JPS6369155A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPS6369155A
JPS6369155A JP61212692A JP21269286A JPS6369155A JP S6369155 A JPS6369155 A JP S6369155A JP 61212692 A JP61212692 A JP 61212692A JP 21269286 A JP21269286 A JP 21269286A JP S6369155 A JPS6369155 A JP S6369155A
Authority
JP
Japan
Prior art keywords
electrode body
negative electrode
positive electrode
less
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61212692A
Other languages
Japanese (ja)
Other versions
JPH0546670B2 (en
Inventor
Yuichi Sato
祐一 佐藤
Kuniaki Inada
稲田 圀昭
Katsuharu Ikeda
克治 池田
Mitsutaka Miyabayashi
宮林 光孝
Akira Itsubo
明 伊坪
Hiroshi Yui
浩 由井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Mitsubishi Petrochemical Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP61212692A priority Critical patent/JPS6369155A/en
Publication of JPS6369155A publication Critical patent/JPS6369155A/en
Publication of JPH0546670B2 publication Critical patent/JPH0546670B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To lengthen the charge-discharge cycle life and to increase the overdischarge resistant performance by using a substance prepared by quickly cooling a molten mixture of vanadium pentoxide and ammonium phosphate trihydrate in a positive electrode and a molding of a specific carbon powder in a negative electrode. CONSTITUTION:A positve electrode 1 is a molding of amorphous material powder prepared by melting a mixture of V2O5 and (NH4)3PO44.3H2O, and quickly cooling the molten mixture. The mole ratio of (NH4)3PO4.3H2O to V2O5 is specified to 45% or less. A negative electrode is made of carbon having a hydrogen-to-carbon ratio of less than 0.15, an X-ray wide angle diffraction spacing of 3.37Angstrom or more, and a C-axis direction crystallite size of 150Angstrom or less.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は非水電解液二次電池に関し、更に詳しくは、小
型で、充放電サイクル寿命が長く、耐過放電性が優れた
新規な非水電解液二次電池に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a nonaqueous electrolyte secondary battery, and more specifically, a novel nonaqueous electrolyte secondary battery that is small, has a long charge/discharge cycle life, and has excellent overdischarge resistance. It relates to a water electrolyte secondary battery.

(従来の技術) 正極体の主要成分がTiS2.MoS2のような遷移金
属のカルゴゲン化合物であり、負極体がLi又はLiを
主体とするアルカリ金属である非水電解液二次電池は、
高エネルギー密度を有するので商品化の努力が払われて
いる。
(Prior art) The main component of the positive electrode body is TiS2. A nonaqueous electrolyte secondary battery is a transition metal cargogen compound such as MoS2, and the negative electrode body is Li or an alkali metal mainly composed of Li.
Efforts are being made to commercialize it because it has a high energy density.

このような二次電池の1例を第3図に示す0図はボタン
形非水電解液二次電池の縦断面図である。
An example of such a secondary battery is shown in FIG. 3, which is a longitudinal sectional view of a button-type non-aqueous electrolyte secondary battery.

図において、■が正極体である。正極体1は、上記した
ような金属力ルフゲン化合物の粉末とポリテトラフルオ
ロエチレンのような結着剤との混合物をペレット化又は
シート化したものである。
In the figure, ■ is the positive electrode body. The positive electrode body 1 is made by pelletizing or sheeting a mixture of the metallurgical compound powder as described above and a binder such as polytetrafluoroethylene.

21iセパレータで、例えば多孔質ポリプロピレン薄膜
、ポリプロピレン不織布のような保液性を有する材料で
構成され、正極体lの上に載置される。そして、このセ
パレータ2には、ブロビレンカーポネー)、1.2−ジ
メトキシエタンのような非プロトン性有機溶媒に、Li
C立04 。
The 21i separator is made of a liquid-retaining material such as a porous polypropylene thin film or a polypropylene nonwoven fabric, and is placed on the positive electrode body 1. In this separator 2, Li is added to an aprotic organic solvent such as
C standing 04.

LEA文04  、L 1BF4  、Li PFa 
 。
LEA sentence 04, L 1BF4, Li PFa
.

LiASFaのような電解質を溶解せしめた所定濃度の
非水電解液が含浸されている。
It is impregnated with a non-aqueous electrolyte of a predetermined concentration in which an electrolyte such as LiASFa is dissolved.

3は、セパレータ2を介して正極体lに載置されている
負極体で、Li箔又はLiを主体とするアルカル金属箔
で構成されている。
Reference numeral 3 denotes a negative electrode body placed on the positive electrode body l via the separator 2, and is made of Li foil or an alkali metal foil containing Li as a main component.

これら正極体重、セパレータ(非水電解液)2、及び負
極体3は全体として発電要素を構成する。そして、この
発電要素が正極缶4及び負極缶5から成る電池容器に内
蔵されて電池が組立てられる。6は絶縁バッキングであ
り、7は正極体1と正極缶4の間に介在せしめられた集
電体である。この集電体7は、通常、ニッケルネット、
ステンレス鋼製の金属金網、パンチトメタル、フオーム
メタルで構成され、ペレット化又はシート化された正極
体1の片面に圧着されている。
These positive electrode weight, separator (non-aqueous electrolyte) 2, and negative electrode body 3 constitute a power generation element as a whole. Then, this power generation element is housed in a battery container consisting of a positive electrode can 4 and a negative electrode can 5, and a battery is assembled. 6 is an insulating backing, and 7 is a current collector interposed between the positive electrode body 1 and the positive electrode can 4. This current collector 7 is usually made of nickel net,
It is composed of a stainless steel wire mesh, punched metal, or foam metal, and is crimped onto one side of the positive electrode body 1 which is formed into pellets or sheets.

