360 ± 100 c layer degree The organic material fired body (carbonaceous material) has a G value expressed as an integral value of spectral intensity in a wave number region of 1, which is less than 2.5.

ここで、G値とは、この炭素質物に対し波長5145人
のアルゴンイオンレーザ光を用いてラマンスペクトル分
析を行なった際にチャートに記録されているスペクトル
強度曲線において、波数1580±l OOc+s−’
の範囲内のスペクトル強度の積分値(面積強度)を波数
1380±100cm’の範囲内の面積強度で除した値
を指し、その炭素質物の黒鉛化度の尺度に相当する。
Here, the G value is the wave number 1580±l OOc+s-' in the spectral intensity curve recorded on the chart when Raman spectrum analysis was performed on this carbonaceous material using argon ion laser light with a wavelength of 5145.
It refers to the value obtained by dividing the integral value of the spectral intensity (area intensity) within the range of 1380±100 cm' by the area intensity within the wave number range of 1380±100 cm', and corresponds to a measure of the degree of graphitization of the carbonaceous material.

すなわち、この炭素質物は結晶質部分と非結晶質部分と
の集合体であるが、G値はこの炭素質組織における結晶
質部分の割合を示すパラメータである。
That is, this carbonaceous material is an aggregate of crystalline portions and amorphous portions, and the G value is a parameter indicating the ratio of crystalline portions in this carbonaceous structure.

これらのパラメータのいずれもが、とりわけH/C及び
d002.Lcのいずれもが上記範囲から逸脱している
場合は、負極体における充放電時の過電圧が大きくなり
、その結果、負極体からガスが発生して電池の安全性が
著しく損われる。しかも充放電サイクル特性も不満足に
なる。
Any of these parameters, especially H/C and d002. If any of Lc deviates from the above range, the overvoltage at the negative electrode body during charging and discharging will increase, and as a result, gas will be generated from the negative electrode body, significantly impairing the safety of the battery. Furthermore, the charge/discharge cycle characteristics are also unsatisfactory.

更に、この相持体の炭素質物は、H/Cが好ましくは0
.01未満、さらに好ましくは0.07未満、とくに好
ましくは0.05未満である。
Furthermore, the carbonaceous material of this support preferably has an H/C of 0.
.. It is less than 0.01, more preferably less than 0.07, particularly preferably less than 0.05.

d 002は3.39〜3.75人が好ましく、更に好
ましくは3.41〜3.70人;LCは8〜100人が
好ましく、更に好ましくは10〜70人である。
d 002 is preferably 3.39 to 3.75 people, more preferably 3.41 to 3.70 people; LC is preferably 8 to 100 people, still more preferably 10 to 70 people.

また、G値に関しては、0.1〜2.0以下が好ましく
、更に好ましくは0.2〜1.5である。
Furthermore, the G value is preferably 0.1 to 2.0 or less, more preferably 0.2 to 1.5.

また、この有機物焼成体は、上記条件の他に下記のよう
な条件をみたしていることが好まルい。
Moreover, it is preferable that this organic substance fired body satisfies the following conditions in addition to the above conditions.

すなわちX線広角回折において求められるa軸方向の結
晶子の大きさくL a)が好ましくは10Å以上、更に
好ましくは15A以上150Å以下、とくに好ましくは
18Å以上70Å以下である。
That is, the crystallite size La) in the a-axis direction determined by wide-angle X-ray diffraction is preferably 10 Å or more, more preferably 15 Å or more and 150 Å or less, and particularly preferably 18 Å or more and 70 Å or less.

又、同じくX線広角回折において求められる(110)
面の面間隔dllOの2倍の距fll a 。
Also, it is also found in X-ray wide-angle diffraction (110)
The distance fll a is twice the interplanar spacing dllO.

(” 2 d 110)が好ましくは2.38A以上、
更に好ましくは2.39Å以上2.46Å以下である。
("2 d 110) is preferably 2.38 A or more,
More preferably, it is 2.39 Å or more and 2.46 Å or less.

