JPS63226031A - Manufacture of compound structure - Google Patents

Manufacture of compound structure

Info

Publication number
JPS63226031A
JPS63226031A JP5652887A JP5652887A JPS63226031A JP S63226031 A JPS63226031 A JP S63226031A JP 5652887 A JP5652887 A JP 5652887A JP 5652887 A JP5652887 A JP 5652887A JP S63226031 A JPS63226031 A JP S63226031A
Authority
JP
Japan
Prior art keywords
solder
pressure
solder preform
chip
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5652887A
Other languages
Japanese (ja)
Other versions
JP2510557B2 (en
Inventor
Kenichi Mizuishi
賢一 水石
Masahide Tokuda
正秀 徳田
Katsuaki Chiba
千葉 勝昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to EP87115028A priority Critical patent/EP0264122B1/en
Priority to DE8787115028T priority patent/DE3777522D1/en
Priority to US07/109,449 priority patent/US4819857A/en
Publication of JPS63226031A publication Critical patent/JPS63226031A/en
Application granted granted Critical
Publication of JP2510557B2 publication Critical patent/JP2510557B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Die Bonding (AREA)

Abstract

PURPOSE:To assure the voidless low thermal resistance bonding process excellent in mechanical strength by a method wherein a melting material as an intermedi ate material is previously provided in the region along the periphery of bonded region such as a semiconductor pellet or a wiring substrate to be heat-melted in the atmosphere at specified pressure. CONSTITUTION:Specimens (an Si chip 11, a solder preform 13 and a heat sink 14) are mounted on a heating base provided in an exhaust system 16 while the atmospheric pressure is reduced down to 1torr. Due to the naturally made minor gaps, the pressure in the inner region 17 of solder preform 13 is immedi ately reduced down to 1torr to heat-melt the solder preform 13 at around 220 deg.C augmenting the liquidity for creating the close contact state or intermetal reac tion state between the metalized layers 12 and 15. The atmospheric pressure is restored to the normal pressure of 760torr with the solder preform 13 heat- melted as it is. Through these procedures, any external pressure is applied on the melted solder preform 13 to reduce the volume of inner region 17 marked ly. Finally, heating process is stopped to bond the solder 13 so that the specified substantial voidless solder bonded structure may be manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、複合部材の製造技術に係り、特に半導体ベレ
ットと基板との高信頼接合を実現する上で好適な複合構
造体の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a manufacturing technology for composite members, and particularly to a method for manufacturing a composite structure suitable for realizing highly reliable bonding between a semiconductor pellet and a substrate. .

〔従来の技術〕[Conventional technology]

半導体ベレットの高信頼接合を得るには、ヒートシンク
や配線基板との接合が低熱抵抗でありかつ機械強度に優
れることが必要である。従来の低熱抵抗接合の形成方法
では、特開昭60−214536 (以下、従来技術(
A)と称す)に記載のように、半導体チップ背面の中央
部分に溝を設け、この面を融材を介してパッケージ基体
に固着することにより接合層におけるボイドの発生を防
止していた。また、温度サイクル等によって熱歪を与え
るとベレットクラックが生じて機械強度が劣化するとい
う問題に対しては、特開昭61−125025 (以下
、従来技術(B)と称す)に記載のように、接合材とし
て複数の貫通孔を有する共晶金属板を用い、圧力を加え
て接合層内をボイドレス化する方法により耐ペレットク
ラック性を高めていた。
In order to obtain highly reliable bonding of semiconductor pellets, the bonding with heat sinks and wiring boards must have low thermal resistance and excellent mechanical strength. The conventional method for forming low thermal resistance junctions is based on Japanese Patent Application Laid-Open No. 60-214536 (hereinafter referred to as "prior art").
As described in A), a groove is provided in the center of the back surface of the semiconductor chip, and this surface is fixed to the package base via a melting material to prevent voids from forming in the bonding layer. Furthermore, in order to solve the problem that thermal strain caused by temperature cycling etc. causes pellet cracks and deteriorates mechanical strength, as described in JP-A-61-125025 (hereinafter referred to as prior art (B)), The pellet crack resistance was improved by using a eutectic metal plate with multiple through holes as the bonding material and applying pressure to make the bonding layer void-free.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記従来技術(A)は、シリコンチップ背面に設けた溝
の存在により融着材(金シリコン)の漏れ性が高まる効
果が期待されている。これは溝内を通ってガスが逃げ易
く、従ってボイドの発生を防止できるためと考えられて
いる。
The prior art (A) is expected to have the effect of increasing the leakage of the fusion material (gold silicon) due to the presence of the groove provided on the back surface of the silicon chip. This is thought to be because gas can easily escape through the grooves, thereby preventing the generation of voids.

しかし、本発明者らの経験によると上記効果を発揮し得
る構成は以下の理由から限定される。例えば、シリコン
チップ以外の化合物半導体チップを用いる場合、あるい
は融材どして金シリコン以外のPb−8n半田などを用
いる場合には上記効果の発揮が困難であった。
However, according to the experience of the present inventors, the configuration that can exhibit the above effects is limited for the following reasons. For example, it is difficult to achieve the above effect when a compound semiconductor chip other than a silicon chip is used, or when a Pb-8n solder other than gold silicon is used as a flux.

まず第一に、プロセス上の理由、あるいは信頼性の観点
からチップ背面の中央部分に溝形成することの好ましく
ないデバイスには当然ながら前記従来技術(A)を適用
できない。
First of all, it goes without saying that the prior art (A) cannot be applied to devices where it is undesirable to form a groove in the central portion of the back surface of the chip for process reasons or from the viewpoint of reliability.