(発明が解決しようとする問題点) 上記したような従来構造の二次電池においては1次のよ
うな問題が生じており、その改善が求められている。
(Problems to be Solved by the Invention) In the secondary battery having the conventional structure as described above, the following first-order problems occur, and improvement thereof is required.

第1の問題は、負極体がLi箔又はLiを主体とするア
ルカリ金属の箔そのものであることに基づく問題である
。すなわち、電池の放電時には負極体からLiがLiイ
オンとなって電解液に移動し、充電時にはこのLiイオ
ンが金属Liとなって再び負極体に電析するが、この充
放電サイクルを反復させるとそれに伴って電析する金属
Liはデンドライト状となりかつ成長していき。
The first problem is based on the fact that the negative electrode body is a Li foil or an alkali metal foil mainly composed of Li. In other words, when the battery is discharged, Li from the negative electrode body becomes Li ions and moves to the electrolyte, and during charging, these Li ions become metal Li and are deposited on the negative electrode body again, but if this charge-discharge cycle is repeated, Along with this, the metal Li deposited becomes dendrite-like and grows.

最後には、このデンドライト形状の金属Li電析物がセ
パレータを貫通して正極体に達し、短絡現象を起すとい
う問題である。別言すれば、充放電サイクル寿命が短い
という問題である。
Finally, the problem is that this dendrite-shaped metal Li deposit penetrates the separator and reaches the positive electrode body, causing a short circuit phenomenon. In other words, the problem is that the charge/discharge cycle life is short.

第2の問題は、正極体が金属カルコゲン化合物を主要成
分とすることに基づく問題である。すなわち、一般に電
池の充放電における放電深度が深くなるに伴い、金属カ
ルコゲン化合物はその不活性化が急速に進行する。その
結果、数回の充放電サイクルの反復で電池容量は大幅に
低下してしまい、実用に耐え得なくなるのである。
The second problem is based on the fact that the positive electrode body contains a metal chalcogen compound as a main component. That is, in general, as the depth of discharge during charging and discharging of a battery becomes deeper, the metal chalcogen compound becomes inactivated more rapidly. As a result, the battery capacity decreases significantly after several charge/discharge cycles, making it unusable for practical use.

この第2の問題を解決するために、正極体の活物質とし
てP2O5とP2O5の混合物を溶融後、この溶湯を急
冷して調製した非晶質物を用いることが提案されている
(特開昭61−116758号参照) しかしながら、この活物質は吸湿性の強いP2O5を用
いるため実際の電池製造工程では次のような問題を生ず
る。
In order to solve this second problem, it has been proposed to use an amorphous material prepared by melting a mixture of P2O5 and P2O5 and then rapidly cooling the molten metal as the active material of the positive electrode (Japanese Patent Laid-Open No. 61 (Refer to No.-116758) However, since this active material uses P2O5, which has strong hygroscopicity, the following problems occur in the actual battery manufacturing process.

すなわち、P2O5とP2O5の配合時又は配合物の保
管時においては、周囲の環境を低温・恒湿状態に維持す
ることが必要となり、また、溶融処理直前ではP2O5
の変質の有無を確認することが必要となり、そのために
特別の設備や煩雑な管理が不可欠となって、製品全体の
コストアップを招くという問題である。
In other words, when blending P2O5 and P2O5 or storing the blend, it is necessary to maintain the surrounding environment at a low temperature and constant humidity.
It is necessary to confirm the presence or absence of deterioration in quality, which requires special equipment and complicated management, leading to an increase in the overall cost of the product.

また、この先行技術において負極体は従来と同様にLi
箔又はLiを主体とするアルカリ金属箔であるため、充
放電サイクル寿命が短いという問題は依然として未解決
である。
In addition, in this prior art, the negative electrode body is made of Li as in the prior art.
Since it is a foil or an alkali metal foil mainly composed of Li, the problem of short charge/discharge cycle life remains unsolved.

本発明は吸湿性のP2O5を用いることがないので正極
体における上記問題を解消し、負極体も箔を用いること
がないので充放電サイクル寿命が長くなり、また耐過放
電性も優れている非水電解液二次電池の提供を目・的と
する。
Since the present invention does not use hygroscopic P2O5, the above-mentioned problems in the positive electrode body are solved, and since the negative electrode body does not use foil, the charge/discharge cycle life is extended, and the present invention is a non-woven fabric with excellent overdischarge resistance. The aim is to provide water electrolyte secondary batteries.