このようなパラメータを有する炭素質物は、後述する有
機高分子化合物、縮合多環炭化水素化合物、多環複素環
系化合物の1種又は2種以上を焼成ψ熱分解し炭素化す
ることによって調製することができる。この炭素化過程
で重要な因子は熱処理温度であって、この温度が低すぎ
る場合は炭素化が進まず、また高すぎる場合は炭素質状
態から黒鉛に転化してG値が大きくなってしまうからで
ある。用いる出発源によっても異なるが、熱処理温度は
通常800〜3000℃の範囲く設定される。
A carbonaceous material having such parameters is prepared by carbonizing one or more of the following organic polymer compounds, fused polycyclic hydrocarbon compounds, and polycyclic heterocyclic compounds by calcining ψ thermal decomposition. be able to. An important factor in this carbonization process is the heat treatment temperature; if this temperature is too low, carbonization will not proceed, and if it is too high, the carbonaceous state will convert to graphite and the G value will increase. It is. Although it varies depending on the starting source used, the heat treatment temperature is usually set in the range of 800 to 3000°C.

炭素買物の出発源としては、例えばセルロース樹脂;フ
ェノール樹脂;ポリアクリロニトリル、ポリ(α−ハロ
ゲン化アクリロニトリル)などのアクリル樹脂;ポリ塩
化ビニル、ポリ塩化ビニリデン、ポリ塩素化塩化ビニル
などのハロゲン化ビニル樹脂;ポリアミドイミド樹脂;
ポリアミド樹脂;ポリアセチレン、ポリ(P−フェニレ
ン)などの共役系樹脂のような任意の有機高分子化合物
;例えば、ナフタレン、フェナントレン、アントラセン
、トリフェニレン、ピレン、クリセン。
Starting sources for carbon purchases include, for example, cellulose resins; phenolic resins; acrylic resins such as polyacrylonitrile and poly(alpha-halogenated acrylonitrile); halogenated vinyl resins such as polyvinyl chloride, polyvinylidene chloride, and polychlorinated vinyl chloride. ;Polyamideimide resin;
Polyamide resin; Any organic polymer compound such as conjugated resin such as polyacetylene, poly(P-phenylene); For example, naphthalene, phenanthrene, anthracene, triphenylene, pyrene, chrysene.

ナフタセン、ビセン、ペリレン、ペンタフェン。naphthacene, vicene, perylene, pentaphene.

ペンタセンのような3員環以上の単環炭化水素化合物が
互いに2個以上縮合してなる縮合多環炭化水素化合物、
または、上記化合物のカルボン酸、カルボン酸無水物、
カルボン酸イミドのような誘導体、上記各化合物の混合
物を主成分とする各種のピッチ;例えば、インドール、
イソインドール、キノリン、イソキノリン、キメ+サリ
ン、フタラジン、カルバゾール、アクリジン。
A condensed polycyclic hydrocarbon compound formed by condensing two or more monocyclic hydrocarbon compounds with three or more members such as pentacene,
Or carboxylic acid, carboxylic acid anhydride of the above compound,
Derivatives such as carboxylic acid imides, various pitches based on mixtures of the above compounds; for example, indoles,
Isoindole, quinoline, isoquinoline, kime + sarin, phthalazine, carbazole, acridine.

フェナジン、ツェナトリジンのような3員環以上の複素
環化合物が互いに少なくとも2個以上結合するか、又は
1個以上の3員環以上の単環炭化水素化合物と結合して
なる縮合複素環化合物、上記各化合物のカルボン酸、カ
ルボン酸無水物、カルボン酸イミドのような誘導体、更
にベンゼンの1.2,4.5−テトラカルボン酸、その
二無水物またはそのジイミド;などをあげることができ
る。
A fused heterocyclic compound formed by at least two or more 3-membered ring or more heterocyclic compounds such as phenazine or zenatridine bonded to each other or bonded to one or more 3-membered or more monocyclic hydrocarbon compounds; Examples include derivatives of each compound such as carboxylic acid, carboxylic acid anhydride, and carboxylic acid imide, as well as 1,2,4,5-tetracarboxylic acid of benzene, its dianhydride, or its diimide.

このようにして調製された炭素質物を例えば平均粒径5
〜10μの粉末に粉砕し、これにポリエチレンのような
結着材を所定量混合したのち、ペレット化、シート化し
て負極担持体に成形する。
For example, the carbonaceous material prepared in this way has an average particle size of 5
The powder is pulverized into a powder of ~10μ, mixed with a predetermined amount of a binder such as polyethylene, and then pelletized and formed into a sheet to form a negative electrode carrier.

これを負極体として電池に組込む際には、後述するよう
な処理を施してこれに所定量のLiを担持せしめるので
ある。
When this is incorporated into a battery as a negative electrode body, it is subjected to the treatment described below to make it support a predetermined amount of Li.

