JPS6321311B2 - - Google Patents

Info

Publication number
JPS6321311B2
JPS6321311B2 JP55021575A JP2157580A JPS6321311B2 JP S6321311 B2 JPS6321311 B2 JP S6321311B2 JP 55021575 A JP55021575 A JP 55021575A JP 2157580 A JP2157580 A JP 2157580A JP S6321311 B2 JPS6321311 B2 JP S6321311B2
Authority
JP
Japan
Prior art keywords
battery
voltage
positive electrode
discharge
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55021575A
Other languages
Japanese (ja)
Other versions
JPS56118272A (en
Inventor
Shinichi Tobishima
Junichi Yamaki
Akihiko Yamaji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2157580A priority Critical patent/JPS56118272A/en
Priority to US06/213,042 priority patent/US4343871A/en
Priority to GB8039292A priority patent/GB2068631B/en
Priority to FR8026844A priority patent/FR2472277A1/en
Priority to DE3047885A priority patent/DE3047885C2/en
Publication of JPS56118272A publication Critical patent/JPS56118272A/en
Publication of JPS6321311B2 publication Critical patent/JPS6321311B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 本発明は、小型にして放電容量の大きい二次電
池に係り、更に詳細にはリチウムを負極活物質と
して用いる電池に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a secondary battery that is small in size and has a large discharge capacity, and more particularly to a battery that uses lithium as a negative electrode active material.

従来からリチウムを負極活物質として用いる高
エネルギ密度電池例えば正極活物質としてBr2
びI2のようなハロゲン、CuF2,AgF2,AgF,
NiF2,CuCl2,AgCl2,NiCl2,CoF3,CrF3
MnF3,SbF3,CdF2,AsF3,HgF2,CuBr,
CdCl2,PbCl2及びCocl2等のような金属ハロゲン
化物、AgSCN,CuSCN及びNi(SCN)2のような
金属ロダン化合物、MnO2,Cr2O3,V2O5
SnO2,PbO2,TiO2,Bi2O2,CrO3,Fe3O4
NiO,AgO,HgO,Cu2O,CuO,Ag2WO4等の
ような金属酸化物、NiSx,AgBs,CuBS,
Pb2B2O5及びMnB4S4等のような金属硫化物、
TiS2,NbSe2及びWS2等のような層状化合物、
フツ化黒鉛更にはベンゾキノン類、ジニトロベン
ゼン等の有機化合物及びPOCl3,SOCl2及び
SO2Cl2等のようなオキシハライド等を用いた電
池が提案されている。
Conventionally, high energy density batteries using lithium as a negative electrode active material, for example, halogens such as Br 2 and I 2 , CuF 2 , AgF 2 , AgF, CuF 2 , AgF 2 , AgF,
NiF 2 , CuCl 2 , AgCl 2 , NiCl 2 , CoF 3 , CrF 3 ,
MnF 3 , SbF 3 , CdF 2 , AsF 3 , HgF 2 , CuBr,
Metal halides such as CdCl 2 , PbCl 2 and Cocl 2 etc., metal rhodan compounds such as AgSCN, CuSCN and Ni(SCN) 2 , MnO 2 , Cr 2 O 3 , V 2 O 5 ,
SnO 2 , PbO 2 , TiO 2 , Bi 2 O 2 , CrO 3 , Fe 3 O 4 ,
Metal oxides such as NiO, AgO, HgO, Cu 2 O, CuO, Ag 2 WO 4 etc., NiS x , AgBs, CuBS,
Metal sulfides, such as Pb 2 B 2 O 5 and MnB 4 S 4 etc.
Layered compounds such as TiS 2 , NbSe 2 and WS 2 etc.
Graphite fluoride, as well as organic compounds such as benzoquinones and dinitrobenzene, as well as POCl 3 , SOCl 2 and
Batteries using oxyhalides such as SO 2 Cl 2 have been proposed.

具体的には正極活物質として黒鉛及びフツ素の
インターカレーシヨン化合物を使用し、負極活物
質としてリチウム金属を使用した電池(米国特許
第3514337号明細書参照)が提案されており、フ
ツ化黒鉛を正極活物質としたリチウム電池及び二
酸化マンガンを正極活物質としたリチウム電池が
既に市販されている。しかしながら、これらの電
池は充電不能で二次電池として使用できないとい
う欠点があり、更には電池特性も満足のいくもの
ではなかつた。
Specifically, a battery has been proposed that uses an intercalation compound of graphite and fluorine as the positive electrode active material and lithium metal as the negative electrode active material (see US Pat. No. 3,514,337). Lithium batteries using manganese dioxide as a positive electrode active material and lithium batteries using manganese dioxide as a positive electrode active material are already commercially available. However, these batteries have the disadvantage that they are not rechargeable and cannot be used as secondary batteries, and their battery characteristics are also unsatisfactory.