(問題点を解決するための手段) 本発明の非水電解液二次電池は、正極体と、該正極体に
載置されたセパレータと、該セパレータに保持された非
水電解液と、該セパレータに載置された負極体と、該正
極体及び/又は該負極体に包含され充放電反応に対応し
て該正・負極体間を移動する活物質 (a)正極体が、五酸化バナジウムと該五酸化バナジウ
ムに対し45モル%以下に相当する量のリン酸アンモニ
ウム三水塩を配合したものに溶融急冷法を適用して調製
した非晶質物の粉末成形体であり、 (b)負極体が、水素/炭素の原子比0.15未満、x
MA広角回折法による(002)面の面間隔(d002
 ) 3 、37A以上、及びC軸方向の結晶子の大き
さ(Lc)150A以下の炭素質物の粉末成形体であり
、 (c)活物質が、リチウム又はリチウムを主体とするア
ルカリ金属である ことを特徴とする。
(Means for Solving the Problems) The nonaqueous electrolyte secondary battery of the present invention includes a positive electrode body, a separator placed on the positive electrode body, a nonaqueous electrolyte held in the separator, and a nonaqueous electrolyte secondary battery of the present invention. A negative electrode body placed on a separator, and an active material (a) included in the positive electrode body and/or the negative electrode body and moving between the positive and negative electrode bodies in response to charge/discharge reactions, are vanadium pentoxide. and ammonium phosphate trihydrate in an amount equivalent to 45 mol% or less based on the vanadium pentoxide, and is an amorphous powder compact prepared by applying a melt quenching method, and (b) a negative electrode. body has a hydrogen/carbon atomic ratio of less than 0.15, x
Interplanar spacing (d002) of (002) plane by MA wide-angle diffraction method
) 3. It is a powder compact of a carbonaceous material with a crystallite size (Lc) of 37 A or more and a C-axis direction crystallite size (Lc) of 150 A or less, and (c) the active material is lithium or an alkali metal mainly composed of lithium. It is characterized by

本発明の電池は、上記した(a)、(b)。The battery of the present invention has the above-mentioned (a) and (b).

(c)、とりわけ(a)、(b)を具備するところに特
徴を有するものであり、その他の要素は第3図に例示し
た電池と同じであってよい。
(c), especially (a) and (b), and the other elements may be the same as the battery illustrated in FIG.

本発明の電池において、活物質はLi又はLiを主体と
するアルカリ金属であるが、この活物質は、電池の充放
電に対応して正極体と負極体との間を往復移動する。
In the battery of the present invention, the active material is Li or an alkali metal mainly composed of Li, and this active material moves back and forth between the positive electrode body and the negative electrode body in response to charging and discharging of the battery.

まず、本発明にかかる正極体は、v205と吸湿性の低
い(NH4) 3Po4・30020とを混合し、この
混合物を溶融したのちその溶融物を常用の溶融急冷法で
調製した非晶質物の粉末成形体である。
First, the positive electrode body according to the present invention is an amorphous powder prepared by mixing v205 and (NH4) 3Po4.30020, which has low hygroscopicity, melting this mixture, and then preparing the melt by a commonly used melting and quenching method. It is a molded object.

v205、 (NH4)3 POn  ” 30020
の混合時にあっては、用いた前者のモル量に対し後者の
モル量は45%以下に設定される。
v205, (NH4)3 POn” 30020
When mixing, the molar amount of the latter is set to 45% or less of the molar amount of the former used.

(NH4) 3PO4* 30020をv205に対し
45モル%より多く混合すると、得られた非晶質物を電
池に用いた場合、得られる容量が加速度的に減少するた
め不適である。好ましくはv205に対し8〜30モル
%に相当する量である。
If more than 45 mol % of (NH4) 3PO4* 30020 is mixed with v205, the resulting amorphous material is unsuitable because, when used in a battery, the resulting capacity decreases at an accelerating rate. Preferably, the amount corresponds to 8 to 30 mol% based on v205.

なお、本発明における非晶質物とは、これをX線回折法
で同定したとき、■205  、P2O5などの結晶に
基づく回折ビークが観察されない状態のものをいう。
In the present invention, the amorphous substance refers to a substance in which no diffraction peaks due to crystals such as 205 and P2O5 are observed when the substance is identified by X-ray diffraction.

本発明にかかる正極体は次のようにして製造される。す
なわち、まず、上記非晶質物を粉砕して所定粒径の粉末
にする0通常、平均粒径が3〜100戸であるものが好
ましい、ついで、この粉末に所定量の結着剤を添加して
両者を充分に混練する。結着剤としては、ポリテトラフ
ルオロエチレン、クロロスルホン化ポリエチレン、ポリ
エチレン、ポリスチレンのようなものをあげることがで
きる。結着剤の添加量が多すぎると得られた正極体の電
気抵抗が高くなって不都合であり、また少なすぎると結
着効果が発現しないので、通常、非晶質物の粉末重量に
対し1〜15重量%の範囲が好ましい。
The positive electrode body according to the present invention is manufactured as follows. That is, first, the above-mentioned amorphous material is crushed into a powder having a predetermined particle size, preferably having an average particle size of 3 to 100 particles.Next, a predetermined amount of a binder is added to this powder. Thoroughly knead both. Examples of the binder include polytetrafluoroethylene, chlorosulfonated polyethylene, polyethylene, and polystyrene. If the amount of the binder added is too large, the electrical resistance of the obtained positive electrode body will become high, which is disadvantageous.If the amount of the binder added is too small, the binding effect will not be exhibited. A range of 15% by weight is preferred.