本発明電池における正極体は、その主成分が非晶質の■
20Sである。副成分としてP2O,。
The positive electrode body in the battery of the present invention has an amorphous main component.
It is 20S. P2O as a subcomponent.

WO,、B2o、などが含まれていてもよい、これら副
成分は正極体の製造時にv20sの非晶質化の促進・安
定化のために有用である。これら副成分の含有量はV2
os 1モルに対し3〜30モル%の範囲にあることが
好ましい、30モル%を超える場合には、得られた電池
の容量が大幅に減少し、3モル%より少ない場合は非晶
質化のためにコストがかかりすぎて工業的ではないから
である。
These subcomponents, which may include WO, B2o, etc., are useful for promoting and stabilizing the amorphization of v20s during the production of the positive electrode body. The content of these subcomponents is V2
It is preferable that the amount is in the range of 3 to 30 mol% based on 1 mol of os. If it exceeds 30 mol%, the capacity of the obtained battery will be significantly reduced, and if it is less than 3 mol%, it will become amorphous. This is because the cost is too high and it is not suitable for industrial use.

この正極体は、上記した各成分を所定量配合し、所定温
度で溶融したのちその溶融物を急冷して非晶質体とし、
この非晶質体を粉砕して得られた粉末にカーボン粉、ニ
ッケル粉のような導電材とポリテトラフルオロエチレン
のような結着材を混合したのち、それをシート、ペレッ
トに成形して製造することができる。
This positive electrode body is made by blending a predetermined amount of each of the above-mentioned components, melting the mixture at a predetermined temperature, and then rapidly cooling the melt to form an amorphous body.
The powder obtained by crushing this amorphous material is mixed with a conductive material such as carbon powder or nickel powder, and a binder such as polytetrafluoroethylene, and then formed into sheets or pellets. can do.

電池を組立てるに当っては、上記した負極体または/お
よび正極体に所定量のLiを担持せしめる。担持方法と
しては、化学的方法、電気化学的方法、物理的方法など
種々の方法を適用することができるが、例えば、所定濃
度のLiイオンを含む電解液中に上記した負極体(また
は正極体)を浸漬せしめ、かつ対極に金属Liを用い、
前者を(+)極にして電解含浸処理を施せばよい、かく
して、Liイオンは負極体(または正極体)の層間、非
晶質部分に担持されることになる。
When assembling a battery, a predetermined amount of Li is supported on the negative electrode body and/or the positive electrode body. Various methods such as chemical methods, electrochemical methods, and physical methods can be applied as the supporting method. For example, the above-mentioned negative electrode body (or positive electrode body ) is immersed, and metal Li is used as the counter electrode,
Electrolytic impregnation treatment may be performed using the former as the (+) electrode. In this way, Li ions are supported in the amorphous portion between the layers of the negative electrode body (or positive electrode body).

この場合、負極体または/および正極体に担持せしめる
Liイオンの量は、次のように規定される。
In this case, the amount of Li ions supported on the negative electrode body and/or the positive electrode body is defined as follows.

すなわち、上記負極体と正極体を組込んだ電池において
、その電池電圧が2.0v以上(充電状態にある場合)
のとき、正極体に含有されているLi量が、V2O,1
モル量に対し0.4〜0.8モル量となり、また電池電
圧が2.0V未満(放電状態にある場合)のとき、正極
体に含有されているLi量がv20s1モル量に対し1
.4〜1.8モル量となるように担持せしめるのである
That is, in a battery incorporating the above negative electrode body and positive electrode body, the battery voltage is 2.0 V or more (when in a charged state).
When the amount of Li contained in the positive electrode body is V2O,1
The amount of Li contained in the positive electrode body is 0.4 to 0.8 molar amount relative to the molar amount, and when the battery voltage is less than 2.0 V (in the discharge state), the amount of Li contained in the positive electrode body is 1 molar amount per v20s1.
.. It is supported in an amount of 4 to 1.8 moles.

