JPS63224219A - Thin film deposition method - Google Patents

Thin film deposition method

Info

Publication number
JPS63224219A
JPS63224219A JP5661787A JP5661787A JPS63224219A JP S63224219 A JPS63224219 A JP S63224219A JP 5661787 A JP5661787 A JP 5661787A JP 5661787 A JP5661787 A JP 5661787A JP S63224219 A JPS63224219 A JP S63224219A
Authority
JP
Japan
Prior art keywords
furnace
substrates
gas
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5661787A
Other languages
Japanese (ja)
Inventor
Takashi Aoyama
隆 青山
Nobutake Konishi
信武 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5661787A priority Critical patent/JPS63224219A/en
Publication of JPS63224219A publication Critical patent/JPS63224219A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to deposite the film having excellent uniformity on large type substrates in a mass productive manner by a method wherein, in the method in which raw gas is fed from the lower part and exhaust gas is discharged from the upper part, the substrates are arranged vertically erecting in parallel with the stream of gas. CONSTITUTION:Substrates 4 are fixed to a quartz jig 5, and the substrates 4 are constructed in such a manner that they are rotated together with the jig 5. Also, a heat-shielding plate 6 is provided under the substrates 4, the glass substrates are placed on the quartz holder 5 leaving the specified intervals, the entire holder is moved to a temperature-equalized region from under a vertical type furnace (room temperature region), and the air in the furnace is discharged by feeding N2 intermittently while the inside of the furnace is being formed into a depressed state. Then, inside the furnace is depressed, this state is maintained for the prescribed period (preheat), and monosilane (SiH4) gas of 20% of He base is allowed to flow. The pressure in the furnace is maintained constant by flowing the He between a reaction furnace and a pump, and also by controlling back pressure. As a result, a film of good quality having excellent uniformity can be deposited on a large type substrate in a mass productive manner.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は薄膜堆積方法に係り、特に均一性のよい薄膜を
堆積するのに好適な減圧方式の堆積方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film deposition method, and particularly to a reduced pressure deposition method suitable for depositing a thin film with good uniformity.

〔従来の技術〕[Conventional technology]

アクティブマトリクス(AMX)方式の液晶表示素子や
テレビ(TV)に用いられる薄膜トランジスタ(TPT
)はプラス?CVD (PCVD)法によるアモルファ
ス5i(a−8i)か、減圧CVD (LPGVD )
法による多結晶S i (Poly−3i)を薄膜材料
として作られている1表示の大面積化に伴い、増々大型
基板上に、均一性よくこれらの膜を形成することが要求
されるようになった。アモルファスSiに比べ大きなキ
ャリア移動度を持った多結晶Siは、応答性のよい表示
素子やTVを実現できるだけでなく1周辺回路を内蔵し
て表示と一体化することで、表示素子全体の低コスト化
をはかることが可能なため、最近、特に注目されている
。したがって多結晶シリコン膜を形成するためのLPG
VD装置とその堆積方法の重要性も増大しつつある。
Thin film transistors (TPTs) used in active matrix (AMX) type liquid crystal display elements and televisions (TVs)
) is positive? Amorphous 5i (a-8i) by CVD (PCVD) method or low pressure CVD (LPGVD)
With the increase in the area of 1 displays made using polycrystalline Si (Poly-3i) as a thin film material, it has become necessary to form these films with good uniformity on increasingly large substrates. became. Polycrystalline Si, which has higher carrier mobility than amorphous Si, can not only realize display elements and TVs with good responsiveness, but also reduce the cost of the entire display element by incorporating one peripheral circuit and integrating it with the display. Recently, it has been attracting particular attention because it is possible to measure the Therefore, LPG for forming a polycrystalline silicon film
The importance of VD equipment and its deposition methods is also increasing.