本発明は上述の欠点を除去し放電容量が大きく
高エネルギ密度で且つ充電可能な小型電池を提供
しようとするものである。詳述すれば、本発明は
正極活物質として配位子又は金属錯体を使用し、
負極活物質としてリチウムを使用し、電解質物質
として前記正極活物質および負極活物質に対して
化学的に安定であり、且つ正極活物質と電気化学
反応をするためのリチウムイオンの移動を阻止し
ない物質を使用した小型電池を提供しようとする
ものである。
The present invention aims to eliminate the above-mentioned drawbacks and provide a small battery that has a large discharge capacity, a high energy density, and is rechargeable. Specifically, the present invention uses a ligand or a metal complex as a positive electrode active material,
A material that uses lithium as a negative electrode active material, is chemically stable with respect to the positive electrode active material and negative electrode active material as an electrolyte material, and does not inhibit the movement of lithium ions for electrochemical reaction with the positive electrode active material. The aim is to provide a small battery using

本発明の小型電池の正極活物質として利用する
配位子および金属錯体は以下の化合物の中から選
ばれたものである。2―ヒドロキシ―1,4―ナ
フトキノンのCo〓キレート、2―ヒドロキシ―
1,4―ナフトキノンのCo〓キレート、2―ヒド
ロキシ―1,4―ナフトキノンのFe〓キレート、
鉄()ベンゾイルアセトネイト、アセトアセチ
ルBe塩、アセトアセチルFe〓塩、アセトアセチル
Co〓塩、アセトアセチルCo〓塩。
The ligand and metal complex used as the positive electrode active material of the small battery of the present invention are selected from the following compounds. Co chelate of 2-hydroxy-1,4-naphthoquinone, 2-hydroxy-
Co〓chelate of 1,4-naphthoquinone, Fe〓chelate of 2-hydroxy-1,4-naphthoquinone,
Iron ()benzoylacetonate, acetoacetyl Be salt, acetoacetyl Fe salt, acetoacetyl
Co〓 salt, acetoacetyl Co〓 salt.

本発明の小型電池において正極活物質として使
用する金属錯体は、Li+と安定な錯体を形成する。
詳述すれば、リチウムから移動した電子が、金属
錯体の中心の金属イオンの空いたd軌道に局在化
してはいり、更に金属錯体中の配位子が芳香環を
有する場合にはπ電子共役系にも前記電子がはい
り始めるので安定な錯体が形成される。延いて
は、放電容量の増大を期待でき更には充放電も可
能となる。また、本発明の小型電池において正極
活物質として配位子を使用しても同様の電子移動
を期待でき、充電可能で安定な小型電池の実現が
期待される。還元の難易度から予想すると、電池
の放電時には金属錯体の場合、金属の還元が一部
おこり(例えば、Fe〓→Fe〓)その後、金属の酸
化数が高い状態の時(つまり、金属の部分還元が
おこる前、放電反応前)に金属の配位に使用され
ていた酸素や窒素がリチウムに還元されると考え
られる。そして、構造を破壊する(例えば、酸素
原子をLi2Oとして金属錯体あるいは配位子から
脱離させてしまう)に至らない反応関与電子数内
であるならば充電可能となる。
The metal complex used as the positive electrode active material in the small battery of the present invention forms a stable complex with Li + .
Specifically, the electrons transferred from lithium are localized in the vacant d orbital of the metal ion at the center of the metal complex, and if the ligand in the metal complex has an aromatic ring, π-electron conjugation occurs. Since the electrons also begin to enter the system, a stable complex is formed. As a result, an increase in discharge capacity can be expected, and furthermore, charging and discharging becomes possible. Further, even if a ligand is used as the positive electrode active material in the small battery of the present invention, similar electron transfer can be expected, and it is expected that a rechargeable and stable small battery will be realized. Judging from the difficulty of reduction, in the case of metal complexes, part of the metal will be reduced during battery discharge (e.g., Fe〓→Fe〓), and then when the oxidation number of the metal is high (i.e., part of the metal will be reduced). It is thought that the oxygen and nitrogen used to coordinate the metal before the reduction occurs (before the discharge reaction) are reduced to lithium. Then, charging is possible if the number of electrons involved in the reaction does not destroy the structure (for example, the oxygen atom is removed as Li 2 O from the metal complex or the ligand).