、例えば、電池の充電電圧が一定となる完全な充電状態
においても、正極体のV、O,にはLtが0.4〜0.
8モル量含有されていることが好ましく、また完全な放
電状態若しくは過放電状態においては、LiがV2O5
1モルに対し、1.4〜1.8モル量含有されているこ
とが好ましい。
For example, even in a fully charged state where the charging voltage of the battery is constant, the V, O, and Lt of the positive electrode body are 0.4 to 0.
It is preferable that Li is contained in an amount of 8 mol, and in a completely discharged state or an over-discharged state, Li is contained in an amount of V2O5
It is preferably contained in an amount of 1.4 to 1.8 moles per 1 mole.

2.0■以上の充電状態にあるとき、V2O。When in a charging state of 2.0■ or more, V2O.

1モルに対するLilが0.4モルより少ない場合は、
正極体の表面劣化が進行し、逆に0.8モルより多い場
合は電池容量が減少し実用上の問題が出るので不都合で
ある。また、放電状態において、72051モルに対す
るLi量が1.4モルより少ない場合は、充電時にこの
正極体から負極体に移動するLi量が少なく電池容量は
減少し。
If Lil is less than 0.4 mole per mole,
Surface deterioration of the positive electrode body progresses, and conversely, if the amount exceeds 0.8 mol, the battery capacity decreases, causing practical problems, which is disadvantageous. Further, in a discharge state, if the amount of Li is less than 1.4 mol per 72051 mol, the amount of Li that moves from the positive electrode body to the negative electrode body during charging is small and the battery capacity decreases.

逆に1.8モルより多い場合は、放電サイクルの進行ま
たは過放電時に正極体の物理破壊をもたらすので不都合
である。
On the other hand, if the amount is more than 1.8 mol, it is disadvantageous because it causes physical destruction of the positive electrode body during the progress of the discharge cycle or during overdischarge.

このような充放電時において正極体に含有されているL
i量の規制は、正極体(または負極体)にLiを前述し
た方法で担持せしめる際に、それらの重量2体積に応じ
て担持せしめるLi量を計算によって算出し、その後、
電解含浸処理条件、例えば浴温、電流密度、電解時間を
適宜に選定して行なうことができる。
During such charging and discharging, L contained in the positive electrode body
The amount of i is regulated by calculating the amount of Li to be supported according to the weight and volume of the positive electrode body (or negative electrode body) when Li is supported by the method described above, and then,
The electrolytic impregnation treatment can be carried out by appropriately selecting conditions such as bath temperature, current density, and electrolysis time.

(発明の実施例) (1)負極の製造 フェノール樹脂の粉末をN2ガス中において1800℃
で1時間焼成した。得られた焼成体粉末を粉砕して平均
粒径70p1の粉末とした。ついでこの粉末9.4gと
ポリエチレン粉末0.6gとを混合し、その混合粉50
mgを加圧成形して厚み0.5mmのペレットとした。
(Embodiments of the invention) (1) Manufacture of negative electrode Phenol resin powder was heated to 1800°C in N2 gas.
Baked for 1 hour. The obtained fired body powder was pulverized to obtain a powder with an average particle size of 70p1. Next, 9.4 g of this powder and 0.6 g of polyethylene powder were mixed, and 50 g of the mixed powder was mixed.
mg was pressure-molded into pellets with a thickness of 0.5 mm.

上記焼成体(7)H/C比、 d002.L[及びG値
をそれぞれ測定しその結果を第1表に示した。ラマンス
ペクトル図を第3図として示した。
The above fired body (7) H/C ratio, d002. The L[ and G values were measured and the results are shown in Table 1. A Raman spectrum diagram is shown in FIG.

第  2  表 なお、ベレットの寸法1重量は、組立て後の電池の完全
な充電状態において正極体に含有されているLi量がV
zO,1モルに対し0.8〜0.4モル量となるように
規制されている。
Table 2 Note that the dimensions and weight of the pellet are determined by the amount of Li contained in the positive electrode body in the fully charged state of the battery after assembly.
The amount is regulated to be 0.8 to 0.4 mol per 1 mol of zO.

(2)正極体の製造 v205粉末9g、(NH,)3 PO4拳3H20f
15.0g(V2O3に対1,23(−ル%)を混合し
、混合物を800℃で4時間溶融した。得られた溶融物
をドライアイスで冷却した銅板上に流下して急冷した。
(2) Manufacture of positive electrode body v205 powder 9g, (NH,)3PO4 fist 3H20f
15.0 g (1.23 (-L%) of V2O3) was mixed and the mixture was melted at 800 DEG C. for 4 hours. The resulting melt was quenched by flowing down onto a copper plate cooled with dry ice.