第二に、半田の漏れ性を良くするためには、チップ背面
に設けた溝の側壁全面にメタライズする必要があり、こ
れを行うには凹凸面へのメタライゼーションという新た
な技術的国是さを増すばかりでなく、メタライズが不充
分な部分ではかえって漏れ不良によるボイドの発生を誘
起するという問題があった。
Second, in order to improve solder leakage, it is necessary to metallize the entire sidewall of the groove provided on the back of the chip, and to do this, a new technical national policy of metallizing uneven surfaces is required. There is a problem in that not only does the metallization increase, but also voids are caused due to leakage defects in areas where the metallization is insufficient.

前記従来技術(B)は、ボイドレス化による耐ペレット
クラック性の向上効果や熱抵抗の低減効果をあげるには
次の理由から適用範囲が限定される。
The range of application of the prior art (B) is limited for the following reasons in order to achieve the effect of improving pellet cracking resistance and reducing thermal resistance due to void-free formation.

まず第一に、複数の貫通孔を有する共晶金属板を接合材
として用い、ペレットを加圧することにより接合層内の
ボイドレス化を図る場合、加圧により貫通孔の中に流動
し充填される共晶金属以外の共晶金属の表面部分には自
然酸化膜が存在するのが普通である。このため、接合面
全体をみると不均一な漏れ状態を生み、かえって局部応
力の発生に伴う機械強度の低下や温度分布の不均一性を
誘起するなど、信頼性を損う不都合がみられた。
First of all, when using a eutectic metal plate with multiple through holes as a bonding material and pressurizing pellets to eliminate voids in the bonding layer, the pressure causes the through holes to flow and fill. A natural oxide film usually exists on the surface of eutectic metals other than eutectic metals. As a result, when looking at the entire bonding surface, non-uniform leakage conditions were created, which resulted in problems such as a decrease in mechanical strength due to the generation of local stress and non-uniform temperature distribution, which impaired reliability. .

すなねち従来技術(B)の実施例にあげられているAu
系共晶金属以外の融材として、例えば表面の自然酸化が
比較的生じ易いPb−3n系半田などを用いた場合、従
来技術CB)で期待される矯果を発揮することは著しく
困難であった。
The Au mentioned in the example of the conventional technology (B)
When Pb-3n solder, which is relatively prone to natural oxidation on the surface, is used as a flux other than the eutectic metal, it is extremely difficult to achieve the straightening effect expected in conventional technology CB). Ta.

本発明の目的は、半導体ペレットの材質、融材の種類、
及び接合面の形状・寸法を問わず、機械強度に優れたボ
イドレスの低熱抵抗接合を有する複合構造体の高信頼か
つ簡便な製造方法を提供することにある。
The purpose of the present invention is to
Another object of the present invention is to provide a highly reliable and simple manufacturing method for a composite structure having void-free, low thermal resistance bonding with excellent mechanical strength, regardless of the shape and dimensions of the bonding surfaces.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、複合構造体の部材をなす半導体ペレットや
配線基板などの被接合領域によって形成される空間領域
を閉じ込めるように、その外周に沿う領域に中間材とし
て融材を予め設け、所定の圧力を有する雰囲気下で融材
を加熱溶解するなどにより流動性を高める手段を講じ、
かかるのちに前記圧力を高めることによって融材を流動
せしめるという主要工程を導入することにより達成され
る。
The above purpose is to provide a melting material as an intermediate material in advance in the area along the outer periphery so as to confine the spatial area formed by the bonded areas such as semiconductor pellets and wiring boards that make up the members of the composite structure, and to apply a predetermined pressure. We take measures to increase fluidity by heating and melting the flux in an atmosphere with
This is achieved by introducing the main step of causing the melt to flow by increasing the pressure.

〔作用〕[Effect]

圧力P1の雰囲気下で融材を溶解すると部材接合面の外
周部分のみで漏れて密着する結果、その内側部分にも圧
力Pよを有する体積v1の空間領域が密封される。さら
に雰囲気の圧力をP2O>pt)に高めることにより密
封された空間領域の内外に圧力差が生じて融材を流動さ
せる結果、とにより実質上ボイドレスと同等の良好な熱
伝導性能を有する接合構造を得る。
When the melting material is melted in an atmosphere of pressure P1, it leaks only at the outer periphery of the joint surfaces of the members and the parts come into close contact, and as a result, a spatial region of volume v1 having pressure P1 is also sealed in the inner part. Furthermore, by increasing the pressure of the atmosphere to P2O>pt), a pressure difference is created between the inside and outside of the sealed space area, causing the melt to flow, resulting in a bonded structure that has good heat conduction performance that is substantially equivalent to voidless. get.

この場合、部材の接合面に如何なる非平坦部分が存在し
ても、前記空間領域を密封するように融材が配置されて
いるという要件が満たされれば。
In this case, no matter what non-flat portions exist on the joint surfaces of the members, the requirement that the melting material be placed so as to seal the spatial region is satisfied.

空間領域内に融材を稠密に充填することができる。The space region can be densely filled with flux.

また、融材として半田を用いる場合、その表面は自然酸
化膜で覆れているのが通常である。しかし、前記空間領
域は酸化膜を破って流入する真性半田によって充填され
るので、酸化膜を除去するためのフラックスを使用しな
くても極めて良好な漏れ性を生むことができ、機械強度
及び熱伝導性に優れた理想的なタラックスレス半田接合
が得られる。
Furthermore, when solder is used as a flux, its surface is usually covered with a natural oxide film. However, since the spatial region is filled with the intrinsic solder that breaks through the oxide film and flows in, it is possible to produce extremely good leakage properties without using flux to remove the oxide film, and to improve mechanical strength and heat resistance. An ideal taraxless solder joint with excellent conductivity can be obtained.

〔実施例〕〔Example〕

以下、本発明の2つの実施例を第1図乃至第8図により
説明する。
Two embodiments of the present invention will be described below with reference to FIGS. 1 to 8.