本発明の小型電池の正極は、配位子若しくは金
属錯体又は前記配位子若しくは金属錯体と結合剤
粉末との混合物をニツケル、ステンレス等の支持
体上に膜状に圧着成形するか、或いは配位子又は
金属錯体に導電性を付与するための炭素粉末を混
合し、前記混合物(正極合剤)を金属容器に入
れ、或いは前記混合物を結合剤と混合してニツケ
ル、ステンレス等の支持体上に圧着成形する等に
より作成すればよい。また、本発明の小型電池の
負極は一般のリチウム電池と同様に負極活物質で
あるリチウムをシート状とすることにより作成す
ればよい。更に前記シート状リチウムをニツケル
又はステンレスの網に圧着して作成してもよい。
The positive electrode of the small battery of the present invention is produced by pressure-molding a ligand or a metal complex, or a mixture of the ligand or metal complex and a binder powder onto a support such as nickel or stainless steel, into a film shape, or by disposing the mixture. Mix carbon powder to impart conductivity to the ligand or metal complex, place the mixture (positive electrode mixture) in a metal container, or mix the mixture with a binder and place it on a support such as nickel or stainless steel. It may be created by compression molding or the like. Further, the negative electrode of the small-sized battery of the present invention may be made by forming lithium, which is a negative electrode active material, into a sheet form in the same manner as in general lithium batteries. Furthermore, the sheet-like lithium may be pressed onto a nickel or stainless steel mesh.

本発明の小型電池の電解質物質としては、例え
ばプロピレンカーボネイト、エチレンカーボネイ
ト、γ―ブチロラクトン、ジメチルスルホキシ
ド、アセトニトリル、ホルムアミド、ジメチルホ
ルムアミド、ニトロメタン、1,2―ジメトキシ
エタン等の非プロトン性有機溶媒とLiClO4
LiAlCl4,LiBF4,LiCl,LiPF6,CiAsF6等のリ
チウム塩との組み合わせ又はLi+を伝導体とする
固体電解質或いは溶融塩など、一般にリチウムを
負極活物質として用いた電池で使用される既知の
電解質を用いればよい。
Electrolyte materials for the small battery of the present invention include, for example, aprotic organic solvents such as propylene carbonate, ethylene carbonate, γ-butyrolactone, dimethylsulfoxide, acetonitrile, formamide, dimethylformamide, nitromethane, and 1,2-dimethoxyethane, and LiClO 4
Combinations with lithium salts such as LiAlCl 4 , LiBF 4 , LiCl, LiPF 6 , CiAsF 6 , solid electrolytes or molten salts using Li + as a conductor, and other known materials commonly used in batteries using lithium as the negative electrode active material. electrolyte may be used.

また、本発明の小型電池においては、正極と負
極との間に電池構成上必要があれば多孔質のポリ
プロピレン等よりなる隔膜を配置してもよい。
Furthermore, in the small battery of the present invention, a diaphragm made of porous polypropylene or the like may be disposed between the positive electrode and the negative electrode if necessary for the battery configuration.

以下に、本発明の小型電池が実施例に沿つて具
体的に説明するが、本発明がこれら具体的な実施
例に限定されないことは明らかであろう。
The small battery of the present invention will be specifically explained below with reference to Examples, but it will be clear that the present invention is not limited to these specific Examples.

尚、以下の各実施例においては電池作製及び測
定をアルゴン雰囲気中で実行した。
In each of the following Examples, battery fabrication and measurements were performed in an argon atmosphere.