LPGVD装置を示すものとして技術誌「電子材料」1
986年3月号の′″縦型LPGVD装置″なる論文が
ある。
Technical magazine "Electronic Materials" 1 shows LPGVD equipment
There is an article titled ``Vertical LPGVD Device'' in the March 1986 issue.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来、 LPGVD炉としては、縦型炉と横型炉の二種
類が用いられてきている。第2図に縦型炉と基板の並べ
方の概略を示す。この炉は、原子炉1の下方に原料ガス
溝入口2、上方に排ガス排出口3を有し、炉1内の治具
5に基板4を複数枚水平に並べる様にしたものである。
Conventionally, two types of LPGVD furnaces have been used: vertical furnaces and horizontal furnaces. Figure 2 shows an outline of how the vertical furnace and substrates are arranged. This furnace has a raw material gas groove inlet 2 at the bottom of the reactor 1 and an exhaust gas outlet 3 at the top, and a plurality of substrates 4 are arranged horizontally on a jig 5 inside the furnace 1.

縦型炉では、横型炉に比べ、温度の均一性が実現しやす
く、かつ、膜の堆積後に試料を取出す際、空気中の酸素
の巻き込み量が少ないため、膜表面の酸化を抑えて良質
な膜が得られるという利点がある。膜厚分布りに関して
は、8インチ径の円型基板(例えばSiつ、”エバ)を
約100枚チャージして、基板内向±7%、バッチ内で
約±10%の値が得られている。
In a vertical furnace, it is easier to achieve temperature uniformity than in a horizontal furnace, and when taking out a sample after film deposition, less oxygen is involved in the air, which suppresses oxidation of the film surface and improves quality. It has the advantage that a membrane can be obtained. Regarding the film thickness distribution, by charging approximately 100 8-inch diameter circular substrates (for example, Si, "Eva"), values of ±7% for the substrate inward direction and approximately ±10% within the batch were obtained. .

tmax、t mLnは膜厚の最大値と最小値を示す。tmax and tmLn indicate the maximum and minimum values of the film thickness.

しかしながら、基板4の大型化に伴い、すなわち従来の
円型8インチ(直径約200am)基板から角型のA4
サイズ(対角方向約360mm)になると、基板の大き
さが約2倍になったことに相当する。このため、膜厚分
布の不均一性が大きな問題となってきた。第5図に従来
(第2図)方式でA4サイズの基板上に膜を堆積させた
ときの基板間隔と膜厚分布との関係を示す。基板間隔を
広げると膜厚分布はよくなる。しかしながら、間隔を1
50aまで広げても±10%の分布は得られない。ここ
で、炉内の反応ガス圧力を下げると膜厚分布は向上する
が、圧力を0 、3 Torrにしても±10%の分布
は得られない。圧力を0 、3 Torr以下にするこ
とは、堆積速度が減少して長時間の堆積を要して否量生
的となる。
However, with the increase in the size of the substrate 4, from the conventional circular 8 inch (approximately 200 am diameter) substrate to the square A4
The size (approximately 360 mm in the diagonal direction) corresponds to approximately doubling the size of the substrate. For this reason, non-uniformity in film thickness distribution has become a major problem. FIG. 5 shows the relationship between the substrate spacing and the film thickness distribution when a film is deposited on an A4 size substrate using the conventional method (FIG. 2). Increasing the distance between the substrates improves the film thickness distribution. However, if the interval is 1
Even if it is expanded to 50a, a distribution of ±10% cannot be obtained. Here, the film thickness distribution is improved by lowering the reactant gas pressure in the furnace, but even if the pressure is reduced to 0.3 Torr, a distribution of ±10% cannot be obtained. When the pressure is lower than 0.3 Torr, the deposition rate decreases and a long time deposition is required, resulting in poor quality.

次に、従来の横型炉について述べる。第3図に横型炉の
概略を示す。第3図の符号で第2図のものと同一物、相
当物には同一符号を付けている。
Next, a conventional horizontal furnace will be described. Figure 3 shows an outline of the horizontal furnace. Components that are the same or equivalent to those in FIG. 2 are given the same symbols in FIG. 3.