実施例(1) 第1図(a)〜(d)は本発明による実質的にボイドレ
スの半田固着構造を実現する工程を説明する図である。
Embodiment (1) FIGS. 1(a) to 1(d) are diagrams illustrating steps for realizing a substantially void-free solder fixing structure according to the present invention.

11は、lea角のシリコン大規模集積回路(Si−L
SI)チップであり、背面にはT i / N i /
 A u、3層構造よりなるメタライズ層12が形成さ
れている。13は、外周がチップ11と同寸法のPb−
40wt、%Sn半田プリフォームであり帯状部分の幅
を1mm、厚さを100μmとした。■4は、SiCセ
ラミックで作製したヒートシンクであり、表面にはTi
/Ni/Au、3層構造よりなるメタライズ層15が形
成されている。なお、同図には本発明の半田固着法を説
明する上で必要な最小構成部品のみを示し、チップ配線
やその他の実用上必要な構造の図示は一切省略しである
11 is a lea-angle silicon large-scale integrated circuit (Si-L
SI) chip, and the back side has T i / N i /
A metallized layer 12 having a three-layer structure is formed. 13 is a Pb-
It was a 40wt, %Sn solder preform, and the width of the band-shaped portion was 1 mm and the thickness was 100 μm. ■4 is a heat sink made of SiC ceramic, with Ti on the surface.
A metallized layer 15 having a three-layer structure of /Ni/Au is formed. It should be noted that this figure shows only the minimum components necessary for explaining the solder fixing method of the present invention, and illustrations of chip wiring and other structures necessary for practical use are completely omitted.

以下1本発明の実施例(1)のボイドレス半田固着構造
の作成方法を第1図(a)〜(d)の工程順に詳しく述
べる。
Hereinafter, a method for creating a voidless solder bonding structure according to Example (1) of the present invention will be described in detail in the order of steps shown in FIGS. 1(a) to (d).

まず1図(a)では排気装e16(矢印は排気方向を示
す)内に設けた加熱台(図示は省略した)に試料(Si
チップ11.半田プリフォーム13゜ヒートシンク14
)をセットし、雰囲気をI Torrに減圧した。この
とき、半田プリフォーム13は固体状態にある。従って
9機械的に重ね置かれたSiチップ11及びヒートシン
ク14との接合面には必然的に僅かな間隙が生じている
ため、半田プリフォーム13の内側領域17も直ちにI
 Torrに減圧される。
First, in Figure 1(a), a sample (Si
Chip 11. Solder preform 13° heat sink 14
) and the atmosphere was reduced to I Torr. At this time, the solder preform 13 is in a solid state. Therefore, since there is inevitably a slight gap between the bonding surfaces of the Si chip 11 and the heat sink 14 that are mechanically placed one on top of the other, the inner region 17 of the solder preform 13 is also immediately exposed to the heat sink.
The pressure is reduced to Torr.

かかる状態において、図(b)では半田プリフォーム1
3を約220℃で加熱溶解して流動性を高め、メタライ
ズ層12及び15と充分な密着状態もしくは金属間反応
状態を生ぜしめた。この時点において内側領域17(体
積v1とする)は外側からほぼ完全に密封され、その圧
力P1はI Torrを保たれる。
In such a state, in Figure (b), the solder preform 1
No. 3 was heated and melted at about 220° C. to increase fluidity and to create sufficient adhesion or intermetallic reaction with the metallized layers 12 and 15. At this point, the inner region 17 (with volume v1) is almost completely sealed from the outside, and its pressure P1 is maintained at I Torr.

次いで、同図(c)では半田プリフォーム13を加熱溶
解したままの状態で雰囲気圧、力を常圧760Torr
 (圧力P2とする)に戻す。これにより、溶解してい
る半田プリフォーム13には外圧(常圧760Torr
)が加わる。この操作により内側領域17の体積は大幅
に減少する(このとき体積v2とする)。
Next, in the same figure (c), while the solder preform 13 is heated and melted, the atmospheric pressure and force are set to 760 Torr.
(pressure P2). As a result, the melted solder preform 13 is exposed to external pressure (normal pressure 760 Torr).
) is added. Through this operation, the volume of the inner region 17 is significantly reduced (at this time, the volume is set to v2).

最後に、同図(d)では加熱を停止して半田13を固化
させ、所要の実質的なボイドレス半田固着構造を得る。
Finally, in FIG. 4(d), heating is stopped to solidify the solder 13, thereby obtaining the required substantially void-free solder bonding structure.

多数のサンプルについて行なつれは、軟エックス線透過
像によりボイド面積を測定したデータと最終的に得た半
田接合層の厚さのデータから求めたものである。
The results for a large number of samples were obtained from the data obtained by measuring the void area using soft X-ray transmission images and the finally obtained data about the thickness of the solder bonding layer.

第2図は本発明の実施効果を端的に示す実験結果であり
、従来方法と本発明による方法による平均ボイド率を比
較したものである。方法■は、半田固着される一方の部
品の固着面全面にpb−40wt%Sn半田を予め形成
しておく方法である。これを迎え半田方法という、方法
■は、■の方法で試料を準備し、半田固着プロセスにの
み本発明方式(減圧→半田溶融→常圧→半田固化)を適
用した。■は本発明の方法によるものであり、固着面の
外周領域に沿う領域にのみ半田を設けておくことが方法
■と異なる。
FIG. 2 shows experimental results clearly showing the effect of implementing the present invention, and compares the average void ratio between the conventional method and the method according to the present invention. Method (2) is a method in which pb-40wt%Sn solder is previously formed on the entire surface of one of the parts to be soldered. In response to this, method (1), called the soldering method, prepared a sample using the method (2), and applied the method of the present invention (reduced pressure→solder melting→normal pressure→solder solidification) only to the solder fixation process. Method (2) is based on the method of the present invention, and differs from method (2) in that solder is provided only in the area along the outer peripheral area of the fixing surface.