実施例 1 本発明の小型電池を第1図に示したボタン型構
造に作成して特性の測定を行なつた。1はNiメ
ツキした黄銅製容器で、直径26mmの円筒形凹所が
穿設されている。2は正極で、前記容器1の凹所
底部に配置されている。3は円板状の多孔質ポリ
プロピレン製隔膜で、前記正極2上に電解質物質
含浸用の円板状カーボン繊維製フエルト4を介し
て積層配置されている。5はテフロン製で筒状の
第1の固定体で、外周面に穿設された螺旋部を前
記容器1の凹所内周壁に穿設された螺旋部に嵌合
せしめることにより前記隔膜3、フエルト4、正
極2を圧迫固定する。6は直径20mmで円板状のリ
チウム負極で、前記第1の固定体5の内部空所に
配置されている。7はテフロン製で筒状の第2の
固定体で、外周面に穿設された螺旋部を前記第1
の固定体5の内周面に穿設された螺旋部に嵌合せ
しめることにより前記リチウム負極6を隔膜3に
圧迫固定する。8はNi製のリード線で、前記第
2の固定体7の細孔に配置されており、一端が前
記リチウム負極6に接続され他端が前記細孔から
外部へ延長されている。
Example 1 A small battery of the present invention was fabricated to have the button-shaped structure shown in FIG. 1, and its characteristics were measured. 1 is a Ni-plated brass container with a cylindrical recess of 26 mm in diameter. Reference numeral 2 denotes a positive electrode, which is placed at the bottom of the recess of the container 1. Reference numeral 3 denotes a disc-shaped porous polypropylene diaphragm, which is laminated on the positive electrode 2 with a disc-shaped carbon fiber felt 4 impregnated with an electrolyte substance interposed therebetween. Reference numeral 5 denotes a cylindrical first fixing body made of Teflon, and the diaphragm 3 and the felt are fixed by fitting a spiral portion formed on the outer peripheral surface into a spiral portion formed on the inner peripheral wall of the recess of the container 1. 4. Press and fix the positive electrode 2. Reference numeral 6 denotes a disk-shaped lithium negative electrode with a diameter of 20 mm, which is disposed in the internal cavity of the first fixed body 5. Reference numeral 7 denotes a second cylindrical fixing body made of Teflon, and a spiral portion bored on the outer peripheral surface is connected to the first fixed body.
The lithium negative electrode 6 is compressed and fixed to the diaphragm 3 by fitting into a spiral portion formed in the inner circumferential surface of the fixing body 5 . Reference numeral 8 denotes a lead wire made of Ni, which is placed in a pore of the second fixed body 7, one end of which is connected to the lithium negative electrode 6, and the other end of which is extended from the pore to the outside.

本実施例においては、0.05gの2―ヒドロキシ
―1,4―ナフトキノンのCo〓キレート(構造式
を第12図aに示す)と0.05gのアセチレンブラ
ツクとを混合してなる正極合剤を、電解質物質即
ち蒸留脱水されたプロピレンカーボネイトに溶解
したLiClO4の/mol/l溶液を用いて錬り、この
練成体で正極2を形成した。また、正極2上に配
置されたフエルト4に滴下することにより、前記
電解質物質をフエルト4乃至隔膜3に含浸せしめ
た。
In this example, a positive electrode mixture was prepared by mixing 0.05 g of Co chelate of 2-hydroxy-1,4-naphthoquinone (the structural formula is shown in Figure 12a) and 0.05 g of acetylene black. An electrolyte material, that is, a /mol/l solution of LiClO 4 dissolved in distilled and dehydrated propylene carbonate was kneaded, and the cathode 2 was formed from this kneaded body. Further, by dropping the electrolyte material onto the felt 4 placed on the positive electrode 2, the felt 4 and the diaphragm 3 were impregnated with the electrolyte material.

このようにして作製した本発明の小型電池の開
路電圧は3.08Vであつた。また、1mAの定電流放
電を行なつたところ、放電時間と電圧との関係は
第2図のようになり、2―ヒドロキシ―1,4―
ナフトキノンのCo〓キレートの重量に対して、電
圧が1V終止電圧の放電容量即ち1Vに低下するま
での放電容量は610Ah/Kgであり、エネルギ密度
は966Wh/Kgであつた。また、充電も可能であ
つた。
The open circuit voltage of the small battery of the present invention produced in this manner was 3.08V. Furthermore, when a constant current discharge of 1 mA was performed, the relationship between the discharge time and the voltage was as shown in Figure 2, and the 2-hydroxy-1,4-
Based on the weight of the naphthoquinone Co chelate, the discharge capacity at a final voltage of 1V, that is, the discharge capacity until the voltage decreased to 1V, was 610Ah/Kg, and the energy density was 966Wh/Kg. It was also possible to charge it.

実施例 2 0.05gの2―ヒドロキシ―1,4―ナフトキノ
ンのCu〓キレート(構造式を第12図bに示す)
と0.05gのアセチレンブラツクとを混合して正極
合剤を作成する以外は実施例1と同一構造の電池
を作製した。
Example 2 0.05 g of Cu chelate of 2-hydroxy-1,4-naphthoquinone (the structural formula is shown in Figure 12b)
A battery having the same structure as in Example 1 was prepared except that a positive electrode mixture was prepared by mixing 0.05 g of acetylene black and 0.05 g of acetylene black.

このようにして作製した電池の開路電圧は
3.25Vであつた。1mAの定電流放電を行なつたと
ころ、放電時間と電圧との関係は第3図のように
なつた。2―ヒドロキシ―1,4―ナフトキノリ
ンのCo〓キレートの重量に対し1V終止電圧の放
電容量は130Ah/Kgであり、エネルギー密度は
244Wh/Kgであつた。また、充電も可能であつ
た。
The open circuit voltage of the battery made in this way is
It was 3.25V. When a constant current discharge of 1 mA was performed, the relationship between discharge time and voltage was as shown in Figure 3. The discharge capacity at 1V final voltage is 130Ah/Kg for the weight of Co chelate of 2-hydroxy-1,4-naphthoquinoline, and the energy density is
It was 244Wh/Kg. It was also possible to charge it.