得られた混練物を所定厚みのパレット又はシートに成形
して、ステンレス鋼、ニッケル等の金属金網又はパンチ
トメチル等に着設し比較的多孔質な正極体が形成される
The obtained kneaded product is formed into a pallet or sheet of a predetermined thickness and attached to a metal wire mesh made of stainless steel, nickel, etc., or punched methyl to form a relatively porous positive electrode body.

次に負極体について説明する。Next, the negative electrode body will be explained.

負極体は後述する炭素質物の粉末成形体である。この炭
素質物は、H/C0,15未満。
The negative electrode body is a powder compact of a carbonaceous material, which will be described later. This carbonaceous material has an H/C of less than 0.15.

dQ023.37Å以上、Lc150Å以下のパラメー
タで特定される炭素質物である。
It is a carbonaceous material specified by the parameters of dQ023.37 Å or more and Lc 150 Å or less.

更に、この負極体の炭素質物は、H/Cが好ましくは0
.10未満、さらに好ましくは0.07未満、とくに好
ましくは0.05未満である。
Furthermore, the carbonaceous material of this negative electrode body preferably has an H/C of 0.
.. It is less than 10, more preferably less than 0.07, particularly preferably less than 0.05.

又d 002が好ましくは3.39A以上3.75Å以
下、更に好ましくは3゜41A以上3゜70Å以下であ
る。
Further, d 002 is preferably 3.39 A or more and 3.75 Å or less, more preferably 3°41 A or more and 3°70 Å or less.

又Lcが好ましくは8λ以上100A以下、更に好まし
くは10Å以上70Å以下である。
Further, Lc is preferably 8λ or more and 100A or less, more preferably 10A or more and 70A or less.

ここで、H/Cが0.15以上の場合、” 002が3
.37人未満の場合、又はLa2S3人より大きい場合
のいずれかであっても、そのような炭素質物を負極体と
して用いると、負極体における充放電時の過電圧が大き
くなり、その結果、負極体からガスが発生して電池の安
全性が著しく損われる、しかも充放電サイクル特性も不
満足になる。
Here, if H/C is 0.15 or more, "002 is 3
.. If such a carbonaceous material is used as the negative electrode body, whether it is less than 37 people or more than 3 La2S people, the overvoltage during charging and discharging in the negative electrode body will increase, and as a result, the Gas is generated, which significantly impairs the safety of the battery, and the charge/discharge cycle characteristics are also unsatisfactory.

更に、本発明の負極体の炭素質物は、上記の条件の他に
下記のような条件をみたすことが好ましい。
Further, it is preferable that the carbonaceous material of the negative electrode body of the present invention satisfies the following conditions in addition to the above conditions.

すなわち、X線広角回折において求められるa軸方向の
結晶子の大きさくLa)が好ましくは10A以上、更に
好ましくは15A以上150λ以下、とくに好ましくは
18Å以上70Å以下である。
That is, the crystallite size (La) in the a-axis direction determined by wide-angle X-ray diffraction is preferably 10 A or more, more preferably 15 A or more and 150 λ or less, and particularly preferably 18 Å or more and 70 Å or less.

又、同じくX線広角回折において求められる(110)
面の面1?Jf隔dlfOの2倍の距離aa(=2dl
lO)が好ましくは2.38A以上、更に好ましくは2
.39Å以上2.46Å以下である。
Also, it is also found in X-ray wide-angle diffraction (110)
Face 1? Jf interval dlfO twice the distance aa (=2dl
lO) is preferably 2.38A or more, more preferably 2.
.. The thickness is 39 Å or more and 2.46 Å or less.

このようなパラメータを有する炭素質物は、後述する有
機高分子化合物、縮合多環炭化水素化合物、多環複素環
系化合物の1種又は2種以上を焼成・熱分解し炭素化す
ることによって調製することができる。この炭素化過程
で重要な因子は熱処理温度であって、この温度が低すぎ
る場合は炭素化が進まず、また高すぎる場合は炭素質状
態から黒鉛に添加してしまうからである。用いる出発源
によっても異なるが、熱処理温度は通常800〜300
0℃の範囲に設定される。
A carbonaceous material having such parameters is prepared by carbonizing one or more of the organic polymer compounds, condensed polycyclic hydrocarbon compounds, and polycyclic heterocyclic compounds described below by calcination and thermal decomposition. be able to. An important factor in this carbonization process is the heat treatment temperature; if this temperature is too low, carbonization will not proceed, and if it is too high, the carbonaceous state will be added to graphite. Although it varies depending on the starting source used, the heat treatment temperature is usually 800 to 300
It is set in the range of 0°C.