第2図の結果から明らかなように、方法■、■の平均ボ
イド率30〜60%に対して、方法■では高々1%と本
発明のボイド低減効果が極めて顕著なことが分る。第3
図に示す写真は方法■〜■で作製した半田固着試料の軟
エックス線透過像(顕微鏡写真)であり、白色部分がボ
イド部分。
As is clear from the results shown in FIG. 2, the average void percentage of Methods (1) and (2) is 30 to 60%, while that of Method (2) is at most 1%, indicating that the void reduction effect of the present invention is extremely remarkable. Third
The photographs shown in the figure are soft X-ray transmission images (microscopic photographs) of solder-fixed samples prepared by methods ① to ②, and the white parts are void parts.

黒色部分が半田接合部に対応する。なお方法■について
は第1図の工程(b)及び(d)の段階で測定した写真
を示す。
The black parts correspond to solder joints. For method (2), photographs taken in steps (b) and (d) of FIG. 1 are shown.

以下、各方法の特徴を補足説明する。A supplementary explanation of the characteristics of each method is given below.

方法■では迎え半田層の表面に生じる僅かなうねりのた
め半田固着時にガス(空気)が取り込まれるため50%
以下のボイド率を再現性良く得ることが困鷺であった。
In method ■, gas (air) is taken in during solder fixation due to the slight waviness that occurs on the surface of the solder layer, resulting in a reduction of 50%.
It was difficult to obtain the following void ratio with good reproducibility.

方法■では、半田層内部に密閉されたボイドについては
その体積を縮小する効果があるものの。
Method ① has the effect of reducing the volume of voids sealed inside the solder layer.

外部雰囲気から密閉されていない周辺部にもボイドが発
生するためボイド率のばらつきが大きく、20%以下に
することが国連であった。さらに、上記方法の及び■に
共通してみられる状態として。
Since voids also occur in peripheral areas that are not sealed from the external atmosphere, the void ratio varies widely, and the United Nations recommended that the void ratio be kept at 20% or less. Furthermore, as a common condition seen in methods and (2) above.

迎え半田表面に酸化被膜が存在するため良好な半田漏れ
を得難い不都合が生じた。
Due to the presence of an oxide film on the surface of the solder, it was difficult to obtain good solder leakage.

これらに対して本発明方法■では、初期状態において半
田プリフォーム内部の領域17(故意に設けたボイドと
もいえる)が実質的に真空状態にあり外部雰囲気に対し
密封されていること、かかる領域17には半田プリフォ
ームの自然酸化膜を破って真性半田が流入することから
上記方法にみられる問題が全くなく理想的な半田漏れ性
が得られた。この状態を第4図により詳しく説明する。
In contrast, in method (2) of the present invention, the region 17 inside the solder preform (which can also be called an intentionally created void) is substantially in a vacuum state and sealed from the external atmosphere in the initial state; In this method, the natural oxide film of the solder preform was broken and the intrinsic solder flowed in, so there were no problems seen in the above methods and ideal solder leakage was obtained. This state will be explained in detail with reference to FIG.

半田プリフォーム13は通常、鋳型成形や打ち抜き加工
等によって作製されるが、その作製プロセスや大気中で
の保管時間の経過によって真性半田13−aの表面に自
然酸化膜13−bが形成されている。したがって、第1
図の工程(b)における半田プリフォーム13は、第4
図(a)に示すように自然酸化膜13−bを介してメタ
ライズ層12及び15と接触している。(この場合、酸
化膜13−bの一部分が欠損して真性半田13−aが流
出する状態は、Siチップ11に対する荷重の与え方な
どのプロセス条件により発生し得る。
The solder preform 13 is usually manufactured by molding, punching, etc., but a natural oxide film 13-b is formed on the surface of the intrinsic solder 13-a due to the manufacturing process and the elapse of storage time in the atmosphere. There is. Therefore, the first
The solder preform 13 in step (b) of the figure is the fourth
As shown in Figure (a), it is in contact with the metallized layers 12 and 15 via the natural oxide film 13-b. (In this case, a state in which a portion of the oxide film 13-b is lost and the intrinsic solder 13-a flows out may occur depending on the process conditions such as how the load is applied to the Si chip 11.

むしろ、従来方法ではこのような状態を生み出して漏れ
性を高めるためにSiチップ11に機械的振動を与える
方法が用いられていた。)第4図(b)は第1図の工程
(c)に対応するもので真性半田13−aが酸化膜13
−bを破って領域17へ流動した状態を示す。酸化膜1
3−すが半田固着面の周辺のみに限定されて残存するこ
とはオージェ元素分析により容易に確認できた。
Rather, the conventional method uses a method of applying mechanical vibration to the Si chip 11 in order to create such a state and increase leakage. ) FIG. 4(b) corresponds to the step (c) in FIG. 1, in which the intrinsic solder 13-a is
-b is broken and flows to region 17. Oxide film 1
It was easily confirmed by Auger elemental analysis that the 3-stain remained only around the solder bonding surface.

このように、実施例(1)では主要な固着面内において
半田漏れの不均一性は全く生じなかった。
As described above, in Example (1), no non-uniformity of solder leakage occurred within the main bonding surface.

すなわち、前述の従来技術(B)(特開昭6l−125
025)においてみられる半田漏れの不均一性に伴う接
合強度の低下という問題は全く生じなかった。
That is, the above-mentioned prior art (B) (Japanese Unexamined Patent Publication No. 61-125
No problem of reduced bonding strength due to non-uniformity of solder leakage observed in 025) did not occur at all.