実施例 3 0.05gの2―ヒドロキシ―1,4―ナフトキノ
ンのFe〓キレート(構造式を第12図cに示す)
と0.05gのアセチレンブラツクとを混合して正極
合剤を作成する以外は実施例1と同一構造の電池
を作製した。
Example 3 0.05 g of Fe chelate of 2-hydroxy-1,4-naphthoquinone (the structural formula is shown in Figure 12c)
A battery having the same structure as in Example 1 was prepared except that a positive electrode mixture was prepared by mixing 0.05 g of acetylene black and 0.05 g of acetylene black.

このようにして作製した電池の開路電圧は
2.35Vであつた。1mAの定電流放電を行なつたと
ころ放電時間と電圧の関係は第4図のようになつ
た。2―ヒドロキシ―1,4―ナフトキノリンの
Fe〓キレートの重量に対し1V終止電圧の放電容量
は280Ah/Kgであり、エネルギ密度は484Wh/Kg
であつた。また、充電も可能であつた。
The open circuit voltage of the battery made in this way is
It was 2.35V. When a constant current discharge of 1 mA was performed, the relationship between discharge time and voltage was as shown in Figure 4. 2-hydroxy-1,4-naphthoquinoline
The discharge capacity at 1V final voltage is 280Ah/Kg for the weight of Fe〓chelate, and the energy density is 484Wh/Kg
It was hot. It was also possible to charge it.

実施例 4 0.05gの鉄()ベンゾイルアセトネイト(構
造式を第12図dに示す)と0.05gのアセチレン
ブラツクとを混合して正極合剤を作成する以外は
実施例1と同一構造の電池を作製した。
Example 4 A battery having the same structure as Example 1 except that 0.05 g of iron ()benzoylacetonate (the structural formula is shown in Figure 12 d) and 0.05 g of acetylene black were mixed to prepare a positive electrode mixture. was created.

このようにして作製した電池の開路電圧は
3.15Vであつた。1mAの定電流放電を行なつたと
ころ放電時間と電圧の関係は第5図のようになつ
た。鉄()ベンゾイルアセトネイトの重量に対
し1V終止電圧の放電容量は910Ah/Kgであり、
エネルギ密度は1367Wh/Kgと高い値を示した。
また、充電も可能であつた。
The open circuit voltage of the battery made in this way is
It was 3.15V. When a constant current discharge of 1 mA was performed, the relationship between discharge time and voltage was as shown in Figure 5. The discharge capacity at a final voltage of 1V is 910Ah/Kg for the weight of iron ()benzoylacetonate,
The energy density showed a high value of 1367Wh/Kg.
It was also possible to charge it.

実施例 5 0.05gのアセトアセチルBe塩(構造式を第1
2図eに示す)と0.05gのアセチレンブラツクと
を混合して正極合剤を作成する以外は実施例1と
同一構造の電池を作製した。
Example 5 0.05 g of acetoacetyl Be salt (with structural formula 1)
A battery having the same structure as Example 1 was prepared, except that a positive electrode mixture was prepared by mixing 0.05 g of acetylene black (shown in Figure 2e) and 0.05 g of acetylene black.

このようにして作製した電池の開路電圧は
3.15Vであつた。1mAの定電流放電を行なつたと
ころ放電時間と電圧との関係は第6図のようにな
つた。アセトアセチルBe塩の重量に対し1V終止
電圧の放電容量は130Ah/Kgであり、エネルギ密
度は153Wh/Kgであつた。また、充電も可能で
あつた。
The open circuit voltage of the battery made in this way is
It was 3.15V. When a constant current discharge of 1 mA was performed, the relationship between discharge time and voltage was as shown in Figure 6. The discharge capacity at a final voltage of 1 V was 130 Ah/Kg and the energy density was 153 Wh/Kg based on the weight of the acetoacetyl Be salt. It was also possible to charge it.

実施例 6 0.05gのアセトアセチルFe〓塩(構造式を第1
2図fに示す)と0.05gのアセチレンブラツクと
を混合して正極合剤を作成する以外は実施例1と
同一構造の電池を作製した。
Example 6 0.05 g of acetoacetyl Fe〓 salt (the structural formula is
A battery having the same structure as Example 1 was prepared, except that a positive electrode mixture was prepared by mixing 0.05 g of acetylene black (as shown in Figure 2 f) and 0.05 g of acetylene black.

このようにして作製した電池の開路電圧は
2.68Vであつた。1mAの定電流放電を行なつたと
ころ放電時間と電圧との関係は第7図のようにな
つた。アセトアセチルFe〓塩の重量に対し1V終止
電圧の放電容量は235Ah/Kgであり、エネルギ密
度は353Wh/Kgであつた。また、充電も可能で
あつた。
The open circuit voltage of the battery made in this way is
It was 2.68V. When a constant current discharge of 1 mA was performed, the relationship between discharge time and voltage was as shown in Figure 7. The discharge capacity at a final voltage of 1 V was 235 Ah/Kg and the energy density was 353 Wh/Kg based on the weight of the acetoacetyl Fe salt. It was also possible to charge it.

実施例 7 0.05gのアセトアセチルCo〓塩(構造式を第1
2図gに示す)と0.05gのアセチレンブラツクと
を混合して正極合剤を作成する以外は実施例1と
同一構造の電池を作製した。
Example 7 0.05 g of acetoacetyl Co〓 salt (the structural formula is
A battery having the same structure as Example 1 was prepared, except that a positive electrode mixture was prepared by mixing 0.05 g of acetylene black (as shown in Figure 2g) and 0.05 g of acetylene black.

このようにして作製した電池の開路電圧は
3.25Vであつた。1mAの定電流放電を行なつたと
ころ放電時間と電圧の関係は第8図のようになつ
た。アセトアセチルCo〓塩の重量に対し1V終止
電圧の放電容量は315Ah/Kgであり、エネルギ密
度は495Wh/Kgであつた。また、充電も可能で
あつた。
The open circuit voltage of the battery made in this way is
It was 3.25V. When a constant current discharge of 1 mA was performed, the relationship between discharge time and voltage was as shown in Figure 8. The discharge capacity at a final voltage of 1 V was 315 Ah/Kg and the energy density was 495 Wh/Kg based on the weight of the acetoacetyl Co salt. It was also possible to charge it.

実施例 8 0.05gのアセトアセチルCo〓塩(構造式を第1
2図hに示す)と0.05gのアセチレンブラツクと
を混合して正極合剤を作成する以外は実施例1と
同一構造の電池を作製した。
Example 8 0.05 g of acetoacetyl Co salt (with structural formula
A battery having the same structure as in Example 1 was prepared except that a positive electrode mixture was prepared by mixing 0.05 g of acetylene black (as shown in Figure 2h) with 0.05 g of acetylene black.

このようにして作製した電池の開路電圧は
2.90Vであつた。1mAの定電流放電を行なつたと
ころ放電時間と電圧の関係は第9図のようになつ
た。アセトアセチルCo〓塩の重量に対し1V終止
電圧の放電容量は430Ah/Kgであり、エネルギ密
度は648Wh/Kgであつた。また、充電も可能で
あつた。
The open circuit voltage of the battery made in this way is
It was 2.90V. When a constant current discharge of 1 mA was performed, the relationship between discharge time and voltage was as shown in Figure 9. The discharge capacity at a final voltage of 1 V was 430 Ah/Kg and the energy density was 648 Wh/Kg based on the weight of the acetoacetyl Co salt. It was also possible to charge it.

実施例 9 0.03gの2―ヒドロキシ―1,4―ナフトキノ
ンのCo〓キレートと0.03gのアセチレンブラツク
とを混合して正極合剤を作成する以外は実施例1
と同一構造の電池を作製した。
Example 9 Example 1 except that 0.03 g of Co chelate of 2-hydroxy-1,4-naphthoquinone and 0.03 g of acetylene black were mixed to prepare a positive electrode mixture.
A battery with the same structure was fabricated.

この電池について、6時間1mAで定電流放電
した後(200Ah/Kgの放電容量)、1時間休止し、
次いで、6時間1mAで定電流充電した後
(200Ah/Kgの充電容量)、1時間休止するサイク
ル試験を行なつたところ、第1サイクルの放電時
間と電圧との関係は第10図aのようになり、6
時間放電した後の電圧は0.80Vであつた。第3サ
イクルの放電時間と電圧との関係は第10図bの
ようになり、6時間放電した後の電圧は1.10Vで
あり、第4サイクルの放電時間と電圧との関係は
第10図cのようになり、6時間放電した後の電
圧は1.20Vであつた。第6サイクルの放電時間と
電圧との関係は第10図dのようになり、6時間
放電した後の電圧は0.95Vであつた。放電電圧が
1V以下になるまでに5回のサイクルが可能であ
つた。
This battery was discharged at a constant current of 1mA for 6 hours (discharge capacity of 200Ah/Kg), then rested for 1 hour,
Next, a cycle test was performed in which the battery was charged at a constant current of 1mA for 6 hours (charging capacity of 200Ah/Kg) and then rested for 1 hour.The relationship between the discharge time and voltage in the first cycle was as shown in Figure 10a. becomes 6
The voltage after discharging for an hour was 0.80V. The relationship between the discharge time and voltage in the third cycle is as shown in Figure 10b, the voltage after 6 hours of discharge is 1.10V, and the relationship between the discharge time and voltage in the fourth cycle is as shown in Figure 10c. The voltage after 6 hours of discharge was 1.20V. The relationship between the discharge time and voltage in the sixth cycle was as shown in FIG. 10d, and the voltage after 6 hours of discharge was 0.95V. discharge voltage
Five cycles were possible until the voltage dropped below 1V.

実施例 10 0.03gの鉄()ベンゾイルアセトネイトと
0.03gのアセチレンブラツクとを混合して正極合
剤を作成する以外は実施例1と同一構造の電池を
作製した。
Example 10 0.03g of iron()benzoylacetonate and
A battery having the same structure as Example 1 was prepared except that 0.03 g of acetylene black was mixed to prepare a positive electrode mixture.

この電池について、6時間1mAで定電流放電
した後(200Ah/Kgの放電容量)、2.5時間休止
し、次いで、6時間1mAで定電流充電した後
(200Ah/Kgの充電容量)、2.5時間休止するサイ
クル試験を行なつたところ、第1サイクルの放電
時間及び充電時間と電圧との関係は第11図aの
ようになり、6時間放電した後の電圧は1.52Vで
あつた。第10サイクルの放電時間及び充電時間と
電圧との関係は第11図bのようになり、6時間
放電した後の電圧は1.42Vであり、第19サイクル
の放電時間及び充電時間と電圧との関係は第11
図cのようになり、6時間放電した後の電圧は
1.20Vであつた。第25サイクルの放電時間及び充
電時間と電圧との関係は第11図dのようにな
り、6時間放電した後の電圧は1.10Vであつた。
放電電圧が1V以下になるまでに25回のサイクル
が可能であつた。
This battery was discharged at a constant current of 1mA for 6 hours (discharge capacity of 200Ah/Kg), then rested for 2.5 hours, then charged at a constant current of 1mA for 6 hours (charge capacity of 200Ah/Kg), then rested for 2.5 hours. When a cycle test was conducted, the relationship between the discharge time and charge time of the first cycle and the voltage was as shown in FIG. 11a, and the voltage after 6 hours of discharge was 1.52V. The relationship between the discharge time and charge time and the voltage in the 10th cycle is as shown in Figure 11b, and the voltage after 6 hours of discharge is 1.42V, and the relationship between the discharge time and charge time and the voltage in the 19th cycle is 1.42V. Relationship is the 11th
The voltage after 6 hours of discharge is as shown in Figure c.
It was 1.20V. The relationship between the discharge time and charge time and the voltage in the 25th cycle was as shown in FIG. 11d, and the voltage after 6 hours of discharge was 1.10V.
25 cycles were possible before the discharge voltage dropped below 1V.

従来、最も多用されている乾電池(負極は亜
鉛、正極はMnO2)の放電容量は70〜140Ah/Kg
である。実施例に示したように、本発明によるリ
チウム電池は乾電池より高い容量を示し、例えば
鉄()ベイゾイルアセトネイトの場合、6.5〜
13倍の容量を示す。また、乾電池は充電不可能で
あるのに対し、本発明の電池は充電可能であると
いう利点も同時に有する。
Conventionally, the discharge capacity of the most commonly used dry battery (negative electrode is zinc, positive electrode is MnO 2 ) is 70 to 140 Ah/Kg.
It is. As shown in the examples, the lithium battery according to the present invention exhibits a higher capacity than a dry battery, for example, in the case of iron ()bazoylacetonate, 6.5~
Indicates 13 times more capacity. Furthermore, while dry batteries are not rechargeable, the battery of the present invention also has the advantage of being rechargeable.