ついで急冷物を粉砕して平均粒径10μの粉末とした。The quenched product was then ground into powder with an average particle size of 10 μm.

この粉末をX線回折法で同定したところ非晶質であった
This powder was identified by X-ray diffraction and was found to be amorphous.

この非晶質粉末5gとポリテトラフルオロエチレン0.
5gを混練し、得られた混練物をロール成形して厚み0
.4mmのシートとした。このシートの片面に線径0.
1mm、60メツシユのステンレス鋼ネットを集電体と
して圧着し正極体とした。
5 g of this amorphous powder and 0.0 g of polytetrafluoroethylene.
Knead 5g and roll form the obtained kneaded product to a thickness of 0.
.. It was made into a 4 mm sheet. One side of this sheet has a wire diameter of 0.
A 1 mm, 60 mesh stainless steel net was crimped as a current collector to form a positive electrode body.

(3)電池の組立 第4図に示したボタン形電池を組立てた。すなわち、ス
テンレス鋼製の正極缶4に、上記正極体1を集電体7を
介して着設し、その上にセパレータ2としてポリプロピ
レン製不織布を載置したのち、ここに、L t CQ 
04を濃度1モルでプロピレンカーボネートに溶解せし
めた電解液を注入した。ついで、ここに負極体3が圧着
されているステンレス鋼製の負極毎5を冠着した。
(3) Assembling the battery The button type battery shown in FIG. 4 was assembled. That is, the above-mentioned positive electrode body 1 was attached to a stainless steel positive electrode can 4 via a current collector 7, and a polypropylene nonwoven fabric was placed thereon as a separator 2, and then L t CQ
An electrolytic solution containing 04 dissolved in propylene carbonate at a concentration of 1 molar was injected. Then, a stainless steel negative electrode 5 having the negative electrode body 3 crimped thereon was attached.

なお、正極体lの組込みに先立ち、正極体を濃度1モル
のLf電解液中に浸漬し、これを(+)極とし金属Li
を(−)極として電解含浸処理を施した。このときの電
解条件は、浴温20℃、電流密度0 、5mA/cm”
 、電解時間15時間であった。
In addition, before assembling the positive electrode body 1, the positive electrode body is immersed in an Lf electrolyte solution with a concentration of 1 molar, and this is used as the (+) electrode and the metal Li
Electrolytic impregnation treatment was performed using the electrode as the (-) electrode. The electrolytic conditions at this time were: bath temperature 20°C, current density 0, 5mA/cm"
, the electrolysis time was 15 hours.

この処理により、正極体には容量で6.OmAh。Through this treatment, the positive electrode body has a capacity of 6. Omah.

VzO,1モル当り1.7モル量のLiが担持されたこ
とになる。
This means that 1.7 mol of Li was supported per 1 mol of VzO.

比較のため、負極体がLi箔そのものであることを除い
ては、実施例と同様の電池を製作し、これを比較例1電
池とした。
For comparison, a battery similar to that of the example was produced, except that the negative electrode body was made of Li foil itself, and this was designated as Comparative Example 1 battery.

また、負極体が、H/CO、01、dH23,39人、
Li  2.45人、G値 5以上の焼成体であったこ
とを除いては、実施例と同様の電池を製作しこれを比較
例?電池とした。
In addition, the negative electrode body is H/CO, 01, dH23, 39 people,
A battery similar to that of the example was manufactured and used as a comparative example, except that the fired body had a Li of 2.45 people and a G value of 5 or more. It was used as a battery.

更に、完全な充電状態でVzO,tモル中のLi量が0
.2モルであり、完全な放電状態でVzO,1モル中の
Li量が1.2モルとなるようにLiを担持せしめた正
極体を用いたことを除いては実施例と同様の電池を製作
しこれを比較例3電池とした。
Furthermore, in a fully charged state, the amount of Li in VzO, t mol is 0.
.. A battery was manufactured in the same manner as in the example except that a cathode body was used that carried Li so that the amount of Li was 1.2 mol per 1 mol of VzO in a fully discharged state. This was used as Comparative Example 3 battery.

(4)各電池の特性 これらの電池につき3〜2vの間で定電圧充電−15に
Ω定抵抗放電を反復し、この時の各サイクルにおける電
池の容量維持率(%;初期容量を100とする)を測定
した。その結果を第1図に示した。
(4) Characteristics of each battery These batteries were repeatedly charged with a constant voltage of 3 to 2V and discharged with a constant resistance of -15Ω, and the capacity retention rate (%; initial capacity was assumed to be 100) of the battery in each cycle. ) was measured. The results are shown in Figure 1.

また、3V−OVの間で定電圧充電−15にΩ定抵抗放
電を反復し、その時の各サイクルにおける電池の容量維
持率を測定し深放電評価を行なった。
In addition, constant voltage charging and -15 Ω constant resistance discharging were repeated between 3 V and OV, and the capacity retention rate of the battery in each cycle was measured to perform deep discharge evaluation.

その結果を第2図に示した。The results are shown in Figure 2.

更に3.6v〜2.Ovの間で同様の充放電を行ない、
その容量維持率を測定し、過充電評価を行ない、その結
果は第2図に示した。
Furthermore 3.6v~2. Similar charging and discharging is performed between Ov,
The capacity retention rate was measured and overcharge evaluation was performed, and the results are shown in FIG.

図から明らかなように本発明の電池は、過充放電に関り
なく放電ができその容量劣化が小さく充放電サイクル寿
命は著しく長くなることが判明した。
As is clear from the figure, it was found that the battery of the present invention can be discharged regardless of overcharging and discharging, and its capacity deterioration is small and its charge/discharge cycle life is significantly longer.

[発明の効果] 以上の説明で明らかなように、本発明の非水溶媒二次電
池は、過充電、過放電の状態にあってもその影響を受け
ることがなく、充放電サイクル寿命が長く、高容量でも
あり、信頼性も高くその工業的価値は大である。
[Effects of the Invention] As is clear from the above explanation, the nonaqueous solvent secondary battery of the present invention is not affected by overcharging or overdischarging, and has a long charge/discharge cycle life. It has high capacity and high reliability, and its industrial value is great.

なお、説明はボタン形構造の二次電池について行なった
が、本発明電池はこのタイプに限定されることなく、例
えば円筒形、扁平型、角形等の形状の非水溶媒二次電池
にも適用できる。
Although the explanation was given regarding a secondary battery with a button-shaped structure, the battery of the present invention is not limited to this type, and can also be applied to non-aqueous solvent secondary batteries with shapes such as cylindrical, flat, and square. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はいずれも本発明電池の特性を示す図で
ある。第3図は実施例電池の負極体のラマンスペクトル
分析のチャート図である。第4図はボタン形構造の非水
溶媒電池の縦断面図である。 1・・・正極体  2・・・セパレータ(非水電解液)
3・・・負極体  4・・・正極缶 5・・・負極毎  6・・・絶縁バッキング7・・・集
電体 サイクル(回)□ 第1図 第2図 5友 帆 (cm−’)□ 第4図
Both FIG. 1 and FIG. 2 are diagrams showing the characteristics of the battery of the present invention. FIG. 3 is a chart of Raman spectrum analysis of the negative electrode body of the example battery. FIG. 4 is a longitudinal sectional view of a non-aqueous solvent battery having a button-shaped structure. 1... Positive electrode body 2... Separator (non-aqueous electrolyte)
3... Negative electrode body 4... Positive electrode can 5... Each negative electrode 6... Insulating backing 7... Current collector cycle (times) □ Figure 1 Figure 2 Figure 5 Friend sail (cm-') □ Figure 4

Claims (1)

【特許請求の範囲】 水素/炭素の原子比が0.15未満;X線広角回折法に
よる(002)面の面間隔(d_0_0_2)が、3.
37Å以上、C軸方向の結晶子の大きさ(Lc)が15
0Å以下、波長5145Åのアルゴンレーザ光を用いた
ラマンスペクトル分析において、次式: 1580±100cm^−^1の波数域におけるスペク
トル強度の積分値G=1380±100cm^−^2の
波数域におけるスペクトル強度の積分値で示されるG値
が2.5未満である有機物焼成体から成る負極体;非晶
質の五酸化バナジウムを主体とする正極体;及び活物質
であるリチウム;を具備する非水溶媒二次電池であって
、電池電圧が2、0V以上の場合には、正極体において
五酸化バナジウム1モル量に対しリチウムが0.4〜0
.8モル量含有されており、電池電圧が2.0V以下の
場合には、正極体において五酸化バナジウム1モル量に
対しリチウムが1.8〜1.4モル量含有されているこ
とを特徴とする非水溶媒二次電池。
[Claims] The hydrogen/carbon atomic ratio is less than 0.15; the interplanar spacing (d_0_0_2) of the (002) plane determined by X-ray wide-angle diffraction is 3.
37 Å or more, crystallite size (Lc) in the C-axis direction is 15
In Raman spectrum analysis using an argon laser beam of 0 Å or less and a wavelength of 5145 Å, the following formula: Integral value of spectral intensity in the wave number range of 1580 ± 100 cm^-^1 G = Spectrum in the wave number range of 1380 ± 100 cm^-^2 A non-aqueous negative electrode body comprising a fired organic material having a G value expressed as an integral value of strength of less than 2.5; a positive electrode body mainly composed of amorphous vanadium pentoxide; and lithium as an active material. In a solvent secondary battery, when the battery voltage is 2.0 V or more, lithium is 0.4 to 0 per 1 mole of vanadium pentoxide in the positive electrode body.
.. When the battery voltage is 2.0 V or less, lithium is contained in an amount of 1.8 to 1.4 moles per mole of vanadium pentoxide in the positive electrode body. Non-aqueous solvent secondary battery.
JP62060044A 1987-03-17 1987-03-17 Non-aqueous solvent secondary battery Expired - Fee Related JPH0793151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62060044A JPH0793151B2 (en) 1987-03-17 1987-03-17 Non-aqueous solvent secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62060044A JPH0793151B2 (en) 1987-03-17 1987-03-17 Non-aqueous solvent secondary battery

Publications (2)

Publication Number Publication Date
JPS63226882A true JPS63226882A (en) 1988-09-21
JPH0793151B2 JPH0793151B2 (en) 1995-10-09

Family

ID=13130682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62060044A Expired - Fee Related JPH0793151B2 (en) 1987-03-17 1987-03-17 Non-aqueous solvent secondary battery

Country Status (1)

Country Link
JP (1) JPH0793151B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036315A (en) * 1983-08-10 1985-02-25 Toray Ind Inc Carbon fiber structure and secondary battery using it
JPS60182670A (en) * 1984-02-28 1985-09-18 Toray Ind Inc Rechangeable battery
JPS61116758A (en) * 1984-11-12 1986-06-04 Nippon Telegr & Teleph Corp <Ntt> Lithium battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036315A (en) * 1983-08-10 1985-02-25 Toray Ind Inc Carbon fiber structure and secondary battery using it
JPS60182670A (en) * 1984-02-28 1985-09-18 Toray Ind Inc Rechangeable battery
JPS61116758A (en) * 1984-11-12 1986-06-04 Nippon Telegr & Teleph Corp <Ntt> Lithium battery

Also Published As

Publication number Publication date
JPH0793151B2 (en) 1995-10-09

Similar Documents

Publication Publication Date Title
US4980250A (en) Secondary battery
JP3019421B2 (en) Non-aqueous electrolyte secondary battery
JP3430614B2 (en) Non-aqueous electrolyte secondary battery
JPH08315817A (en) Manufacture of carbon negative electrode material and nonaqueous electrolyte secondary battery
JPH0544143B2 (en)
JP3113057B2 (en) Manufacturing method of electrode material
JPS63193463A (en) Nonaqueous solvent secondary battery
JP2726285B2 (en) Rechargeable battery
JPH0580791B2 (en)
JPS63114056A (en) Nonaqueous solvent secondary battery
JPH07335262A (en) Nonaqueous electrolyte secondary battery
JP3056519B2 (en) Non-aqueous solvent secondary battery
JPS6369155A (en) Nonaqueous electrolyte secondary battery
JP3140443B2 (en) Rechargeable battery
JPS63226882A (en) Nonaqueous solvent secondary cell
JPS63236259A (en) Nonaqueous solvent secondary battery
JPH01274360A (en) Secondary battery
JP2957202B2 (en) Rechargeable battery
JPH0233868A (en) Nonaqueous electrolyte secondary battery
JP2691555B2 (en) Rechargeable battery
JP3291755B2 (en) Non-aqueous solvent secondary battery and its electrode material
JPH0268868A (en) Secondary battery with nonaqueous electrolyte
JP2685777B2 (en) Rechargeable battery
JPS63298963A (en) Nonaqueous solvent secondary battery
JPH02267873A (en) Nonaqueous solvent secondary cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees