JPS6224907B2 - - Google Patents

Info

Publication number
JPS6224907B2
JPS6224907B2 JP54135148A JP13514879A JPS6224907B2 JP S6224907 B2 JPS6224907 B2 JP S6224907B2 JP 54135148 A JP54135148 A JP 54135148A JP 13514879 A JP13514879 A JP 13514879A JP S6224907 B2 JPS6224907 B2 JP S6224907B2
Authority
JP
Japan
Prior art keywords
electrode active
positive electrode
active material
lithium
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54135148A
Other languages
Japanese (ja)
Other versions
JPS5659461A (en
Inventor
Akihiko Yamaji
Junichi Yamaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP13514879A priority Critical patent/JPS5659461A/en
Publication of JPS5659461A publication Critical patent/JPS5659461A/en
Publication of JPS6224907B2 publication Critical patent/JPS6224907B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は小型にして放電容量の大きい一次及び
二次電池に関し、更に詳細にはリチウムを負極活
物質として用いる常温作動型電池に関する。 従来からリチウムを負極活物質として用いる高
エネルギー密度電池に関する提案は多くなされて
おり、例えば、正極活物質として、Br2及びI2
のようなハロゲン、CuF2、AgF2、AgF、NiF2
CuCl2、AgCl、NiCl2、CoF3、CrF3、MnF3
SbF3、CdF2、AsF3、HgF2、CuBr、CdCl2
PbCl2及びCoCl2等のような金属ハロゲン化物、
AgSCN、CuSCN及びNi(SCN)2等のような金属
ロダン化物、MnO2、Cr2O3、V2O5、SnO2
PbO2、TiO2、Bi2O3、CrO3、Fe3O4、NiO、
AgO、HgO、Cu2O、CuO、Ag2WO4等のような
金属酸化物、NiSx、AgBS、CuBS、Pb2B2S5及び
MnB4S4等のような金属硫化物、TiS2、NbSe2
びWS2等のような層状化合物、フツ化黒鉛、更に
はベンゾキノン類、ジニトロベンゼン等の有機化
合物及びPOCl3、SOCl2及びSO2Cl2等のようなオ
キシハライド等を用いた電池が提案されている。
そして具体的には、例えば、正極活物質として黒
鉛及びフツ素のインターカレーシヨン化合物、負
極活物質としてリチウム金属をそれぞれ使用した
電池が知られており、(米国特許第3514337号明細
書参照)、又、フツ化黒鉛を正極活物質としたリ
チウム電池及び二酸化マンガンを正極活物質とし
たリチウム電池が既に市販されている。しかしな
がら、これらの電池は、例えば二酸化マンガンを
用いた電池では正極活物質当りの比容量がおよそ
310Ah/Kgと小さく、小型、大容量の電池を提供
する上で、その特性は必ずしも十分であるとはい
えなかつた。 本発明は、このような現状に鑑みてなされたも
のであり、その目的は、小型にして大きな容量を
有する電池を提供することである。 本発明につき概説すれば、本発明の常温作動型
電池は、正極活物質は二硫化マンガン(MnS2)、
二セレン化マンガン(MnSe2)及び二テルル化マ
ンガン(MnTe2)よりなる群から選ばれたマンガ
ン化合物であり、負極活物質はリチウムであり、
電解質物質は該正極活物質及びリチウムに対し化
学的に安定でありかつリチウムイオンが該正極活
物質と電気化学反応をするための移動を行なう物
質であることを特徴とするものである。 本発明における正極活物質としての上記マンガ
ン化合物を正極として使用する場合、正極はこれ
らのマンガン化合物の粉末又はこれと結合剤粉末
との混合物をニツケル、銅等の支持体上に膜状に
圧着成形するか又はこれらのマンガン化合物の粉
末に導電性を付与するための炭素粉末を混合し、
この混合物を金属容器にいれ、或いは前記混合物
を結合剤溶液と混合してニツケル、銅等の支持体
上に塗布、乾燥して膜状に成形する等の手段によ
り形成される。負極活物質であるリチウムは一般
のリチウム電池のそれと同様にシート状として、
又はそのシートをニツケル又は銅の網に圧着して
負極として形成される。 電解質としては、プロピレンカーボネート、エ
チレンカーボネート、γ−ブチロラクトン、ジメ
チルスルホキシド、アセトニトリル、ホルムアミ
ド、ジメチルホルムアミド、ニトロメタン等の非
プロトン性有機溶媒とLiClO4、LiAlCl4
LiBF4、LiCl等のリチウム塩との組合せ又はLi+
を伝導体とする常温作動型の固体電解質など、一
般にリチウムを負極活物質として用いた電池で使
用される既知の電解質を用いることができる。 又、電池構成上、必要ならば多孔質のポリプロ
ピレン等よりなる隔膜を使用してもよい。 次に、本発明を実施例により説明するが、本発
明はこれらによりなんら限定されるものではな
い。なお、実施例において電池作製は乾燥アルゴ
ンガス雰囲気下で行なつた。 MnSe2、MnTe2およびMnS2の理論容量は各マ
ンガン化合物1モルに対して4モルのLiが反応す
ると仮定すると、第1表のように計算できる。
The present invention relates to primary and secondary batteries that are small in size and have a large discharge capacity, and more particularly to a room-temperature operating battery that uses lithium as a negative electrode active material. Many proposals have been made for high energy density batteries that use lithium as a negative electrode active material. For example, halogens such as Br 2 and I 2 , CuF 2 , AgF 2 , AgF, NiF 2 , etc. have been used as positive electrode active materials.
CuCl2 , AgCl, NiCl2 , CoF3 , CrF3 , MnF3 ,
SbF 3 , CdF 2 , AsF 3 , HgF 2 , CuBr, CdCl 2 ,
metal halides, such as PbCl2 and CoCl2 , etc.
Metal rhodanides such as AgSCN, CuSCN and Ni (SCN) 2 , MnO2 , Cr2O3 , V2O5 , SnO2 ,
PbO2 , TiO2 , Bi2O3 , CrO3 , Fe3O4 , NiO ,
Metal oxides like AgO, HgO, Cu2O , CuO, Ag2WO4 etc. , NiSx , AgBS, CuBS, Pb2B2S5 and
Metal sulfides such as MnB4S4 , layered compounds such as TiS2 , NbSe2 and WS2 , graphite fluoride, and even organic compounds such as benzoquinones, dinitrobenzene, and POCl3 , SOCl2 and SO. Batteries using oxyhalides such as 2 Cl 2 have been proposed.
Specifically, for example, batteries are known that use graphite and fluorine intercalation compounds as positive electrode active materials, and lithium metal as negative electrode active materials (see US Pat. No. 3,514,337). In addition, lithium batteries using graphite fluoride as a positive electrode active material and lithium batteries using manganese dioxide as a positive electrode active material are already commercially available. However, in these batteries, for example, batteries using manganese dioxide, the specific capacity per positive electrode active material is approximately
Its characteristics were not necessarily sufficient to provide a compact, large-capacity battery as small as 310Ah/Kg. The present invention has been made in view of the current situation, and an object thereof is to provide a battery that is small in size and has a large capacity. To summarize the present invention, the normal temperature operating battery of the present invention has a positive electrode active material of manganese disulfide (MnS 2 ),
A manganese compound selected from the group consisting of manganese diselenide (MnSe 2 ) and manganese ditelluride (MnTe 2 ), the negative electrode active material is lithium,
The electrolyte material is characterized in that it is chemically stable with respect to the positive electrode active material and lithium, and is a material that allows lithium ions to migrate to perform an electrochemical reaction with the positive electrode active material. When the above-mentioned manganese compound as a positive electrode active material in the present invention is used as a positive electrode, the positive electrode is formed by pressure-molding a powder of these manganese compounds or a mixture of this and a binder powder onto a support such as nickel or copper to form a film. or by mixing carbon powder to impart conductivity to these manganese compound powders,
It is formed by placing this mixture in a metal container, or by mixing the mixture with a binder solution, coating it on a support such as nickel or copper, drying it, and forming it into a film. Lithium, which is the negative electrode active material, is produced in the form of a sheet, similar to that of general lithium batteries.
Alternatively, the sheet may be pressed onto a nickel or copper mesh to form a negative electrode. As the electrolyte, aprotic organic solvents such as propylene carbonate, ethylene carbonate, γ-butyrolactone, dimethyl sulfoxide, acetonitrile, formamide, dimethylformamide, nitromethane, and LiClO 4 , LiAlCl 4 ,
Combination with lithium salts such as LiBF 4 , LiCl or Li +
Known electrolytes that are generally used in batteries that use lithium as a negative electrode active material can be used, such as a solid electrolyte that operates at room temperature and uses lithium as a conductor. Further, if necessary due to the battery structure, a diaphragm made of porous polypropylene or the like may be used. Next, the present invention will be explained with reference to Examples, but the present invention is not limited to these in any way. In addition, in the examples, battery fabrication was performed under a dry argon gas atmosphere. The theoretical capacities of MnSe 2 , MnTe 2 and MnS 2 can be calculated as shown in Table 1, assuming that 4 mol of Li reacts with 1 mol of each manganese compound.

【表】 しかし第1表の値はあくまで予想値であり、実
施例中で述べるように実験値と必ずしも一致する
ものではない。 これは、例えばMnS2との反応が(1)式によるも
のとして、理論的エネルギー密度を求めているた
めである。 MnS2+4Li→Mn+2Li2S (1) しかしながら、本発明の常温作動型における反
応はMnS2の結晶構造によつて形成されるトンネ
ルあるいは層にLiが挿入される事により生じるい
わゆるインターカレーシヨン反応(一言でいうと
結晶のすきまにLiがトラツプされる反応)により
起きる。この場合の反応は(2)式のように書ける。 MnS2+xLi→LixMnS2 (2) (但し正極では MnS2+xLi++xe-→LixMnS2) (2)式の反応が生じている場合には、MnとSの
間の共有結合が切断されることなくLiが反応する
ため充電が可能になる事は十分予想できる。 実施例 1 第1図は、本発明の一具体例であるボタン型電
池の構成を示した断面概略図であり、1はステン
レス製容器、2はリチウム負極、3は多孔質ポリ
プロピレン製隔膜、4はカーボン繊維よりなるフ
エルト、5は正極合剤、6はナイロン製パツキン
を示す。図面に示した電池構成により電池を作製
した。電池セルの直径は20mm、高さは4mmとし
た。電解液としては、蒸留脱水プロピレンカーボ
ネートに溶解した脱水LiClO4の1モル/溶液
を用い、隔膜3及びカーボン繊維よりなるフエル
ト4に含浸させて使用した。正極合剤5は、0.03
gのMnSe2粉末と0.06gのアセチレンブラツクを
上記電解液と混合して形成した。多孔質ポリピレ
ン製隔膜3をはさんでリチウムシートをリチウム
負極2として用いた。 このようにして作製した電池の開路電圧は
2.95Vであつた。0.32mA/cm2で定電流放電を行
なつた結果を電池の放電時間と電圧との関係につ
いて第2図のAに示す。電圧が1Vになるまでの
平均起電力は1.81V、同じく放電容量507Ah/
Kg、エネルギー密度919Wh/Kgであつた。放電容
量は第1表で示した理論容量とほぼ一致した。 次にこの電池の充放電特性の結果を第3図に示
す。第3図は0.32mA/cm2で10時間放電した後1
時間休止し、0.32mA/cm2で10時間充電した後1
時間休止しその後放電を再び行うという繰返しを
行つた結果を5回目まで示したものであり、
MnSe2は充電可能な正極活物質であることがわか
る。 実施例 2 正極合剤5として、0.03gのMnTe2粉末と0.06
gのアセチレンブラツクを実施例1と同じ電解液
と混合形成して使用した以外は、実施例1と同様
にして第1図に示した電池を作製した。 このようにして作製した電池の開路電圧は
3.08Vであつた。0.32mA/cm2で定電流放電を行
つた結果を第2図のBに示す。電圧が1Vになる
までの平均起電力は1.64V、同じく放電容量
467Ah/Kg、エネルギー密度767Wh/Kgであり、
MnSe2と同様充電が可能であつた。放電容量は第
1表で示した理論容量の135%であり、MnTe21
モル当り5.4モルのLiが反応することがわかる。 実施例 3 正極合剤5として0.03gのMnS2粉末と0.06g
のアセチレンブラツクを実施例1と同じ電解液と
混合形成して使用した以外は、実施例1と同様に
して第1図に示した電池を作製した。 このようにして作製した電池の開路電圧は
3.10Vであつた。0.32mA/cm2で定電流放電を行
つた結果を第2図のCに示す。電圧が1Vになる
までの平均起電力は1.66V、同じく放電容量
383Ah/Kg、エネルギー密度636Wh/Kgであり、
MnSe2と同様充電が可能であつた。 放電容量は第1表で示した理論容量の43%であ
り、MnS21モル当り1.7モルのLiが反応すること
がわかる。 現在、リチウム一次電池に広く用いられている
正極活物質はMnO2であり、この放電容量はおよ
そ310Ah/Kgである。以上の説明で明らかなよう
に本発明の電池はMnSe2で507Ah/Kg、MnTe2
467Ah/Kg、MnS2で383Ah/Kgと従来のMnO2
を正極活物質に用いた電池より大きな放電容量を
有し、小型、大容量の電池として種々の分野に使
用できる利点がある。 また二次電池としても、例えばMnSe2を用いた
場合333Ah/Kgと大きな容量を有し、小型、大容
量の二次電池として種々の分野に使用できる利点
がある。
[Table] However, the values in Table 1 are only expected values, and do not necessarily match the experimental values as described in the Examples. This is because, for example, the theoretical energy density is determined assuming that the reaction with MnS 2 is based on equation (1). MnS 2 +4Li→Mn+2Li 2 S (1) However, the reaction in the room-temperature operating type of the present invention is a so-called intercalation reaction ( In short, it is caused by a reaction in which Li is trapped in the gaps between crystals. The reaction in this case can be written as equation (2). MnS 2 +xLi→LixMnS 2 (2) (However, at the positive electrode, MnS 2 +xLi + +xe - →LixMnS 2 ) When the reaction of formula (2) occurs, the covalent bond between Mn and S is broken. It can be fully predicted that charging will be possible because Li reacts without any problems. Example 1 FIG. 1 is a schematic cross-sectional view showing the configuration of a button-type battery that is a specific example of the present invention, in which 1 is a stainless steel container, 2 is a lithium negative electrode, 3 is a porous polypropylene diaphragm, and 4 is a diaphragm made of porous polypropylene. 5 indicates a felt made of carbon fiber, 5 indicates a positive electrode mixture, and 6 indicates a nylon packing. A battery was manufactured using the battery configuration shown in the drawings. The diameter of the battery cell was 20 mm and the height was 4 mm. As the electrolytic solution, 1 mol/solution of dehydrated LiClO 4 dissolved in distilled dehydrated propylene carbonate was used, and the diaphragm 3 and the felt 4 made of carbon fiber were impregnated with the solution. Positive electrode mixture 5 is 0.03
g of MnSe 2 powder and 0.06 g of acetylene black were mixed with the above electrolyte. A lithium sheet was used as the lithium negative electrode 2 with a porous polypyrene membrane 3 in between. The open circuit voltage of the battery made in this way is
It was 2.95V. The results of constant current discharge at 0.32 mA/cm 2 are shown in FIG. 2A regarding the relationship between battery discharge time and voltage. The average electromotive force until the voltage reaches 1V is 1.81V, and the discharge capacity is 507Ah/
Kg, and the energy density was 919Wh/Kg. The discharge capacity almost matched the theoretical capacity shown in Table 1. Next, FIG. 3 shows the results of the charging and discharging characteristics of this battery. Figure 3 shows 1 after discharging at 0.32mA/ cm2 for 10 hours.
1 after resting for 10 hours and charging at 0.32mA/ cm2 for 10 hours.
This shows the results of repeating the process of stopping for a period of time and then starting the discharge again up to the fifth time.
It can be seen that MnSe 2 is a chargeable positive electrode active material. Example 2 As positive electrode mixture 5, 0.03 g of MnTe 2 powder and 0.06
The battery shown in FIG. 1 was fabricated in the same manner as in Example 1, except that the acetylene black (g) was mixed and formed with the same electrolyte as in Example 1. The open circuit voltage of the battery made in this way is
It was 3.08V. The results of constant current discharge at 0.32 mA/cm 2 are shown in Figure 2B. The average electromotive force until the voltage reaches 1V is 1.64V, and the discharge capacity is also
467Ah/Kg, energy density 767Wh/Kg,
It was possible to charge like MnSe 2 . The discharge capacity is 135% of the theoretical capacity shown in Table 1, and MnTe 2 1
It can be seen that 5.4 moles of Li react per mole. Example 3 0.03g of MnS 2 powder and 0.06g as positive electrode mixture 5
The battery shown in FIG. 1 was prepared in the same manner as in Example 1, except that the acetylene black was mixed with the same electrolyte as in Example 1. The open circuit voltage of the battery made in this way is
It was 3.10V. The results of constant current discharge at 0.32 mA/cm 2 are shown in Figure 2C. The average electromotive force until the voltage reaches 1V is 1.66V, and the discharge capacity is also
383Ah/Kg, energy density 636Wh/Kg,
It was possible to charge like MnSe 2 . The discharge capacity was 43% of the theoretical capacity shown in Table 1, indicating that 1.7 mol of Li reacted per 1 mol of MnS 2 . Currently, the positive electrode active material widely used in lithium primary batteries is MnO 2 , and its discharge capacity is approximately 310Ah/Kg. As is clear from the above explanation, the battery of the present invention has a capacity of 507Ah/Kg for MnSe 2 and 507Ah/Kg for MnTe 2 .
It has a discharge capacity of 467Ah/Kg and 383Ah/Kg for MnS 2 , which is greater than conventional batteries using MnO 2 or the like as the positive electrode active material, and it has the advantage of being able to be used in various fields as a small, large-capacity battery. Also, as a secondary battery, for example, when MnSe 2 is used, it has a large capacity of 333 Ah/Kg, and has the advantage of being usable in various fields as a small, large-capacity secondary battery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一具体例であるボタン型電池
の構成を示した断面概略図、第2図は本発明の各
実施例における電池の放電時間と電圧との関係を
示したグラフ、第3図はMnSe2を正極活物質とし
て用いた電池の充放電サイクル特性を示したもの
である。 1……ステンレス製容器、2……リチウム負
極、3……多孔質ポリプロピレン製隔膜、4……
カーボン繊維よりなるフエルト、5……正極合
剤、6……ナイロン製パツキン。
FIG. 1 is a schematic cross-sectional view showing the structure of a button-type battery that is a specific example of the present invention, FIG. 2 is a graph showing the relationship between battery discharge time and voltage in each embodiment of the present invention, and FIG. Figure 3 shows the charge-discharge cycle characteristics of a battery using MnSe 2 as the positive electrode active material. 1... Stainless steel container, 2... Lithium negative electrode, 3... Porous polypropylene diaphragm, 4...
Felt made of carbon fiber, 5... Positive electrode mixture, 6... Nylon packing.

Claims (1)

【特許請求の範囲】[Claims] 1 正極活物質は二硫化マンガン、二セレン化マ
ンガン及び二テルル化マンガンよりなる群から選
ばれたマンガン化合物であり、負極活物質はリチ
ウムであり、電解質物質は正極活物質及びリチウ
ムに対し化学的に安定でありかつリチウムイオン
が正極活物質と電気化学反応をするための移動を
行なう物質であることを特徴とする常温作動型電
池。
1 The positive electrode active material is a manganese compound selected from the group consisting of manganese disulfide, manganese diselenide, and manganese ditelluride, the negative electrode active material is lithium, and the electrolyte material is a chemical compound with respect to the positive electrode active material and lithium. 1. A room-temperature operating battery characterized by being a substance that is stable and allows lithium ions to move to undergo an electrochemical reaction with a positive electrode active material.
JP13514879A 1979-10-22 1979-10-22 Battery Granted JPS5659461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13514879A JPS5659461A (en) 1979-10-22 1979-10-22 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13514879A JPS5659461A (en) 1979-10-22 1979-10-22 Battery

Publications (2)

Publication Number Publication Date
JPS5659461A JPS5659461A (en) 1981-05-22
JPS6224907B2 true JPS6224907B2 (en) 1987-05-30

Family

ID=15144925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13514879A Granted JPS5659461A (en) 1979-10-22 1979-10-22 Battery

Country Status (1)

Country Link
JP (1) JPS5659461A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0350963Y2 (en) * 1987-03-17 1991-10-31

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114560448B (en) * 2022-02-23 2023-05-16 西安交通大学 Preparation method and application of manganese selenide nano material
CN114560449B (en) * 2022-02-23 2023-08-18 西安交通大学 Preparation method and application of manganese selenide nano-materials with different morphologies and phases

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0350963Y2 (en) * 1987-03-17 1991-10-31

Also Published As

Publication number Publication date
JPS5659461A (en) 1981-05-22

Similar Documents

Publication Publication Date Title
JP5270600B2 (en) Novel electrode materials derived from polyquinone-based ionic compounds and their use in electrochemical generators
EP0696075A2 (en) Non-aqueous electrolyte secondary battery
JPH0745304A (en) Organic electrolyte secondary battery
JP3232636B2 (en) Non-aqueous electrolyte battery
JPH0389462A (en) Lithium battery
JPS6224907B2 (en)
US5030528A (en) Mixed solvent electrolytes for ambient temperature secondary lithium cells
JPH06267542A (en) Nonaqueous electrolyte battery
JPS6248347B2 (en)
JPH07312216A (en) Lithium secondary battery
JPS6315703B2 (en)
JPH04171659A (en) Nonaqueous-electrolyte secondary battery
JPS6321311B2 (en)
JPH06275322A (en) Lithium battery
JP4753690B2 (en) Organic electrolyte battery
JP3555261B2 (en) Battery electrolyte and battery
JP2621213B2 (en) Organic electrolyte lithium secondary battery
JPS6314465B2 (en)
JPH0212768A (en) Lithium secondary battery
JPH05307974A (en) Organic electrolyte secondary battery
JPH0145708B2 (en)
JP3168835B2 (en) Non-aqueous electrolyte secondary battery
JPS58206063A (en) Battery
JP3555262B2 (en) Battery electrolyte and battery
JPS6322017B2 (en)