上述より明らかなように本発明によれば、リチ
ウム電池の正極活物質として配位子、又は金属錯
体を用いることにより、小型でかつ高エネルギ密
度の充放電可能な電池を形成できる。
As is clear from the above, according to the present invention, by using a ligand or a metal complex as a positive electrode active material of a lithium battery, a small, high energy density, chargeable and dischargeable battery can be formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電池の実施例、第2図乃至第
11図は本発明の実施例の特性説明図、第12図
は本発明の電池の実施例の正極活物質を示す。
FIG. 1 shows an embodiment of the battery of the present invention, FIGS. 2 to 11 are explanatory diagrams of characteristics of the embodiment of the present invention, and FIG. 12 shows a positive electrode active material of the embodiment of the battery of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 正極活物質が2―ヒドロキシ―1,4―ナフ
トキノンのCo〓キレート、2―ヒドロキシ―1,
4―ナフトキノンのCo〓キレート、2―ヒドロキ
シ―1,4―ナフトキノンのFe〓キレート、鉄
()ベイゾイルアセトネイト、アセトアセチル
Be塩、アセトアセチルFe〓塩、アセトアセチル
Co〓塩、アセトアセチルCo〓塩の化合物から選ば
れた金属と錯体を形成する配位子又は金属錯体で
あり、負極活物質がリチウムであり、電解質物質
が正極活物質及びリチウムに対して化学的に安定
で且つ正極活物質と電気化学反応をするためリチ
ウムイオンの移動を阻止しない物質であることを
特徴とする二次電池。
1 The positive electrode active material is Co chelate of 2-hydroxy-1,4-naphthoquinone, 2-hydroxy-1,
Co〓chelate of 4-naphthoquinone, Fe〓chelate of 2-hydroxy-1,4-naphthoquinone, iron () beizoylacetonate, acetoacetyl
Be salt, acetoacetyl Fe salt, acetoacetyl
It is a ligand or metal complex that forms a complex with a metal selected from Co〓 salt, acetoacetyl Co〓 salt compounds, the negative electrode active material is lithium, and the electrolyte material is chemically 1. A secondary battery characterized by being a material that is physically stable and does not inhibit the movement of lithium ions because it undergoes an electrochemical reaction with a positive electrode active material.
JP2157580A 1979-12-18 1980-02-25 Battery Granted JPS56118272A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2157580A JPS56118272A (en) 1980-02-25 1980-02-25 Battery
US06/213,042 US4343871A (en) 1979-12-18 1980-12-04 Light weight battery
GB8039292A GB2068631B (en) 1979-12-18 1980-12-08 Light weight battery
FR8026844A FR2472277A1 (en) 1979-12-18 1980-12-17 LOW WEIGHT BATTERY
DE3047885A DE3047885C2 (en) 1979-12-18 1980-12-18 Galvanic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2157580A JPS56118272A (en) 1980-02-25 1980-02-25 Battery

Publications (2)

Publication Number Publication Date
JPS56118272A JPS56118272A (en) 1981-09-17
JPS6321311B2 true JPS6321311B2 (en) 1988-05-06

Family

ID=12058822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2157580A Granted JPS56118272A (en) 1979-12-18 1980-02-25 Battery

Country Status (1)

Country Link
JP (1) JPS56118272A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121186U (en) * 1983-02-03 1984-08-15 日立電線株式会社 Connection terminal for coaxial cable
JP6582455B2 (en) * 2015-03-12 2019-10-02 株式会社リコー Secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123840A (en) * 1977-04-05 1978-10-28 Shirou Yoshizawa Primary cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123840A (en) * 1977-04-05 1978-10-28 Shirou Yoshizawa Primary cell

Also Published As

Publication number Publication date
JPS56118272A (en) 1981-09-17

Similar Documents

Publication Publication Date Title
EP0573040B1 (en) A positive electrode for lithium secondary battery and its method of manufacture, and a nonaqueous electrolyte lithium secondary battery employing the positive electrode
JPH0616419B2 (en) Electrochemical generator with composite electrodes
JPH0562712A (en) Non-aqueous electrolyte secondary cell
JPH05242910A (en) Nonaqueous electrolyte battery
JPH0364989B2 (en)
JP3177257B2 (en) Non-aqueous electrolyte secondary battery
JPS6321311B2 (en)
JPS6315703B2 (en)
JPS6248347B2 (en)
JP4753690B2 (en) Organic electrolyte battery
JPS6224907B2 (en)
JPH08255635A (en) Organic electrolyte battery
JPS6314465B2 (en)
JPH0415584B2 (en)
JPH07105952A (en) Lithium secondary battery and its current collecting body
JPS6322017B2 (en)
JPS647461B2 (en)
JP2798752B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH0795454B2 (en) Non-aqueous secondary battery
JPS58206063A (en) Battery
JPS6333266B2 (en)
JPH0145708B2 (en)
JPS6315702B2 (en)
JPH0348620B2 (en)
JPS6333267B2 (en)