炭素質物の出発源としては、例えばセルロース樹脂;フ
ェノール樹脂;ポリアクリロニトリル、ポリ(α−ハロ
ゲン化アクリロニトリル)などのアクリル樹脂;ポリ塩
化ビニル、ポリ塩化ビニリデン、ポリ塩素化塩化ビニル
などのハロゲン化ビニル樹脂;ポリアミドイミド樹脂;
ポリアミド樹脂;ポリアセチレン、ポリCP−フェニレ
ン)などの共役系樹脂のような任意の有機高分子化合物
;例えば、ナフタレン、フェナントレン、アントラセン
、トリフェニレン、ピレン、クリセン、ナフタセン、ビ
セン、ペリレン、ペンタフェン、ペンタセンのような3
員環以上の単環炭化水素化合物が互いに2個以上縮合し
てなる縮合多環炭化水素化合物;例えば、インドール、
イソインドール、キノリン、インキノリン、キノキサリ
ン、フタラジン、カルバゾール、アクリジン、フェナジ
ン、ツェナトリジンのような3員環以上の複素単環化合
物が互いに少なくとも2個以上結合するか、又は1個以
上の3員環以上の単環炭化水素化合物と結合してなる縮
合複素環化合物をあげることができる。
Examples of starting sources of carbonaceous materials include cellulose resins; phenolic resins; acrylic resins such as polyacrylonitrile and poly(α-halogenated acrylonitrile); halogenated vinyl resins such as polyvinyl chloride, polyvinylidene chloride, and polychlorinated vinyl chloride. ;Polyamideimide resin;
Any organic polymer compound such as conjugated resin such as polyamide resin (polyacetylene, polyCP-phenylene); for example, naphthalene, phenanthrene, anthracene, triphenylene, pyrene, chrysene, naphthacene, bicene, perylene, pentaphene, pentacene, etc. Na 3
A condensed polycyclic hydrocarbon compound formed by condensing two or more monocyclic hydrocarbon compounds with more than one membered ring; for example, indole,
At least two or more heteromonocyclic compounds with three or more members such as isoindole, quinoline, inquinoline, quinoxaline, phthalazine, carbazole, acridine, phenazine, and zenatridine are bonded to each other, or one or more three or more members are bonded to each other. Examples include fused heterocyclic compounds formed by bonding with monocyclic hydrocarbon compounds.

このようにして調製された炭素買物を所定粒径(例えば
平均粒径10〜15戸)に粉砕して粉末とし、この粉末
と結着剤とを所定量比(例えば。
The carbon powder thus prepared is ground into a powder with a predetermined particle size (for example, an average particle size of 10 to 15 particles), and the powder and the binder are mixed in a predetermined ratio (for example, 10 to 15 particles).

重丑比で、98〜80:2〜20)で混練し、この混練
物をペレット、シートに成形して比較的多孔質な負極体
が得られる。
A relatively porous negative electrode body is obtained by kneading at a weight to weight ratio of 98 to 80:2 to 20, and molding the kneaded product into pellets or sheets.

本発明の二次電池は、上記したような正極体。The secondary battery of the present invention has a positive electrode body as described above.

負極体を従来と同様の方法で他の要素とともに組込んで
製作することができる。このとき、この負極体を電池に
組込むに先立ち、活物質であるLi又はLiを主体とす
るアルカリ金属をこの負極体に担持せしめる。担持の方
法としては、化学的方法、電気化学的方法、物理的方法
などがあるが、例えば、所定濃度のLiイオン又はアル
カリ金属イオンを含む電解液中に上記した粉末成形体で
ある負極体を浸漬しかつ対極にリチウムを用いてこの負
極体を陽極にして電解含浸する方法を適用することがで
きる。かくすることにより、Liイオン又はアルカリ金
属イオンは正あるいは負極の層間にドープされてそこに
担持されることになるaA:お、このような活物質の担
持は、負極体に限らず正極体に対しても又は両極に対し
て行なってもよい。
The negative electrode body can be assembled and manufactured with other elements in a conventional manner. At this time, before this negative electrode body is assembled into a battery, Li or an alkali metal mainly composed of Li, which is an active material, is supported on this negative electrode body. Supporting methods include chemical methods, electrochemical methods, and physical methods. For example, the negative electrode body, which is the powder compact, is placed in an electrolytic solution containing a predetermined concentration of Li ions or alkali metal ions. A method can be applied in which the negative electrode body is immersed and electrolytically impregnated using lithium as a counter electrode and the negative electrode body is used as an anode. By doing this, Li ions or alkali metal ions are doped between the layers of the positive or negative electrode and are supported there. It may be applied to both poles or to both poles.

かくして5本発明の二次電池においては、次のような反
応が進行する。すなわち、 充電時: 正極体では、V205  (Li)+ V205 +Li” +e 負極体では、C+Li” +e+C働Li放電時: 正極体では、V205 +Lf” +e−+V2O5(
Li) 負極体では、CsLi+C+Li”+eの反応である。
Thus, in the secondary battery of the present invention, the following reaction proceeds. That is, during charging: In the positive electrode body, V205 (Li) + V205 +Li” +e In the negative electrode body, C+Li” +e+C working Li During discharging: In the positive electrode body, V205 +Lf” +e−+V2O5(
Li) In the negative electrode body, the reaction is CsLi+C+Li''+e.

すなわち、本発明の二次電池において、例えば負極体で
は充電時にLiイオンのドープ現象が起り、また放電時
には負極体に担持されているLiイオンの脱ドープ現象
が生起して、可逆的な電気化学的酸化還元反応が充放電
に伴って進行するため、負極体がLi箔であった場合に
その表面で生起したデンドライト形状の電析物の形成は
なくなるのである。
That is, in the secondary battery of the present invention, for example, a doping phenomenon of Li ions occurs in the negative electrode body during charging, and a dedoping phenomenon of Li ions supported on the negative electrode body occurs during discharging, resulting in reversible electrochemical Since the target oxidation-reduction reaction progresses with charging and discharging, the formation of dendrite-shaped deposits that occur on the surface of the negative electrode body when it is a Li foil disappears.

(発明の実施例) (1)  正極体の製造 v2o5粉末9gと(NH4)3PO4・3002o粉
末2 、5 g (V20s ニ対し24モル%)を混
合し、この混合物を800℃で4時間溶融した。得られ
た溶融物をドライアイスで冷却しである銅板の上に流下
して急冷し、ついで平均粒径100%に粉砕した。得ら
れた粉末をX線回折法で同定したところ非晶質であった
(Embodiments of the invention) (1) Production of positive electrode body 9 g of V2O5 powder and 2.5 g of (NH4)3PO4.3002O powder (24 mol% vs. V20s) were mixed, and this mixture was melted at 800°C for 4 hours. . The resulting melt was cooled with dry ice and poured onto a copper plate for rapid cooling, and then ground to an average particle size of 100%. The obtained powder was identified by X-ray diffraction and was found to be amorphous.

この非晶質物の粉末5gと粉末状のポリテトラフルオロ
エチレン0.5gとを混練し、得られた混練物をロール
成形して厚み0.41のシートとした。
5 g of this amorphous powder and 0.5 g of powdered polytetrafluoroethylene were kneaded, and the resulting kneaded product was roll-formed to form a sheet with a thickness of 0.41.

こみシートの片面を集電体である線径0.1■、60メ
ツシユのステンレス鋼ネットに圧着して正極とした。
One side of the dust sheet was crimped to a current collector, a stainless steel net with a wire diameter of 0.1 mm and a mesh size of 60, to form a positive electrode.

(2)  負極体の製造 フェノール樹脂の粉末を窒素ガス中において1700°
Cで2時間焼成した。得られた炭素質物の粉末を粉砕し
て平均粒径5戸の粉末を得た。このものの構造パラメー
タは、H/Cが0.04、d 002が3.68人、L
cが14Aであった。
(2) Manufacture of negative electrode body Phenol resin powder was heated at 1700° in nitrogen gas.
It was baked at C for 2 hours. The obtained carbonaceous material powder was pulverized to obtain a powder having an average particle size of 5 doors. The structural parameters of this are: H/C 0.04, d 002 3.68, L
c was 14A.

ついでこの粉末9,5gとポリエチレン粉末0.5gと
を混合しこの混合物50mgを加圧成形して厚み0.5
m+wのベレットにした。
Next, 9.5 g of this powder and 0.5 g of polyethylene powder were mixed, and 50 mg of this mixture was pressure-molded to a thickness of 0.5.
I chose m+w beret.

(3)電池の組立 ステンレス鋼製の正極缶に、上記した正極体を集電体を
下にして着設し、その上にポリプロピレン不織布を載置
したのち、そこにLiCl0<を濃度1モル/旦でプロ
ピレンカーボネートに溶解せしめた非水電解液を含浸せ
しめた。ついでその上に上記負極体を載置して発電要素
を構成した。
(3) Assembly of the battery The above-mentioned positive electrode body was mounted on a stainless steel positive electrode can with the current collector facing down, and a polypropylene nonwoven fabric was placed on top of it. First, it was impregnated with a non-aqueous electrolyte dissolved in propylene carbonate. Then, the negative electrode body was placed thereon to form a power generation element.

なお、正極体は、組込むに先立ち、濃度1モル/見のL
iイオン電解液中に浸漬し、正極体を陽極とし、リチウ
ムを陰極とする電解処理に付した。電解条件は、浴温2
0℃、電流密度0.5mA/crn2.電解時間15時
間とした。このような処理により、正極体には容量6.
0mAhのLiが担持されたことになる。
In addition, before incorporating the positive electrode body, the concentration is 1 mol/L.
It was immersed in an i-ion electrolytic solution and subjected to electrolytic treatment using the positive electrode body as an anode and lithium as a cathode. The electrolysis conditions are bath temperature 2
0°C, current density 0.5mA/crn2. The electrolysis time was 15 hours. Through such treatment, the positive electrode body has a capacity of 6.
This means that 0mAh of Li was supported.

かくして、第3図に示したようなボタン形二次電池を製
作した。なお本電池はこれを充電することで正極中に存
在するリチウムの一部が前記の式に従い負極内に充填さ
れ電池の充電は完了するが、その割合は放電状態の正極
体に存在するリチウムの30〜80%の範囲となる。
In this way, a button-shaped secondary battery as shown in FIG. 3 was manufactured. When this battery is charged, a portion of the lithium present in the positive electrode is filled into the negative electrode according to the above formula, and the battery charging is completed, but the proportion is proportional to the lithium present in the positive electrode body in the discharged state. The range is 30-80%.

比較のために、負極体がLi箔そのもの、正極体が結晶
質の■2o、粉末とポリテトラフルオロエチレンとの成
形体であったことを除いては、実施例と同様の電池を製
作し、これを比較例1電池とした。
For comparison, a battery similar to that of Example was fabricated, except that the negative electrode body was Li foil itself, the positive electrode body was a crystalline ■2O, and a molded body of powder and polytetrafluoroethylene. This was designated as Comparative Example 1 battery.

また、負極体がLi箔そのもの、正極体がv205に対
するP2O5が12モル%の非晶質物を活物質とするも
のであったことを除いては実施例と同様の電池を製作し
これを比較例2電池とした。
In addition, a battery similar to that of the example was fabricated, except that the negative electrode body was made of Li foil itself, and the positive electrode body was made of an amorphous material containing 12 mol% of P2O5 with respect to v205 as an active material, and this was used as a comparative example. Two batteries were used.

(4)  各電池の特性 これらの電池につき、3〜2vの間で定電圧充電−20
にΩ定抵抗放電を反復し、このときの各サイクルにおけ
る電池の容量維持率(%:初期容量を100とする)を
測定した。その結果を第1図に示した。
(4) Characteristics of each battery For these batteries, constant voltage charging between 3 and 2V -20
Ω constant resistance discharge was repeated, and the capacity retention rate (%: initial capacity is taken as 100) of the battery in each cycle was measured. The results are shown in Figure 1.

また、3■〜0.9Vの間で定電圧充電−20にΩ定抵
抗放電を反復し、そのときの各サイクルにおける電池の
容量維持率を測定して深放電評価を行なった。その結果
を第2図に示した。
In addition, deep discharge evaluation was performed by repeating constant voltage charging at -20 Ω and constant resistance discharging between 3 and 0.9 V, and measuring the capacity retention rate of the battery in each cycle. The results are shown in Figure 2.

図から明らかなように、本発明の電池は放電深度の深さ
に関りなく容量維持率が小さく充放電サイクル寿命は著
しく長くなることが判明した。
As is clear from the figure, it was found that the battery of the present invention has a low capacity retention rate and a significantly long charge/discharge cycle life regardless of the depth of discharge.

(発明の効果) 以上の説明で明らかなように、本発明の二次電池は放電
深度に影響されることなく充放電サイクル寿命が長く、
モして耐過放電性も優れており、信頚性の高い電池であ
る。
(Effects of the Invention) As is clear from the above explanation, the secondary battery of the present invention has a long charge/discharge cycle life without being affected by the depth of discharge.
It also has excellent overdischarge resistance and is a highly reliable battery.

また、その製造工程、とりわけ正極体の製造工程におい
ては、吸湿性が低く分解することもない(NHa ) 
3POa −30020を用いているので、P2O5を
用いたときのような低温恒湿化のための設備や煩雑な管
理も不要となる。
In addition, in the manufacturing process, especially in the manufacturing process of the positive electrode body, it has low hygroscopicity and does not decompose (NHa).
Since 3POa-30020 is used, there is no need for equipment or complicated management for maintaining low temperature and humidity, which is required when P2O5 is used.

なお、説明はボタン形構造の二次電池について進めたが
、本発明の技術思想はこの構造のものに限定されるもの
ではなく、例えば、円筒形、扁平形、角形等の形状の非
水溶媒二次電池に適用することもできる。
Although the explanation has been given regarding a secondary battery having a button-shaped structure, the technical idea of the present invention is not limited to this structure, and for example, non-aqueous solvents having a cylindrical, flat, or square shape may be used. It can also be applied to secondary batteries.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図はいずれも、電池の充放電サイクル−容
量維持率との関係を表わす図であり、第3図はボタン形
構造の非水溶媒電池の縦断面図である。 1・・・正極体、 2・・・セパレータ(非水電解液)
。 3・・・負極体、 4・・・正極缶、 5・・・負極毎
。 6・・・絶縁バッキング、 7・・・集電体。 第1図 サイクルオ(− 第2図 第3図
Both FIG. 1 and FIG. 2 are diagrams showing the relationship between charge/discharge cycles and capacity retention rate of a battery, and FIG. 3 is a longitudinal sectional view of a non-aqueous solvent battery having a button-shaped structure. 1... Positive electrode body, 2... Separator (non-aqueous electrolyte)
. 3... Negative electrode body, 4... Positive electrode can, 5... Each negative electrode. 6... Insulating backing, 7... Current collector. Figure 1 Cycle O (- Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1、正極体と、該正極体に載置されたセパレータと、該
セパレータに保持された非水電解液と、該セパレータに
載置された負極体と、該正極体及び/又は該負極体に包
含され充放電反応に対応して該正・負極体間を移動する
活物質とから成る発電要素が内蔵された非水電解液二次
電池において、 (a)正極体が、五酸化バナジウムと該五酸化バナジウ
ムに対し45モル%以下に相当する量のリン酸アンモニ
ウム三水塩を配合したものに溶融急冷法を適用して調製
した非晶質物の粉末成形体であり、 (b)負極体が、水素/炭素の原子比0.15未満、X
線広角回析法による(002)面の面間隔(d_0_0
_2)3.37Å以上、及びC軸方向の結晶子の大きさ
(Lc)150Å以下の炭素質物の粉末成形体であり、 (c)活物質が、リチウム又はリチウムを主体とするア
ルカリ金属である ことを特徴とする非水電解液二次電池。 2、該炭素質物が、有機高分子化合物、縮合多環炭化水
素化合物、多環複素環系化合物の群から選ばれる少なく
とも1種を炭素化したものである特許請求の範囲第1項
記載の非水電解液二次電池。
[Claims] 1. A positive electrode body, a separator placed on the positive electrode body, a nonaqueous electrolyte held in the separator, a negative electrode body placed on the separator, the positive electrode body, and In a non-aqueous electrolyte secondary battery with a built-in power generation element consisting of an active material that is included in the negative electrode body and moves between the positive and negative electrode bodies in response to charging and discharging reactions, (a) the positive electrode body is , an amorphous powder compact prepared by applying a melt quenching method to a mixture of vanadium pentoxide and ammonium phosphate trihydrate in an amount equivalent to 45 mol% or less to the vanadium pentoxide, (b) The negative electrode body has a hydrogen/carbon atomic ratio of less than 0.15,
Interplanar spacing (d_0_0) of (002) plane by line wide-angle diffraction method
_2) It is a powder compact of a carbonaceous material with a crystallite size (Lc) of 3.37 Å or more and a crystallite size (Lc) in the C-axis direction of 150 Å or less, and (c) the active material is lithium or an alkali metal mainly composed of lithium. A non-aqueous electrolyte secondary battery characterized by: 2. The non-carbon material according to claim 1, wherein the carbonaceous material is carbonized at least one selected from the group of organic polymer compounds, fused polycyclic hydrocarbon compounds, and polycyclic heterocyclic compounds. Water electrolyte secondary battery.
JP61212692A 1986-09-11 1986-09-11 Nonaqueous electrolyte secondary battery Granted JPS6369155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61212692A JPS6369155A (en) 1986-09-11 1986-09-11 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61212692A JPS6369155A (en) 1986-09-11 1986-09-11 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPS6369155A true JPS6369155A (en) 1988-03-29
JPH0546670B2 JPH0546670B2 (en) 1993-07-14