この炉は基板径が3〜4インチと小さい時代に主流技術
として用いられたものであり、操作が容易であるという
利点がある。しかし、膜堆積後に試料を取出す際、空気
中の酸素が炉内に巻き込まれて試料表面を酸化するとい
う問題がある。また、基板サイズの大型化に伴い、基板
内、特に上下位置の膜厚の不均一は大きな問題である。
This furnace was used as a mainstream technology when the substrate diameter was as small as 3 to 4 inches, and has the advantage of being easy to operate. However, when taking out a sample after film deposition, there is a problem in that oxygen in the air is drawn into the furnace and oxidizes the sample surface. Furthermore, as the size of the substrate increases, non-uniformity in film thickness within the substrate, particularly in the upper and lower positions, is a major problem.

第4図に示すように、横型炉で基板をガス流と平行に並
べる方式も提案されているが、上下位置の膜厚の不均一
のため、大型基板では量産化に敗っていない。
As shown in Figure 4, a method has been proposed in which the substrates are arranged parallel to the gas flow in a horizontal furnace, but this method has not been successful in mass production for large substrates because of uneven film thickness in the upper and lower positions.

以上のように、従来方式ではA4サイズの基板上に均一
性のよい膜を量産的に堆積させることは難しい。
As described above, with the conventional method, it is difficult to mass-produce a film with good uniformity on an A4 size substrate.

本発明の目的は、大型基板上に均一性のよい良質の膜を
量産的に堆積させる方法を提供するものである。
An object of the present invention is to provide a method for mass-producing a high-quality film with good uniformity on a large substrate.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は従来の縦型装置内のガス流を可視化してamし
た結果に基づいて成し遂げられた。本発明は、従来の縦
型炉内に大型基板をガス流と平行に、すなわち縦方向に
並べ、また、その基板間隔を小さくすることによって、
ある減圧下で、多量の基板上に均一性のよい良質の膜を
堆積させるものである。
The present invention was achieved based on the results of visualizing and ampering the gas flow in a conventional vertical device. The present invention has been achieved by arranging large substrates in a conventional vertical furnace parallel to the gas flow, that is, in the vertical direction, and by reducing the spacing between the substrates.
It deposits a high-quality film with good uniformity on a large number of substrates under a certain reduced pressure.

〔作用〕[Effect]

縦型炉内のガス流を可視化してl!察した結果。 Visualize the gas flow in a vertical furnace! As a result.

以下の理由で本発明による膜厚分布の均一化が達成され
ることがわかった。本発明では、基板間隔が大きいとき
は基板周辺部にうすを含んだ複雑な流れがある。このう
す流が炉内周辺部から基板周辺部へ新しい原料ガスを激
しく供給し、この部分の堆積速度を大きくしている。基
板間隔を小さくしていくと、上記うずが徐々に消滅して
いき、約30inの間隔ではほとんど見られなくなる。
It has been found that the uniform film thickness distribution according to the present invention can be achieved for the following reasons. In the present invention, when the distance between the substrates is large, there is a complicated flow including a thin layer around the substrates. This thin flow violently supplies new raw material gas from the periphery of the furnace to the periphery of the substrate, increasing the deposition rate in this area. As the spacing between the substrates is made smaller, the above-mentioned ridges gradually disappear, and are hardly seen at a spacing of about 30 inches.

これに伴い、基板間隔を流れるガス流は層流状態になり
、この流れが原料ガスを基板上に均一に供給して均一な
膜厚分布を作る。なお、従来方式による膜堆積法(第2
図)では、基板付近のガス流は濃度分布がある場合のガ
スの拡散に類似している。
Accordingly, the gas flow flowing between the substrates becomes laminar, and this flow uniformly supplies the raw material gas onto the substrates to create a uniform film thickness distribution. Note that the conventional film deposition method (second
In Figure), the gas flow near the substrate is similar to gas diffusion when there is a concentration distribution.

したがって、基板間隔を小さくしていくと、基板中央へ
のガスの供給が妨げられていく。それに伴い、基板周辺
に比べ中央部分の堆積速度の減少率が大きく、膜厚分布
の均一性が悪くなる。
Therefore, as the spacing between the substrates becomes smaller, the supply of gas to the center of the substrates becomes obstructed. Accordingly, the rate of decrease in the deposition rate at the central portion of the substrate is greater than that at the periphery of the substrate, and the uniformity of the film thickness distribution deteriorates.

第6図は、本方式によりQ 、6 Torrの減圧下で
、A4サイズ基板上に薄膜を堆積させたとき、基板間隔
と堆積速度との関係を示す。基板間隔を小さくしていく
と堆積速度は小さくなる。しかし、ここで着目すべきこ
とは、基板の中央と周辺部で堆積速度の減少のし方に差
があることである。すなわち、中央では減少のし方が小
さく、周辺部で減少のし方が大きいこと、基板間隔が約
30mm以下になると両者の堆積速度の差が小さくなる
ことである。つまり1木刀式では基板間隔を小さくする
と膜厚分布の均一性がよくなることを意味し、従来方式
と比べ逆の傾向にある。本発明のように、基板間隔を小
さくできることはバッチ枚数を増加させること意味し、
この点でも大きな利点である。
FIG. 6 shows the relationship between the substrate spacing and the deposition rate when a thin film is deposited on an A4 size substrate using this method under a reduced pressure of Q, 6 Torr. As the substrate spacing decreases, the deposition rate decreases. However, what should be noted here is that there is a difference in how the deposition rate decreases between the center and the periphery of the substrate. That is, the decrease is small in the center and large in the periphery, and when the distance between the substrates is about 30 mm or less, the difference in deposition rate between the two becomes small. In other words, in the single-bokuto method, the uniformity of the film thickness distribution improves when the substrate spacing is reduced, which is the opposite trend compared to the conventional method. As in the present invention, being able to reduce the substrate spacing means increasing the number of batches.
This is also a big advantage.

第7図には本発明での基板間隔と膜厚分布との関係を示
す。圧力が0 、6 Torrの場合、基板間隔を小さ
くしていくと分布はよくなっていき、30mで約±7%
が達成できる。以後、間隔を小さくしても膜厚分布はあ
まり変らない。圧力を小さくすると全般的に膜厚分布は
よくなるが、基板間隔約30ns++を界にした上記の
傾向は変らない。
FIG. 7 shows the relationship between substrate spacing and film thickness distribution in the present invention. When the pressure is 0.6 Torr, the distribution gets better as the substrate spacing becomes smaller, and at 30 m it is approximately ±7%.
can be achieved. Thereafter, even if the interval is made smaller, the film thickness distribution does not change much. When the pressure is reduced, the film thickness distribution generally improves, but the above-mentioned tendency with respect to the substrate spacing of about 30 ns++ remains unchanged.

〔実施例〕〔Example〕

以下、本発明の一実施例を述べる。 An embodiment of the present invention will be described below.

第1図は縦型炉内に大型基板を縦方向に並へた様子を模
式的に示したものである。第2図に示したものと同一物
、相当物には同一符号を付けている。基板4は石英治具
5に固定され、基板4は治具5と共に回転する構造にな
っている。また、基板4の下(上流側)には熱しゃへい
板6が置かれている。内径450mm、均熱長500m
mの縦型炉1を用い、A4サイズ(厚さ2mm)のガラ
ス基板15枚を20mm間隔で石英ホルダー5に入れる
FIG. 1 schematically shows how large substrates are arranged vertically in a vertical furnace. Components that are the same or equivalent to those shown in FIG. 2 are given the same reference numerals. The substrate 4 is fixed to a quartz jig 5, and the substrate 4 is structured to rotate together with the jig 5. Further, a heat shielding plate 6 is placed below the substrate 4 (on the upstream side). Inner diameter 450mm, soaking length 500m
15 glass substrates of A4 size (thickness: 2 mm) were placed in a quartz holder 5 at intervals of 20 mm using a vertical furnace 1 of size 1.

このホルダー全体を縦型炉の下(室温領域)から580
’Cの均熱領域まで15分間かけて移動させる。炉内を
減圧状態にしながら、N2を断続的に供給して、炉内の
空気を排気する。次に炉内を減圧にして15分間保つ(
プレヒート)。ホルダを毎分6回転させながら、Heベ
ースの20%モノシラン(SiH4)ガスを毎分1.5
0 流す。反応炉とポンプ(ターボモレキュラーポンプ
)との間にHeを流して背圧を制御することにより、炉
内の圧力を0 、6 Torrに保つ。25分間膜を堆
積させる。約1500人の多結晶シリコン膜が得られる
(堆付速度約60人/+++in)。原料ガスの供給を
止めた後、15分間加熱する(アフタヒート)。
The whole holder was removed from the bottom of the vertical furnace (room temperature area) at a temperature of 580 mm.
Move to soaking area 'C for 15 minutes. While reducing the pressure inside the furnace, N2 is intermittently supplied to exhaust the air inside the furnace. Next, reduce the pressure in the furnace and keep it for 15 minutes (
preheat). He-based 20% monosilane (SiH4) gas was applied at 1.5 rpm per minute while rotating the holder 6 times per minute.
0 Flow. By controlling the back pressure by flowing He between the reactor and the pump (turbo molecular pump), the pressure inside the reactor is maintained at 0.6 Torr. Deposit the film for 25 minutes. A polycrystalline silicon film of approximately 1500 in is obtained (deposition rate of approximately 60 in/+++ in). After stopping the supply of raw material gas, it is heated for 15 minutes (after heating).

次にN2を炉内に断続的に流してモノシランガスを完全
に排気する。続いてガスの排気を止め炉内にN2を流し
、約10分間かけて大気圧にする。
Next, N2 is intermittently flowed into the furnace to completely exhaust the monosilane gas. Next, the gas exhaust is stopped and N2 is flowed into the furnace to bring it to atmospheric pressure over about 10 minutes.

得られた膜厚分布は基板内、バッチ内共に±6%である
。本装置は膜取出時に酸素の巻込み量が少ないため、膜
の酸化が起こらず膜質も良好である。
The obtained film thickness distribution is ±6% both within the substrate and within the batch. Since the amount of oxygen involved in this device is small when the membrane is taken out, the membrane is not oxidized and the quality of the membrane is good.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、大型基板上に均一性のよい良質の膜を
量産的に堆積させることができる。
According to the present invention, it is possible to mass-produce a high-quality film with good uniformity on a large substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に用いられる縦型炉の概略図、
第2図〜第4図は従来例で用いられる各反応炉の概略図
、第5図は従来例の膜厚分布と基板間隔との関係を示す
図、第6図は本発明における基板間隔と堆積速度との関
係を示す図、第7図は本発明における基板間隔と膜厚分
布との関係を示す図である。 1・・・反応炉、2・・・原料ガス導入口、3・・・排
ガス排出口、4・・・基板、5・・・治具(ホルダー)
、6・・・熱しやへい板。             
    、)、”H,H,);′、1□ 、9″−・ 代理人 弁理士 高橋明夫ゝ:;、−9−応3図 躬4−ロ 右S図 率60 暴根間隔、L(mm) 基板間7M 、 L(mm)
FIG. 1 is a schematic diagram of a vertical furnace used in an embodiment of the present invention;
Figures 2 to 4 are schematic diagrams of each reactor used in the conventional example, Figure 5 is a diagram showing the relationship between the film thickness distribution and the substrate spacing in the conventional example, and Figure 6 is the relationship between the substrate spacing and the substrate spacing in the present invention. A diagram showing the relationship between the deposition rate and FIG. 7 is a diagram showing the relationship between the substrate spacing and the film thickness distribution in the present invention. 1... Reactor, 2... Raw material gas inlet, 3... Exhaust gas outlet, 4... Substrate, 5... Jig (holder)
, 6... Heat-resistant board.
,),"H,H,);',1□,9"-・Agent Patent attorney Akio Takahashi も:;,-9-O3 Figure 4-B Right S figure ratio 60 Radical spacing, L( mm) Between boards 7M, L (mm)

Claims (1)

【特許請求の範囲】 1、反応炉の下方から原料ガスを供給し、炉内を減圧状
態にして反応を行なわせ、炉内に入れた基板上に薄膜を
堆積させ、上方から排ガスを出す薄膜堆積方法において
、基板をガス流と平行な垂直に立てて並べることを特徴
とした薄膜堆積方法。 2、前記特許請求の範囲第1項において、基板間隔を3
0mm以下とすることを特徴とした上記薄膜堆積方法。 3、特許請求の範囲第1項において、炉内の圧力を0.
6Torr以下とすることを特徴とした上記薄膜堆積方
法。
[Scope of Claims] 1. A thin film in which raw material gas is supplied from the bottom of the reactor, the pressure inside the reactor is reduced to perform a reaction, a thin film is deposited on a substrate placed in the reactor, and exhaust gas is discharged from above. A thin film deposition method characterized by arranging substrates vertically parallel to the gas flow. 2. In claim 1, the substrate spacing is set to 3.
The method for depositing a thin film as described above, characterized in that the thickness is 0 mm or less. 3. In claim 1, the pressure inside the furnace is set to 0.
The thin film deposition method described above, characterized in that the pressure is 6 Torr or less.
JP5661787A 1987-03-13 1987-03-13 Thin film deposition method Pending JPS63224219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5661787A JPS63224219A (en) 1987-03-13 1987-03-13 Thin film deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5661787A JPS63224219A (en) 1987-03-13 1987-03-13 Thin film deposition method

Publications (1)

Publication Number Publication Date
JPS63224219A true JPS63224219A (en) 1988-09-19

Family

ID=13032226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5661787A Pending JPS63224219A (en) 1987-03-13 1987-03-13 Thin film deposition method

Country Status (1)

Country Link
JP (1) JPS63224219A (en)

Similar Documents

Publication Publication Date Title
US3854443A (en) Gas reactor for depositing thin films
TW457559B (en) Film-forming device
JPH09501272A (en) Plasma processing and apparatus during manufacturing of electronic device
JPS63224219A (en) Thin film deposition method
JP3904497B2 (en) Manufacturing method of semiconductor device
JPS62263629A (en) Vapor growth device
JPH01305524A (en) Plasma cvd device
JPH06302519A (en) Semiconductor manufacturing equipment
JPH0888187A (en) Equipment and method for vapor growth of semiconductor
JPH01253229A (en) Vapor growth device
JPH0547669A (en) Vapor growth apparatus
JP3100702B2 (en) Reduced pressure chemical reaction method and apparatus
JPH04279022A (en) Semiconductor manufacturing device
JP2001110726A (en) Method and device for forming film
JPH02296799A (en) Method for growing silicon carbide
JPS62214614A (en) Reduced pressure cvd device
JP2001044125A (en) Device and method for epitaxial growth
CN111128696A (en) Method for producing epitaxial silicon wafer and epitaxial silicon wafer
JPH08250429A (en) Vapor growth method for semiconductor and its equipment
JP2742789B2 (en) Silicon thin film manufacturing method and silicon thin film manufacturing apparatus
JP2000297375A (en) Production of silicon carbide film, producing device therefor and production of x-ray mask
JP3184550B2 (en) Vapor phase growth method and apparatus
JPH01129973A (en) Reaction treatment equipment
JP3057716B2 (en) Thin film formation method
JPS6020510A (en) Diffusing method of impurity