以上から明らかなように、実施例(1)によれば、ボイ
ド率が画期的に低減され、かつ、漏れ性の優れた半田固
着構造を容易に実現できる。従って、半導体チップとヒ
ートシンクの半田固着に適用することにより放熱効果を
高めて半導体装置の熱的性能及び信頼性を著しく改善で
きる。
As is clear from the above, according to Example (1), it is possible to easily realize a solder fixing structure in which the void ratio is dramatically reduced and the leakage is excellent. Therefore, by applying the present invention to solder bonding between a semiconductor chip and a heat sink, it is possible to enhance the heat dissipation effect and significantly improve the thermal performance and reliability of the semiconductor device.

次に1本実施例(1)において、半田接合の厚さtの制
御性が極めて高いことを1本発明の原理に基いて以下に
説明する。
Next, the fact that the controllability of the solder joint thickness t in Example (1) is extremely high will be explained below based on the principle of the present invention.

第5図は本発明の原理説明図であり、既に第1図の工程
(b)及び(d)で示したものである。
FIG. 5 is an explanatory diagram of the principle of the present invention, which has already been shown in steps (b) and (d) in FIG.

各部の寸法を第5図(a)及び(b)に示すように、t
oは半田プリフォームの厚さ、tはハンダ固着層の厚さ
、dは半田プリフォームの帯状部分の幅、2rは半田プ
リフォームの側面の長さ、とすると1次の関係式が得ら
れる。
The dimensions of each part are as shown in Fig. 5 (a) and (b).
Assuming that o is the thickness of the solder preform, t is the thickness of the solder fixation layer, d is the width of the band-shaped part of the solder preform, and 2r is the length of the side surface of the solder preform, the following linear relational expression is obtained. .

第5図(e)は式(1)の関係をグラフ化したものであ
る。前述の実施例においては、−例として、t o=1
00μm、 r = 5mm、 d = 1+*+*と
した。従って、式(1)によればt>36μmとなり、
これは複数のサンプルから得た実測値30〜40μmと
良く一致した。すなわち、最終的に得られるボイド率が
高々1%程度と小さいため1式(1,)に基づく半田接
合厚さの制御精度が極めて高いという効果を有する。
FIG. 5(e) is a graph of the relationship expressed by equation (1). In the embodiments described above, - by way of example, t o=1
00 μm, r = 5 mm, and d = 1 + * + *. Therefore, according to equation (1), t>36μm,
This was in good agreement with the actually measured values of 30 to 40 μm obtained from a plurality of samples. That is, since the void ratio finally obtained is as small as about 1% at most, the solder joint thickness can be controlled with extremely high accuracy based on equation 1 (1,).

この効果は半田接合厚さを正確に制御して熱的及び機械
的特性の最適設計を行う上で充分活用できる。
This effect can be fully exploited in accurately controlling the solder joint thickness and designing optimal thermal and mechanical properties.

上記効果は本発明によるボイド率低減の原理によるもの
であり、その物理的根拠について以下に説明する。本発
明原理はボイル・シャルルの法則を利用したものである
。第5図(a)に示したように半田プリフォーム13に
密閉された領域17の体積Vの変化(v1→V 2 )
は圧力Pの変化(pt→P2)と次の関係(ボイル・シ
ャルルの法則)を保つ。
The above effect is based on the principle of void rate reduction according to the present invention, and its physical basis will be explained below. The principle of the present invention utilizes the Boyle-Charles law. As shown in FIG. 5(a), the change in the volume V of the region 17 sealed in the solder preform 13 (v1→V 2 )
maintains the following relationship (Boyle-Charles law) with the change in pressure P (pt→P2).

前述の第1図(b)〜(d)の工程順に密封領域17の
状態変化を下記表に示す。
The table below shows changes in the state of the sealed area 17 in the order of the steps shown in FIGS. 1(b) to 1(d).

ここで実施例では、−例として、 P 1 = I T
arryP2=760Torrt T1=220℃(加
熱温度)。
Here in the example - as an example, P 1 = I T
arryP2=760 Torrt T1=220°C (heating temperature).

T2=183℃(半田融点)、T3=250℃(常温)
とした。工程(d)には半田固化後の常温への温度変化
(T2→T 3 )が加わる(工程(d′)とする)。
T2 = 183℃ (solder melting point), T3 = 250℃ (room temperature)
And so. Step (d) includes a temperature change (T2→T3) to room temperature after solder solidification (referred to as step (d')).

以上の説明から明らかなように1本実施例(1)におい
て最終的に得られる半田接合のボイド体積となる。すな
わち、第1図に示した領域17の体積V、を決めること
によって最終的に得るボイド率を制御し得る。
As is clear from the above description, this is the void volume of the solder joint finally obtained in Example (1). That is, by determining the volume V of the region 17 shown in FIG. 1, the final void ratio can be controlled.

実施例(2) 前記実施例(1)においては、単独の半田ペレットとヒ
ートシンクの半田固着構造を実現する。上での本発明の
有効性を示した。これは、ペレットの自重が比較的小さ
く、シかも固着される面が平坦な場合の一例であった。
Embodiment (2) In the embodiment (1), a solder fixation structure between a single solder pellet and a heat sink is realized. The effectiveness of the present invention was demonstrated above. This was an example of a case where the weight of the pellets was relatively small and the surface to which the pellets were fixed was flat.

これに対し第6図に示す実施例(2)は、複数の半導体
チップ(22)のそれぞれに対して冷却ブロック(25
)が取り付けられている、いわゆるマルチチップ冷却モ
ジュールのボイドレス半田固着構造に関するものである
。以下、本実施例について第6図乃至第8図により説明
する。
On the other hand, in the embodiment (2) shown in FIG. 6, cooling blocks (25
) is related to a voidless solder fixing structure of a so-called multi-chip cooling module. This embodiment will be explained below with reference to FIGS. 6 to 8.

第6図(a)は、特開昭60−94749号「集積回路
チップ冷却装置」に開示されているものに類似したマル
チチップ冷却モジュールを示す。
FIG. 6(a) shows a multi-chip cooling module similar to that disclosed in JP-A-60-94749, ``Integrated Circuit Chip Cooling Apparatus''.

冷却モジュール21はS 1−LS Iチップ22を封
入し、かつ冷却する機能を有するものである。
The cooling module 21 has a function of enclosing the S 1-LS I chip 22 and cooling it.

Siチップ22は半田バンプ23を介して回路基板24
に接続されている。冷却ブロック25の内部にはフィン
(図示は省略した)が設けられ、ベローズ26によって
冷却水路27と連結されている。すなわち、人出口28
−a、28−bの間に冷却水を流すことによって冷却ブ
ロック25の熱を取り去る機能を有する6冷却ブロツク
25とSiチップ22の間は半田29によって固着され
ている。第6図(b)は、Siチップ22に取り付けた
冷却ブロック25の斜視図である。
The Si chip 22 is connected to the circuit board 24 via solder bumps 23.
It is connected to the. Fins (not shown) are provided inside the cooling block 25 and are connected to the cooling channel 27 by a bellows 26 . In other words, the exit 28
The Si chip 22 and the cooling block 25, which has the function of removing heat from the cooling block 25 by flowing cooling water between the Si chip 22 and the cooling block 25, are fixed by solder 29. FIG. 6(b) is a perspective view of the cooling block 25 attached to the Si chip 22.

上記冷却モジュール21において、本発明の原理を用い
たボイドレス半田固着を複数チップに対して一括して行
う方法について以下に述べる。
In the cooling module 21, a method of performing voidless solder bonding on a plurality of chips at once using the principle of the present invention will be described below.

第6図(a)に示した冷却モジュール構造から容易に推
察されるように、柔軟なベローズ26の長さのばらつき
9回路基板24の反り、半田バンプ23の高さのばらつ
き等によって冷却ブロック25とSiチップ22の間隙
にばらつきが生じる。
As can be easily inferred from the structure of the cooling module shown in FIG. Variations occur in the gap between the Si chip 22 and the Si chip 22.

したがって、半田固着時には冷却ブロック25に適当な
垂直荷重を与え、半田層を介してチップ22に接触させ
る必要があった。しかし1本発明者らの実験によると1
例えばP b −S n 5 wt、%半田の容融時に
垂直荷重20〜30g/c■2を与えるとSiチップ2
2の周辺に溶融半田の大半が流出してしまう不都合が生
じた。
Therefore, when fixing the solder, it was necessary to apply an appropriate vertical load to the cooling block 25 and bring it into contact with the chip 22 through the solder layer. However, according to the inventors' experiments, 1
For example, if a vertical load of 20 to 30 g/c 2 is applied during melting of P b -S n 5 wt% solder, Si chip 2
An inconvenience occurred in that most of the molten solder flowed out around No. 2.

第7図は、このような問題を解決して本発明によるボイ
ドレス半田固着を可能とする工程を説明する図である。
FIG. 7 is a diagram illustrating a process for solving this problem and enabling voidless solder fixation according to the present invention.

すなちわ、冷却ブロック25の固着面に突起30を設け
ることにより溶融状態の半田29の流出を防止した。ま
た、固着面に所定の厚さ、例えば50μmを持つスペー
サを設置することによっても同様の効果をあげることが
できた。
That is, by providing the projections 30 on the fixed surface of the cooling block 25, the molten solder 29 is prevented from flowing out. Further, the same effect could be achieved by installing a spacer having a predetermined thickness, for example, 50 μm, on the fixing surface.

第7図(a)、 (b) 、及び(c)は、第1図の工
程(a)、(b)、及び(C)に対応する。第7図(b
)に示すように垂直荷重W(矢印で示す)を加えて突起
部30の先端がSiチップ22に接触した状態において
、適度な間隙(30〜50μm)を生ぜしぬることによ
って周辺への半田流出が防止できた。第7図(C)にお
いては、第1図の工程(c)で説明した本発明の原理に
従ってボイドレス半田固着を容易に実現できた。
7(a), (b), and (c) correspond to steps (a), (b), and (C) of FIG. 1. Figure 7 (b
), when a vertical load W (indicated by an arrow) is applied and the tip of the protrusion 30 is in contact with the Si chip 22, a suitable gap (30 to 50 μm) is created to prevent the solder from flowing to the surrounding area. could be prevented. In FIG. 7(C), voidless solder fixation was easily realized according to the principle of the present invention explained in step (c) of FIG. 1.

第8図は、非平坦面として球面を採用した変形例を示し
、工程(a)、(b) 、及び(e)は、第1図の(a
)、(b)、及び(c)に対応する。本例は、半田固着
面が傾斜した場合にも比較的質な固着構造が得られ、従
って構成部材の組立精度の許容範囲を広くできる効果が
あった。
FIG. 8 shows a modified example in which a spherical surface is used as the non-flat surface, and steps (a), (b), and (e) are similar to (a) in FIG.
), (b), and (c). In this example, even when the solder fixation surface is inclined, a relatively high quality fixation structure can be obtained, and therefore, it has the effect of widening the allowable range of assembly accuracy of the component parts.

さらに、第7図及び第8図で説明したように。Furthermore, as explained in FIGS. 7 and 8.

固着面にスペーサを設置する方法もしくはスペーサと同
様の機能を有する構造体、例えば突起や球面をもつ固着
面を採用する方法によって中間fiとして用いる半田の
厚さを一義的に制御性よく決められる効果があった。
The effect that the thickness of the solder used as intermediate fi can be uniquely determined with good controllability by installing a spacer on the fixing surface or by using a structure having the same function as a spacer, such as a fixing surface with a protrusion or a spherical surface. was there.

上記実施例(2)の結果から、本発明によるボイドレス
半田固着方法が、固着面に非平坦面を有する部材にも適
用可能なことが明らかである。すなわち、実施例(2)
においては垂直荷重の必要性から突起30などを有する
非平坦面を敢えて採用したが、Siチップを大口径化し
たり構成部材の機械的許容公差を大きくとりたいという
要求を鑑みれば、本発明による非平坦面に対するボイド
レス半田固着技術は広い用途に適用でき、普遍的な効果
を発揮できることは自明といえる。実施例(2)にみら
れた本発明の効果は、前述の従来技術(A)及び(B)
によって実現することが極めて困難であることも容易に
理解されるであろう。
From the results of Example (2) above, it is clear that the voidless solder fixing method according to the present invention can be applied to members having non-flat fixing surfaces. That is, Example (2)
In the above, a non-flat surface with protrusions 30 etc. was intentionally adopted due to the necessity of vertical load, but in view of the demand for increasing the diameter of the Si chip and increasing the mechanical tolerance of the constituent members, the non-flat surface according to the present invention was adopted. It is obvious that voidless solder fixation technology for flat surfaces can be applied to a wide range of applications and can have universal effects. The effect of the present invention observed in Example (2) is similar to that of the prior art (A) and (B) described above.
It will be easily understood that it is extremely difficult to realize this.

以上述べた実施例(1)及び(2)においては、中間機
の一例として半田プリフォームを用いたが、半田接合面
の外周に沿う領域に半田材を設けるという本発明要件を
満たすものであれば、半田材及び接合される部材の種類
、形状、設置方法の如何に拘らず本実施例の効果を享受
し得ることは自明である。さらに、部材間の接合面へ中
間機としての接合剤を稠密に充填することを目的とする
応用例においては、雰囲気の圧力変化時において接合剤
が流動性を有することのみが本発明による効果を実現す
る必要条件となる。すなわち、半田材以外でも上記要件
を満たす接合剤、例えば有機性樹脂などを用いても本発
明の効果を充分に発揮し得ることは言うまでもない。
In the embodiments (1) and (2) described above, a solder preform was used as an example of an intermediate machine, but any material that satisfies the requirements of the present invention that the solder material is provided in the area along the outer periphery of the solder joint surface may be used. For example, it is obvious that the effects of this embodiment can be enjoyed regardless of the type, shape, and installation method of the solder material and the members to be joined. Furthermore, in an application example in which the purpose is to densely fill a bonding agent as an intermediate agent into a bonding surface between members, the effect of the present invention is obtained only if the bonding agent has fluidity when the pressure of the atmosphere changes. This is a necessary condition for its realization. That is, it goes without saying that the effects of the present invention can be fully exerted even when using a bonding agent other than a solder material that satisfies the above requirements, such as an organic resin.

前記実施例では、圧力比を得る方法として、一旦減圧(
Pl)にしたのち常圧(P2)に戻す方法を用いた。本
発明のポイントをなすボイド率低減効果は圧力比P x
 / P zに比例することから明らかなように、初期
圧力P1の設定はP2に対して相対的になされるもので
あり、前記実施例のように必ずしも特定する必要はない
。したがって。
In the above embodiment, the method of obtaining the pressure ratio is to first reduce the pressure (
A method was used in which the pressure was set to Pl) and then returned to normal pressure (P2). The void ratio reduction effect, which is the key point of the present invention, is the pressure ratio P x
/ P z As is clear from the fact that the initial pressure P1 is set relative to P2, it does not necessarily have to be specified as in the above embodiment. therefore.

操作上の筒便性に鑑みてPlを設定すればよく、例えば
Plを常圧(760Torr)とした場合には、P2を
加圧(> 760 Torr)に設定することにより前
記実施例と同様の効果を得ることができる。
Pl may be set in consideration of operational convenience. For example, if Pl is set to normal pressure (760 Torr), P2 may be set to pressurization (>760 Torr) to obtain the same result as in the above embodiment. effect can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ボイド率が画期的に低減され、かつ、
漏れ性の優れた半田固着構造を制御性良く実現すること
ができる。また、表面酸化膜を破って真性半田が接合面
に流入するという効果により、フラックスレス半田固着
が可能である。従って、特に半導体チップとヒートシン
ク基板との固着に適用することにより熱抵抗の低減及び
接合強度の増大が図れ、デバイス性能や信頼性を著しく
高める効果がある。さらに、実用上必要となる荷重下に
おいても、接合面からの半田の流出や飛散がみられない
半田固着構造を容易に実現し得る効果がある。
According to the present invention, the void ratio is dramatically reduced, and
A solder-fixed structure with excellent leakage properties can be realized with good controllability. Furthermore, fluxless solder fixation is possible due to the effect that the surface oxide film is broken and the intrinsic solder flows into the bonding surface. Therefore, especially when applied to fixing a semiconductor chip and a heat sink substrate, it is possible to reduce thermal resistance and increase bonding strength, which has the effect of significantly improving device performance and reliability. Furthermore, there is an effect that it is possible to easily realize a solder-fixed structure in which solder does not flow out or scatter from the joint surface even under a practically required load.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第一の実施例の工程説明図、第2図は
実施例の効果を説明する図、第3図は半田固着試料の軟
エックス線透過像を示す顕微鏡写真、第4図は酸化膜を
破って真性半田が流動する状態を説明する図、第5図は
本発明の詳細な説明する図、第6図は第二の実施例を説
明する図、第7図及び第8図は第二の実施例の工程説明
図である。 It、22・・・シリコンチップ、 12.15・・・メタライズ層、14・・・ヒートシン
ク。 17・・・内部領域、25・・・冷却ブロック。
Fig. 1 is a process explanatory diagram of the first embodiment of the present invention, Fig. 2 is a diagram illustrating the effects of the embodiment, Fig. 3 is a micrograph showing a soft X-ray transmission image of a solder-fixed sample, and Fig. 4 5 is a diagram explaining the state in which the intrinsic solder flows by breaking the oxide film, FIG. 5 is a diagram explaining the present invention in detail, FIG. 6 is a diagram explaining the second embodiment, and FIGS. 7 and 8 The figure is a process explanatory diagram of the second embodiment. It, 22... Silicon chip, 12.15... Metallized layer, 14... Heat sink. 17... Internal area, 25... Cooling block.

Claims (1)

【特許請求の範囲】 1、複数の部材が中間材を介して構成される複合構造体
の製造方法において、前記部材のそれぞれが対向する面
によって形成される空間領域を閉じ込めるように該空間
領域の外周領域に沿って前記中間材を配置し、該中間材
を所定の圧力下にて必要に応じて流動性を高める手段を
講じ、かかるのちに前記圧力を高めることによって前記
中間材を前記空間領域内へ流動させることを特徴とする
複合構造体の製造方法。 2、特許請求の範囲第1項に記載の製造方法において、
前記中間材の厚さが、前記複数の部材の間に予め設けら
れたスペーサもしくはこれと同等の機能を有する構造体
の形状によって決められていることを特徴とする複合構
造体の製造方法。
[Scope of Claims] 1. In a method for manufacturing a composite structure in which a plurality of members are formed via an intermediate material, the spatial region formed by the opposing surfaces of each of the members is confined so as to confine the spatial region. The intermediate material is placed along the outer circumferential region, the intermediate material is placed under a predetermined pressure, and if necessary, a means is taken to increase fluidity, and then the pressure is increased to move the intermediate material into the spatial region. A method for producing a composite structure, characterized by causing the structure to flow inwards. 2. In the manufacturing method according to claim 1,
A method for manufacturing a composite structure, wherein the thickness of the intermediate material is determined by the shape of a spacer provided in advance between the plurality of members or a structure having an equivalent function.
JP5652887A 1986-10-17 1987-03-13 Method for manufacturing composite structure Expired - Fee Related JP2510557B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP87115028A EP0264122B1 (en) 1986-10-17 1987-10-14 Method of producing a composite structure for a semiconductor device
DE8787115028T DE3777522D1 (en) 1986-10-17 1987-10-14 METHOD FOR PRODUCING A MIXED STRUCTURE FOR SEMICONDUCTOR ARRANGEMENT.
US07/109,449 US4819857A (en) 1986-10-17 1987-10-19 Method for fabricating composite structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP24525286 1986-10-17
JP61-245252 1986-10-17

Publications (2)

Publication Number Publication Date
JPS63226031A true JPS63226031A (en) 1988-09-20
JP2510557B2 JP2510557B2 (en) 1996-06-26

Family

ID=17130910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5652887A Expired - Fee Related JP2510557B2 (en) 1986-10-17 1987-03-13 Method for manufacturing composite structure

Country Status (1)

Country Link
JP (1) JP2510557B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049526A (en) * 1989-06-07 1991-09-17 Motorola, Inc. Method for fabricating semiconductor device including package
US5877079A (en) * 1996-12-02 1999-03-02 Fujitsu Limited Method for manufacturing a semiconductor device and a method for mounting a semiconductor device for eliminating a void
KR20080076081A (en) * 2007-02-14 2008-08-20 삼성전자주식회사 Semiconductor device and method of fabricating the same
JP2017199842A (en) * 2016-04-28 2017-11-02 株式会社光波 LED light source device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049526A (en) * 1989-06-07 1991-09-17 Motorola, Inc. Method for fabricating semiconductor device including package
US5877079A (en) * 1996-12-02 1999-03-02 Fujitsu Limited Method for manufacturing a semiconductor device and a method for mounting a semiconductor device for eliminating a void
KR20080076081A (en) * 2007-02-14 2008-08-20 삼성전자주식회사 Semiconductor device and method of fabricating the same
JP2017199842A (en) * 2016-04-28 2017-11-02 株式会社光波 LED light source device

Also Published As

Publication number Publication date
JP2510557B2 (en) 1996-06-26

Similar Documents

Publication Publication Date Title
US7447032B2 (en) Heat spreader module and method of manufacturing same
JP6272512B2 (en) Semiconductor device and manufacturing method of semiconductor device
US7327029B2 (en) Integrated circuit device incorporating metallurigical bond to enhance thermal conduction to a heat sink
US4819857A (en) Method for fabricating composite structure
US20070089811A1 (en) Semiconductor device and method for manufacturing thereof
KR20020036669A (en) Flip chip assembly structure for semiconductor device and method of assembling therefor
CN103811437A (en) Microelectronic package having direct contact heat spreader and method of manufacturing same
JPS61159752A (en) Semiconductor resin package
JP2005354095A (en) Device for packing electronic components using injection moulding technology
JP2009514240A (en) Method for joining electronic components
JP6877600B1 (en) Semiconductor device
JP4760876B2 (en) Electronic device and manufacturing method thereof
JP2000150743A (en) Substrate for semiconductor device and manufacture thereof
JPS63226031A (en) Manufacture of compound structure
JP2007243106A (en) Semiconductor package structure
JPH0823002A (en) Semiconductor device and manufacturing method
JP2607877B2 (en) Method for manufacturing resin-reinforced LSI mounting structure
JP2008181922A (en) Heat-conductive substrate and manufacturing method thereof, and semiconductor device using heat-conductive substrate
JP2014143342A (en) Semiconductor module and manufacturing method of the same
JP3550100B2 (en) Automotive electronic circuit device and package manufacturing method thereof
JP3553513B2 (en) Automotive electronic circuit devices
WO2022195757A1 (en) Semiconductor device and method for producing semiconductor device
JP4266689B2 (en) Semiconductor device
Xu et al. Thermal performance and reliability management for novel power electronic packaging using integrated base plate
WO2022208870A1 (en) Semiconductor device and semiconductor device production method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees