JPS63225475A - Battery - Google Patents

Battery

Info

Publication number
JPS63225475A
JPS63225475A JP63021893A JP2189388A JPS63225475A JP S63225475 A JPS63225475 A JP S63225475A JP 63021893 A JP63021893 A JP 63021893A JP 2189388 A JP2189388 A JP 2189388A JP S63225475 A JPS63225475 A JP S63225475A
Authority
JP
Japan
Prior art keywords
electrode active
active material
positive electrode
battery
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63021893A
Other languages
Japanese (ja)
Other versions
JPH0348620B2 (en
Inventor
Shinichi Tobishima
真一 鳶島
Junichi Yamaki
準一 山木
Akihiko Yamaji
昭彦 山路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63021893A priority Critical patent/JPS63225475A/en
Publication of JPS63225475A publication Critical patent/JPS63225475A/en
Publication of JPH0348620B2 publication Critical patent/JPH0348620B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To enable the formation of a battery which is small-sized and high in its energy density and chargeable/dischargeable by using a pyrimidine derivative, which has a six-membered ring with two ketone groups, as a positive electrode active material in a lithiun battery. CONSTITUTION:This battery comprises the following materials: a positive electrode active material 5 which is a pyrimidine derivative having a six-membered ring with two ketone groups, a negative electrode active material 2 which is lithium, and an electrolyte material which is chemically stable for the positive electrode active material 5 and lithium and movable to perform an electrochemical reaction of lithium ions to they positive electrode active material 5. Hence, a battery which is small-sized, large in its discharge capacity, and further high in its energy density and chargeable, can be obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、小型にして放電容量の大きい一次および二次
電池に関し、さらに詳細にはリチウムを負極活物質とし
て用いる電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to primary and secondary batteries that are small in size and have a large discharge capacity, and more particularly to batteries that use lithium as a negative electrode active material.

〔発明の従来技術] 従来からリチウムを負極活物質として用いる高エネルギ
密度電池に関する提案はなされており、例えば正極活物
質として、Br、および工2等のようなハロゲン、Cu
Ft 、AgFz 、AgF、NiF、 、CuCff
1. 、AgC1x 、N1Cj2z、CoFz 、M
nF2、SbF:+ 、CdFz、AsF3、HgF、
、CuBr、Cd、Cl3.、P b C1z 、N 
i C1およびCoCjl!z等のような金属ハロゲン
化物、A、gSCN、CuSCNおよびNi (SCN
)z等のような金属ロダン化物、Mn0z 、Crz 
03 、L Os 、Sn、Ot −PbOz 、Ti
1t 、B iz 02 、Cr0z、Fe、O,、N
ip、HgO,Ag○、Cu、’O5CuO1Agz 
wo4等のような金属酸化物、NiSx、AgB5.C
uB55Pb、B2S。
[Prior Art of the Invention] Conventionally, proposals have been made regarding high energy density batteries using lithium as a negative electrode active material.
Ft, AgFz, AgF, NiF, CuCff
1. , AgC1x , N1Cj2z, CoFz , M
nF2, SbF:+, CdFz, AsF3, HgF,
, CuBr, Cd, Cl3. , P b C1z , N
i C1 and CoCjl! Metal halides such as A, gSCN, CuSCN and Ni (SCN
) metal rhodanides such as Mn0z, Crz, etc.
03, L Os , Sn, Ot -PbOz , Ti
1t , B iz 02 , Cr0z, Fe, O,, N
ip, HgO, Ag○, Cu, 'O5CuO1Agz
Metal oxides such as WO4, NiSx, AgB5. C
uB55Pb, B2S.

およびMnB<34等のような層状化合物、フッ化黒鉛
、さらにはベンゾキノン類、ジニトロベンゼン等のよう
なオキシハライド等を用いた電池が提案されている。そ
して具体的には、例えば正極活物質として黒鉛およびフ
ッ素のインターカレージョン化合物、負極活物質として
リチウム金属をそれぞれ使用した電池が知られており(
米国特許第3,514,337号明細書参照)。また、
フッ化黒鉛を正極活物質としたリチウム負極(松下電器
社製)および二酸化マンガンを正極活物質としたリチウ
ム電池(三洋電機社製)が既に市販されている。しかし
ながら、これらの電池は充電不能で二次電池として使用
できないという欠点がある。また、正極活物質としてチ
タン、タンタル、バナジウムの硫化物、セレン化物、テ
ルル化物を用いた電池(米国特許第4.009,052
号明細書参照)等が開示されている。しかしながら、こ
れらの電池はその電池特性から必ずしも十分であるとは
言えなかった。
Batteries using layered compounds such as MnB<34, fluorinated graphite, and oxyhalides such as benzoquinones and dinitrobenzene have been proposed. Specifically, for example, batteries are known that use graphite and fluorine intercalation compounds as positive electrode active materials, and lithium metal as negative electrode active materials (
(See U.S. Pat. No. 3,514,337). Also,
A lithium negative electrode (manufactured by Matsushita Electric Co., Ltd.) using fluorinated graphite as a positive electrode active material and a lithium battery (manufactured by Sanyo Electric Co., Ltd.) using manganese dioxide as a positive electrode active material are already commercially available. However, these batteries have the disadvantage that they are not rechargeable and cannot be used as secondary batteries. In addition, batteries using sulfides, selenides, and tellurides of titanium, tantalum, and vanadium as positive electrode active materials (U.S. Pat. No. 4,009,052
(see the specification of the patent), etc. have been disclosed. However, these batteries were not necessarily sufficient due to their battery characteristics.

〔発明の概要〕[Summary of the invention]

本発明は、このような現状に鑑みてなされたものであり
、その目的は小型であり、かつ放電容量が大で高エネル
ギ密度のしかも充電可能な電池を提供することである。
The present invention has been made in view of the current situation, and an object thereof is to provide a battery that is small in size, has a large discharge capacity, has a high energy density, and is rechargeable.

本発明を概説すれば、本発明の電池は、正極活物質は、
六員環に二つのケトン基を存するピリミジン誘導体であ
り、負極活物質はリチウムであり、電解質物質は正極活
物質およびリチウムに対して化学的に安定であり、かつ
リチウムイオンが正極活物質と電気化学反応をするため
の移動を行う物質であることを特徴とするものである。
To summarize the present invention, in the battery of the present invention, the positive electrode active material is
It is a pyrimidine derivative with two ketone groups in its six-membered ring, the negative electrode active material is lithium, the electrolyte material is chemically stable with respect to the positive electrode active material and lithium, and the lithium ions are electrically compatible with the positive electrode active material. It is characterized by being a substance that moves to perform a chemical reaction.

本発明によれば、小型で放電容量が大きく、さらに高エ
ネルギ密度の、しかも充電可能な電池を提供しえるとい
う利点がある。
According to the present invention, there is an advantage that it is possible to provide a battery that is small in size, has a large discharge capacity, has a high energy density, and is rechargeable.

〔発明の詳細な説明〕[Detailed description of the invention]

本発明の詳細な説明すると、本発明の電池の正極活物質
は六員環に二つのケトン基を有するピリミジン誘導体で
あり、このケトン基部分で電気化学的反応を行う。
To explain the present invention in detail, the positive electrode active material of the battery of the present invention is a pyrimidine derivative having two ketone groups in a six-membered ring, and an electrochemical reaction is carried out in this ketone group moiety.

このような六員環に二つのケトン基を有するピリミジン
誘導体は、本発明において基本的に限定されるものでは
なく、前記ケトン基部分で電気化学的反応を行うもので
あれば、いかなるものでもよい。たとえばチミン、カフ
ェインなどを具体例として挙げることができる。
Such a pyrimidine derivative having two ketone groups on a six-membered ring is not fundamentally limited in the present invention, and any pyrimidine derivative may be used as long as it undergoes an electrochemical reaction in the ketone group portion. . Specific examples include thymine and caffeine.

このような正極活物質の典型的な例としてチミンの反応
を下記に式(1)として示す。
As a typical example of such a positive electrode active material, the reaction of thymine is shown below as formula (1).

本発明における正極活物質として前記六員環に二つのケ
トン基を有するピリミジン誘導体またはこれと結合剤粉
末との混合物をニッケル、ステンレス等の支持体上に膜
状に圧着成形するか、または前記六員環に二つのケトン
基を有するピリミジン誘導体に導電性を付与するための
炭素粉末を混合し、この混合物(正極合剤)を金属容器
に入れ、あるいは前記混合物を結合剤と混合してニッケ
ル、ステンレス等の支持体上に圧着成形する等の手段に
より形成することができる。
As a positive electrode active material in the present invention, a pyrimidine derivative having two ketone groups on the six-membered ring or a mixture of the same and a binder powder is pressure-molded into a film shape on a support such as nickel or stainless steel, or A pyrimidine derivative having two ketone groups in its member ring is mixed with carbon powder for imparting conductivity, and this mixture (positive electrode mixture) is placed in a metal container, or the mixture is mixed with a binder and nickel, nickel, It can be formed by means such as compression molding on a support such as stainless steel.

負極活物質であるリチウムは、一般のリチウム電池のそ
れと同様にシート状として、またはそのシートをニッケ
ルまたはステンレスの網に圧着して負極として形成する
ことができる。
Lithium, which is the negative electrode active material, can be formed into a sheet like that of a general lithium battery, or the sheet can be pressed onto a nickel or stainless steel mesh to form the negative electrode.

電解質としては、例えばプロピレンカーボネート、エチ
レンカーボネート、T−ブチロラクトン、1.2−ジメ
トキシエタン等の非プロトン性有機を容器とL 1c1
0a 、L 1A4cf、、L i BF4 、L i
c!!、、L i P F6 、L iAs F6等の
リチウム塩との組み合わせ、またはLi゛を伝導体とす
る固体電解質あるいは溶融塩等一般にリチウムを負極活
物質として用いた電池で使用される既知の電解質を用い
ることができる。
As an electrolyte, for example, an aprotic organic material such as propylene carbonate, ethylene carbonate, T-butyrolactone, or 1,2-dimethoxyethane is used in a container and L1c1.
0a , L 1A4cf, , L i BF4 , L i
c! ! Combinations with lithium salts such as LiP F6, LiAs F6, solid electrolytes or molten salts using Li as a conductor, and other known electrolytes generally used in batteries that use lithium as a negative electrode active material. Can be used.

また、電池構成上必要ならば多孔質のポリプロピレン等
よりなる隔膜を使用してもよい。
Further, if necessary for the battery configuration, a diaphragm made of porous polypropylene or the like may be used.

次に本発明を実施例により説明するが、本発明はこれら
により何ら限定されるものではない。
Next, the present invention will be explained with reference to Examples, but the present invention is not limited thereto in any way.

なお、実施例において電池作製および測定はアルゴンガ
ス雰囲気下で行った。
In addition, in the examples, battery fabrication and measurements were performed under an argon gas atmosphere.

〔実施例1〕 第1図は本発明の一具体例であるボタン型電池の特性測
定用電池セルの断面概略図であり、1はNiメッキを施
した黄銅製容器、2はリチウム負極、3は多孔質ポリプ
ロピレン製隔膜、4はカーボン繊維よりなるフェルト、
5は正極合剤、6a。
[Example 1] FIG. 1 is a schematic cross-sectional view of a battery cell for measuring the characteristics of a button-type battery, which is a specific example of the present invention, in which 1 is a brass container plated with Ni, 2 is a lithium negative electrode, and 3 is a battery cell for measuring the characteristics of a button-type battery. 4 is a porous polypropylene diaphragm, 4 is a felt made of carbon fiber,
5 is a positive electrode mixture; 6a;

6bはテフロン製容器、7はNiリード線を示す。6b is a Teflon container, and 7 is a Ni lead wire.

容器1の直径26mff1の凹室内に正極合剤5を挿入
し、その上に電解液含浸用のフェルト4を載せ、隔膜3
を介してリチウム負極を戴置し、容器6a。
The positive electrode mixture 5 is inserted into the concave chamber with a diameter of 26 mff1 in the container 1, and the felt 4 for impregnating the electrolyte is placed on top of it, and the diaphragm 3 is
A lithium negative electrode is placed through the container 6a.

6bで締めつけた。リチウム負極2は直径20胴の円板
で、カーボン繊維よりなるフェルト4、隔v、3も円板
形である。
I tightened it with 6b. The lithium negative electrode 2 is a disk with a diameter of 20 mm, and the felt 4 and the gaps v and 3 made of carbon fiber are also disk-shaped.

電解液としては蒸留脱水プロピレンカーボネートに溶解
したL i、 CNo 4の1モル/f溶液を用い、隔
i[3、フェルト4および正極合剤5に含浸させて使用
した。正極合剤5として、カフェイン0゜1gと0.1
gのアセチレンブラックを混合したものを使用した。
As the electrolytic solution, a 1 mol/f solution of Li and CNo 4 dissolved in distilled dehydrated propylene carbonate was used and impregnated into the spacer i [3, felt 4 and positive electrode mixture 5. As positive electrode mixture 5, 0.1 g of caffeine and 0.1 g of caffeine
A mixture of g acetylene black was used.

このようにして作製した電池の開路電圧は3.03Vで
あった。1mAの定電流放電を行ったところ、放電時間
と電圧の関係は第2図のようになり、1v柊止電圧の放
電容量は120 Ah/’ kgであり、エネルギ密度
はt 3 !Jh/ kgであった。
The open circuit voltage of the battery thus produced was 3.03V. When a constant current discharge of 1 mA was carried out, the relationship between discharge time and voltage was as shown in Fig. 2, and the discharge capacity at 1 V Hiragi voltage was 120 Ah/' kg, and the energy density was t 3 ! It was Jh/kg.

1■柊止電圧まで弐(2)の如く放電反応が起こるとす
ると、利用率は44%となる。
1. Assuming that the discharge reaction occurs as shown in (2) up to the Hiiragi stop voltage, the utilization rate will be 44%.

実施例2 正極合剤として0.1.g(式(1))と0.1 gの
アセチレンブラックを実施例1と同じ電解液と混合して
用いた以外は実施例1と同様にして第1図に示した電池
を作製した。
Example 2 0.1 as a positive electrode mixture. The battery shown in FIG. 1 was produced in the same manner as in Example 1, except that 0.1 g of acetylene black (formula (1)) and 0.1 g of acetylene black were mixed with the same electrolyte as in Example 1.

この電池の開路電圧は3.05Vであった。1mAの定
電流放電を行ったところ放電時間と電圧の関係は第3図
(a)のようになり、1v終止電圧での放電容量は85
Ah/kgであり、エネルギ密度は108Wh/kgで
あった。放電後、6時間、1mA定電流放電を行ったと
ころ、放電時間と電圧の関係は第3図(′b)に示すよ
うになった。1■終止電圧の放電容量は440Ah/k
gとなり、エネルギ密度は574Wh、/kgであった
。さらに放電後、40時間、1mAの定電流充電した後
1mAで定電流放電を行ったところ放電時間と電圧の関
係は第3図(C)のようになった。1vの終止電圧の放
電容量は300Ah/kgであり、エネルギ密度は41
5Wh、/kgであった。
The open circuit voltage of this battery was 3.05V. When a constant current discharge of 1 mA was performed, the relationship between discharge time and voltage was as shown in Figure 3 (a), and the discharge capacity at a final voltage of 1 V was 85
Ah/kg, and the energy density was 108Wh/kg. After discharging, constant current discharge of 1 mA was performed for 6 hours, and the relationship between discharge time and voltage was as shown in FIG. 3('b). 1 ■ Discharge capacity of final voltage is 440Ah/k
g, and the energy density was 574Wh,/kg. Further, after discharging, the battery was charged at a constant current of 1 mA for 40 hours and then discharged at a constant current of 1 mA, and the relationship between the discharge time and the voltage was as shown in FIG. 3(C). The discharge capacity at a final voltage of 1v is 300Ah/kg, and the energy density is 41
It was 5Wh,/kg.

(発明の効果] 以上説明したように本発明によるリチウム電池によれば
、リチウム電池の正極活物質として、六員環に二つのケ
トン基ををするピリミジン誘導体を使用することにより
、小型でかつ高エネルギ!度の充放電可能な電池を形成
できるという利点を生じる。
(Effects of the Invention) As explained above, according to the lithium battery of the present invention, by using a pyrimidine derivative having two ketone groups in a six-membered ring as a positive electrode active material of the lithium battery, the lithium battery is small and has high performance. This has the advantage that it is possible to form a battery that can be charged and discharged with energy!

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による一具体例であるボタン型電池の特
性測定用電池セルの断面概略図、第2図および第3図は
本発明の実施例における電池の放電時間と電圧の関係を
示した図である。 ■・・・容器、2・・・リチウム負極、3・・・隔膜、
4・・・フェルト、5・・・正極合剤、6 a 、  
6 b・・・テフロン製容器、7・・・Niリード線。
FIG. 1 is a schematic cross-sectional view of a battery cell for measuring the characteristics of a button-type battery, which is a specific example of the present invention, and FIGS. 2 and 3 show the relationship between battery discharge time and voltage in an embodiment of the present invention. This is a diagram. ■... Container, 2... Lithium negative electrode, 3... Diaphragm,
4... Felt, 5... Positive electrode mixture, 6 a,
6 b... Teflon container, 7... Ni lead wire.

Claims (1)

【特許請求の範囲】[Claims] (1)正極活物質は、六員環に二つのケトン基を有する
ピリミジン誘導体であり、負極活物質はリチウムであり
、電解質物質は正極活物質およびリチウムに対して化学
的に安定であり、かつリチウムイオンが正極活物質と電
気化学反応をするための移動を行う物質であることを特
徴とする電池。
(1) The positive electrode active material is a pyrimidine derivative having two ketone groups on a six-membered ring, the negative electrode active material is lithium, the electrolyte material is chemically stable with respect to the positive electrode active material and lithium, and A battery characterized in that lithium ions are a substance that moves to perform an electrochemical reaction with a positive electrode active material.
JP63021893A 1988-02-03 1988-02-03 Battery Granted JPS63225475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63021893A JPS63225475A (en) 1988-02-03 1988-02-03 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63021893A JPS63225475A (en) 1988-02-03 1988-02-03 Battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP576880A Division JPS56103870A (en) 1980-01-23 1980-01-23 Battery

Publications (2)

Publication Number Publication Date
JPS63225475A true JPS63225475A (en) 1988-09-20
JPH0348620B2 JPH0348620B2 (en) 1991-07-25

Family

ID=12067783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63021893A Granted JPS63225475A (en) 1988-02-03 1988-02-03 Battery

Country Status (1)

Country Link
JP (1) JPS63225475A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307737A (en) * 2000-04-25 2001-11-02 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307737A (en) * 2000-04-25 2001-11-02 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP4576662B2 (en) * 2000-04-25 2010-11-10 三菱化学株式会社 Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery

Also Published As

Publication number Publication date
JPH0348620B2 (en) 1991-07-25

Similar Documents

Publication Publication Date Title
JP3187929B2 (en) Lithium secondary battery
EP0573040B1 (en) A positive electrode for lithium secondary battery and its method of manufacture, and a nonaqueous electrolyte lithium secondary battery employing the positive electrode
JP2964732B2 (en) Rechargeable battery
JPH10188977A (en) Lithium secondary battery
JPS59134561A (en) Lithium cell
JP2000285910A (en) Lithium battery
JPS63225475A (en) Battery
JPH1197062A (en) Organic electrolyte secondary battery
JPH0415584B2 (en)
JPH0636799A (en) Lithium secondary battery
JP3048953B2 (en) Non-aqueous electrolyte secondary battery
JPS6315703B2 (en)
JPS62272472A (en) Nonaqueous solvent secondary battery
JPS61116758A (en) Lithium battery
JP2598919B2 (en) Non-aqueous electrolyte secondary battery
JPS58206063A (en) Battery
JPS6321311B2 (en)
JPH04363862A (en) Lithium secondary battery
JPH0523016B2 (en)
JPS647461B2 (en)
JPS62150657A (en) Secondary cell
JPS61200667A (en) Lithium cell
KR100307164B1 (en) Positive active material for lithium secondary battery and lithium secondary battery comprising the same
JPH0125190B2 (en)
JPH04190561A (en) Nonaqueous electrolyte battery