Family

ID=16626847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61212692A Granted JPS6369155A (en) 1986-09-11 1986-09-11 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPS6369155A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121261A (en) * 1986-11-08 1988-05-25 Asahi Chem Ind Co Ltd Organic electrolyte secondary battery
JPS63121248A (en) * 1986-11-08 1988-05-25 Asahi Chem Ind Co Ltd Secondary battery using carbonaceous material
JPH0266856A (en) * 1988-08-31 1990-03-06 Sony Corp Nonaqueous electrolyte battery
JPH0479155A (en) * 1990-07-20 1992-03-12 Matsushita Electric Ind Co Ltd Manufacture of graphite electrode
WO1993000717A1 (en) * 1991-06-20 1993-01-07 Mitsubishi Petrochemical Co., Ltd. Electrode for secondary battery
CN113200545A (en) * 2021-04-30 2021-08-03 中国科学院山西煤炭化学研究所 Capacitance carbon and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121261A (en) * 1986-11-08 1988-05-25 Asahi Chem Ind Co Ltd Organic electrolyte secondary battery
JPS63121248A (en) * 1986-11-08 1988-05-25 Asahi Chem Ind Co Ltd Secondary battery using carbonaceous material
JPH0266856A (en) * 1988-08-31 1990-03-06 Sony Corp Nonaqueous electrolyte battery
JPH0479155A (en) * 1990-07-20 1992-03-12 Matsushita Electric Ind Co Ltd Manufacture of graphite electrode
WO1993000717A1 (en) * 1991-06-20 1993-01-07 Mitsubishi Petrochemical Co., Ltd. Electrode for secondary battery
CN113200545A (en) * 2021-04-30 2021-08-03 中国科学院山西煤炭化学研究所 Capacitance carbon and preparation method thereof

Also Published As

Publication number Publication date
JPH0546670B2 (en) 1993-07-14

Similar Documents

Publication Publication Date Title
JP3291756B2 (en) Non-aqueous solvent secondary battery and its electrode material
JP2001345100A (en) Carbonaceous particles for negative electrode of lithium secondary cell, preparation process thereof, negative electrode for lithium secondary cell and lithium secondary cell
JPH0770328B2 (en) Secondary battery
JPS6369155A (en) Nonaqueous electrolyte secondary battery
JPS6369154A (en) Nonaqueous electrolyte secondary battery
JPH0544143B2 (en)
JP2001085016A (en) Non-aqueous electrolyte battery
JPH0364989B2 (en)
JPS63193463A (en) Nonaqueous solvent secondary battery
US5910381A (en) Chlorinated diethyl carbonate solvent for battery
JP3403856B2 (en) Organic electrolyte battery
JPS63114056A (en) Nonaqueous solvent secondary battery
JP3056519B2 (en) Non-aqueous solvent secondary battery
JPS63121263A (en) New nonaqueous battery
JPH08255635A (en) Organic electrolyte battery
JPH08162161A (en) Organic electrolytic battery
JPH03147276A (en) Nonaqueous electrolyte secondary battery
JPH08162159A (en) Organic elctrolytic battery
JP3403857B2 (en) Organic electrolyte battery
JPH0233868A (en) Nonaqueous electrolyte secondary battery
JPH053110B2 (en)
JPH01274360A (en) Secondary battery
JPS63298963A (en) Nonaqueous solvent secondary battery
JPH05290888A (en) Nonaqueous solvent secondary battery
JPH0793151B2 (en) Non-aqueous solvent secondary battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees