JPS6020510A - Diffusing method of impurity - Google Patents

Diffusing method of impurity

Info

Publication number
JPS6020510A
JPS6020510A JP12836783A JP12836783A JPS6020510A JP S6020510 A JPS6020510 A JP S6020510A JP 12836783 A JP12836783 A JP 12836783A JP 12836783 A JP12836783 A JP 12836783A JP S6020510 A JPS6020510 A JP S6020510A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
diffusion
solid
source
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12836783A
Other languages
Japanese (ja)
Inventor
Seiji Ueda
誠二 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP12836783A priority Critical patent/JPS6020510A/en
Publication of JPS6020510A publication Critical patent/JPS6020510A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/2225Diffusion sources

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To diffuse an impurity uniformly to a semiconductor substrate of large area by respectively holding a solid diffusing source and the semiconductor substrate to heating plates opposed in parallel and heating the diffusion source and the semiconductor substrate. CONSTITUTION:A solid diffusing source 5b fixed to a first heating plate and a semiconductor substrate 6 fastened to a second heating plate are opposed in parallel and installed, and an impurity is diffused to the semiconductor substrate 6 from the solid diffusing source 5b by heating the first and second heating plates. Upper and lower heaters 9, 9' are controlled independently, and set at fixed temperatures. The solid diffusing source 5b is formed as a discoid diffusing source containing SiP2O7 while using silicon dioxide as a binder on the diffusion of phosphorus, and has approximately the same size as the semiconductor substrate 6 to be treated. The mounted silicon substrate 6 and solid diffusing source 5b are kept at fixed temperatures respectively. Nitrogen gas is introduced to a diffusion chamber 11 from an introducing port 3 for diffusion, and discharged to an exhaust port 12.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は半導体装置の製造における、リン、1だけボ
ロンなどの不純物の半導体基板への拡散においで,固体
拡散源,半導体基板を各々、平行して向いあった加熱板
上に保持し、加熱拡散することにより、大口径の半導体
基板に均一,高精度に不純物拡散を行うことを可能にし
た不純物の拡散方法に関するものである。
[Detailed Description of the Invention] Industrial Application Field This invention is used to diffuse impurities such as phosphorus and boron into a semiconductor substrate in the manufacture of semiconductor devices. This invention relates to an impurity diffusion method that makes it possible to uniformly and precisely diffuse impurities into a large-diameter semiconductor substrate by holding them on opposing heating plates and heating and diffusing them.

従来例の構成とその問題点 近時、半導体装置の製造において、量産性の向上とコス
トの低減のため、半導体基板の大口径化が活発に進めら
れている。特にシリコン基板に関しては、単結晶引き上
げ技術の進歩に伴って、現在5インチ径から、さらに6
インチ以上の大口径基板へと急速に進展している。
2. Description of the Related Art Conventional Structures and Problems Recently, in the manufacture of semiconductor devices, the diameter of semiconductor substrates has been actively increased in order to improve mass productivity and reduce costs. In particular, with regard to silicon substrates, with advances in single crystal pulling technology, the diameter has now increased from 5 inches to 6 inches.
There is rapid progress toward large-diameter substrates of inches or larger.

一方、半導体基板の大口径化に伴い、半導体装置の製造
装置もこれに対応して改善が必要となってきた。不純物
の熱拡散では、従来からのホノトウオール型の拡散炉で
処理されており、半導体基板の口径に合せて、チューブ
の径が拡大されてきている。ところが、大口径になると
、ウェハー内。
On the other hand, as semiconductor substrates have become larger in diameter, it has become necessary to improve semiconductor device manufacturing equipment accordingly. Thermal diffusion of impurities is conventionally carried out in a white-wall type diffusion furnace, and the diameter of the tube has been increased to match the diameter of the semiconductor substrate. However, when the diameter becomes large, the inside of the wafer.

バノチ内の不純物拡散の均一性を充分に得ることが困難
になってきた。これは5インチ径以上になると著しくな
り、チューブ内でのガスの流れの均一性、処理中の温度
分布の安定性を制御するのがむづかしくなる。このだめ
、大口径化につれて。
It has become difficult to obtain sufficient uniformity of impurity diffusion within the vanoch. This becomes noticeable when the tube has a diameter of 5 inches or more, and it becomes difficult to control the uniformity of gas flow within the tube and the stability of temperature distribution during processing. As the caliber becomes larger.

−回の被処理枚数が減少し、寸だ高精度拡散が困難にな
った。
- The number of sheets to be processed per cycle has decreased, making high-precision diffusion extremely difficult.

次に従来の不純物拡散方法を製造装置例をあげて詳細に
示す。第1図に横型の拡散炉の断面の概略構造図を示す
。同図において、1は円筒型の石英ガラス、寸たはシリ
コンカーバイド(SiC)からなる拡散チューブを示し
、2は拡散炉のヒータ一部、3は拡散チューブへのガス
の導入口、4は石英ガラスからなるボー1−.5aは固
体拡散源、6は被処理半導体基板、7は石英チューブの
キャップを示す。なお、ここで、固体拡散源6aはリン
を拡散する場合には5iP707を主成分とする円板状
の固体拡散源がイJ用でt’)る。不純物拡散の工程に
おいて、半導体基板6と固体拡散源5aを平行に、半導
体基板の不純物を拡散する面が拡散源が向い会うように
交互に立−C1チューブ1内に挿入する。次にガスの導
入[」3よりチノ素ガスを流し、所定の拡散温度に上げ
、リンの拡散を行う。固体拡散源5&は半導体基板6と
同一の大きさ1寸だはそれ以上の大きさのものを用いる
Next, a conventional impurity diffusion method will be described in detail using an example of a manufacturing apparatus. FIG. 1 shows a schematic cross-sectional structural diagram of a horizontal diffusion furnace. In the figure, 1 indicates a diffusion tube made of cylindrical quartz glass or silicon carbide (SiC), 2 is a part of the heater of the diffusion furnace, 3 is a gas inlet to the diffusion tube, and 4 is a quartz glass tube. Bow made of glass 1-. 5a is a solid diffusion source, 6 is a semiconductor substrate to be processed, and 7 is a cap of a quartz tube. Here, when the solid diffusion source 6a diffuses phosphorus, a disk-shaped solid diffusion source containing 5iP707 as a main component is used. In the impurity diffusion process, the semiconductor substrate 6 and the solid diffusion source 5a are alternately inserted into the vertical C1 tube 1 in parallel so that the surfaces of the semiconductor substrate on which impurities are to be diffused face each other. Next, chino gas is introduced through gas introduction 3, raised to a predetermined diffusion temperature, and phosphorus is diffused. The solid diffusion source 5& is the same size as the semiconductor substrate 6, or one size larger than that.

以上のような不純物の拡散方法は、半導体基板6の口径
が4インチ程度までの場合、実用上均一性が実現できた
が、/さらに大口径にした場合、ウェハー内、バッチ内
のシート抵抗のバラツギが数十係となり、実用上問題が
生じた。このバラツキはシート抵抗が大きい場合、すな
わち、不純物低濃度拡散の処理のとき特に著しい。この
原因は大口径化により、固体拡散源、半導体基板、ボー
ト。
The impurity diffusion method described above has achieved practical uniformity when the diameter of the semiconductor substrate 6 is up to about 4 inches; however, when the diameter of the semiconductor substrate 6 is made even larger, the sheet resistance within the wafer or batch increases. The variation was in the dozens, which caused a practical problem. This variation is particularly significant when the sheet resistance is large, that is, when low concentration impurity diffusion is performed. This is due to larger diameters, solid diffusion sources, semiconductor substrates, and boats.

チューブなどの熱容量が太きくなるため温度の制ff1
lの応答が遅いこと、ガスの流れが均一になりにくいこ
となどによる。1だ、半導体基板が6〜8インチ以上に
1で太きくなると、これに必要な固体拡散源を製造する
ことがむづかしく、コストの面からも問題がある。また
、固体拡散源を用いずに、ホスフィン、酸素の混合ガス
雰囲気によりリン拡散する方法もあるが、前者以上に、
シート抵抗の均一性を得ることは困難である。
Temperature control ff1 because the heat capacity of tubes etc. becomes thicker
This is due to the slow response of l and the difficulty in making the gas flow uniform. 1. When the semiconductor substrate becomes thicker than 6 to 8 inches, it becomes difficult to manufacture the solid-state diffusion source necessary for this, and there is also a problem in terms of cost. There is also a method of diffusing phosphorus in a mixed gas atmosphere of phosphine and oxygen without using a solid diffusion source, but this method is more effective than the former.
It is difficult to obtain uniformity in sheet resistance.

このため、半導体基板の大口径化に伴い、不純物の拡散
方法の改善が必要である。
Therefore, as the diameter of semiconductor substrates increases, it is necessary to improve the method of diffusing impurities.

発明の目的 そこで本発明は半導体基板への不純物の拡散において、
固体拡散源と半導体基板を各々、平行に゛向い合った加
熱板に保持し、加熱することにより、大口径の半導体基
板に均一に不純物の拡散することを可能にする半導体装
置の製造方法を提供するものである。
Purpose of the Invention Therefore, the present invention provides a method for diffusing impurities into a semiconductor substrate.
Provided is a method for manufacturing a semiconductor device that makes it possible to uniformly diffuse impurities into a large-diameter semiconductor substrate by holding a solid diffusion source and a semiconductor substrate on heating plates facing each other in parallel and heating them. It is something to do.

発明の構成 本発明は、第1の加熱板に固定した固体拡散源と、第2
の加熱板に固定した半導体基板とを、平行して向い合わ
ぜて設置し、第1.第2の加熱板を各々、加熱すること
により、固体拡散源より半導体基板に不純物を拡散する
ことを特徴とする拡散方法であり、大[−1径の半導体
基板に均一に不純物を拡散することを可能にするもので
ある。
Structure of the Invention The present invention includes a solid diffusion source fixed to a first heating plate and a second heating plate.
and the semiconductor substrate fixed to the heating plate of the first. This is a diffusion method characterized by diffusing impurities from a solid diffusion source into a semiconductor substrate by heating each of the second heating plates. This is what makes it possible.

実施例の説明 以下に本発明を実施例により詳しく述べる。第2図はこ
の発明の一実施例による半導体基板への不純物の拡散方
法で用いる製造装置の概略断面図である。第2図におい
て、8は円板状の固体拡散源5bを固定し、かつ、裏面
より加熱するヒーター9を含んでいる第1の加熱板であ
り、10は径大な半導体基板6を保持する第2の加熱板
である。
DESCRIPTION OF EMBODIMENTS The present invention will now be described in detail with reference to embodiments. FIG. 2 is a schematic cross-sectional view of a manufacturing apparatus used in a method of diffusing impurities into a semiconductor substrate according to an embodiment of the present invention. In FIG. 2, 8 is a first heating plate that fixes a disk-shaped solid diffusion source 5b and includes a heater 9 that heats from the back side, and 10 holds a large-diameter semiconductor substrate 6. This is the second heating plate.

なお9′は第2の加熱板10内に含まれるヒータ一部を
示す。上部及び下部のヒーター9,9′は独ケして制(
財)され、所定の温度に設定される。5bの固体拡散源
は、リン拡散の場合、前述の如く、二酸化珪素をバイン
ダーとして、5iP207を含有した円板状の拡散源で
、被処理用の半導体基板6とほぼ同程度の大きさである
。第2図のように設置されたシリコン基板6と、固体拡
散源5bとは各々、所定の温度に保たれる。拡散には拡
散室11にチッ素ガスが導入口3から導入され、排気口
12に排気される。例えば、P型シリコン基板にリンを
拡散し、シート抵抗2007口を得るには、950℃で
約20分裂したが、本実施例によれば、従来方法のバラ
ツキ±20%に比して、±2係と著しく向上される。さ
らに、固体拡散源の温度をシリコン基板の温度より高く
設定することにより、均一性を低下することなく、拡散
時間を短縮することが可能である。拡散は1枚処理、あ
るいは数枚同時処理のいずれも可能である。寸だ、ウエ
ノ・−の大口径化、例えば6インチ以上とかなり大きく
なった場合、固体拡散源の製造がむづかしく、かなり製
造コストを要するため、第3図に示すように、小さな1
」径の固体拡散源5Cを多数、平面的に並べて配置する
ことにより、第2図と同様に拡散することができろ。こ
の場合、完全に円板状にならないが、実用」−1均一性
は維持できる。本実施例はリン拡散の場合であるが、ボ
ロンナイトライドを用いてボロン拡散についても同様に
実施できる。
Note that 9' indicates a part of the heater included in the second heating plate 10. The upper and lower heaters 9, 9' are controlled independently (
temperature) and set at a predetermined temperature. In the case of phosphorus diffusion, the solid diffusion source 5b is a disk-shaped diffusion source containing 5iP207 using silicon dioxide as a binder, and is approximately the same size as the semiconductor substrate 6 to be processed, as described above. . The silicon substrate 6 installed as shown in FIG. 2 and the solid diffusion source 5b are each maintained at a predetermined temperature. For diffusion, nitrogen gas is introduced into the diffusion chamber 11 through the inlet 3 and exhausted through the exhaust port 12. For example, to diffuse phosphorus into a P-type silicon substrate and obtain a sheet resistance of 2007, approximately 20 splits were required at 950°C, but according to this example, the variation was ±20% in the conventional method. It has been significantly improved to 2nd grade. Furthermore, by setting the temperature of the solid diffusion source higher than the temperature of the silicon substrate, it is possible to shorten the diffusion time without reducing uniformity. Diffusion can be performed either on a single sheet or on several sheets simultaneously. However, when the diameter of the Ueno becomes large, for example, 6 inches or more, manufacturing a solid diffusion source becomes difficult and requires considerable manufacturing cost, so a small 1.
Diffusion can be achieved in the same manner as shown in FIG. 2 by arranging a large number of solid-state diffusion sources 5C with a diameter of 100 cm in a plane. In this case, although the disc shape is not completely formed, the uniformity for practical use can be maintained. This example deals with phosphorus diffusion, but boron diffusion can be similarly carried out using boron nitride.

才だ、本実施1夕1」では、固体拡散源を上部、半導体
基板を下部に保持しているが、半導体基板へのダストの
刺着を防止するため、逆の構造も可能である。
In this example, the solid diffusion source is held at the top and the semiconductor substrate is held at the bottom, but the reverse structure is also possible in order to prevent dust from sticking to the semiconductor substrate.

発明の効果 以上のように本発明に係る不純物の拡散方法は、大口径
半導体基板への不純物拡散を、固体拡散源を用い、これ
らを平行に向い合って設置し、各々を個別に加熱すると
七により、大口径半導体基板の全面に均一に不純物を拡
散することを可能にしたものであり、半導体装置の製造
に有用な技術である。
Effects of the Invention As described above, the impurity diffusion method according to the present invention can diffuse impurities into a large-diameter semiconductor substrate by using solid diffusion sources, placing them facing each other in parallel, and heating each one separately. This makes it possible to uniformly diffuse impurities over the entire surface of a large-diameter semiconductor substrate, and is a useful technique for manufacturing semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の一般的な構造の石英チューブを有する拡
散炉の概略断面構造図、第2図は本発明の具体的な一実
施例にかかる不純物の拡散方法で用いる製造装置の概略
断面構造図、第3図は固体拡散源の配置の一例を示す平
面図である。 5b、5G・・・・・・固体拡散源、6・・・・・・半
導体基板、8.10・・・・・・加熱部、 9.9’・
・・・・・ヒータ。
FIG. 1 is a schematic cross-sectional structure diagram of a diffusion furnace having a conventional conventional quartz tube structure, and FIG. 2 is a schematic cross-sectional structure diagram of a manufacturing apparatus used in an impurity diffusion method according to a specific embodiment of the present invention. 3 are plan views showing an example of the arrangement of solid diffusion sources. 5b, 5G...Solid diffusion source, 6...Semiconductor substrate, 8.10...Heating part, 9.9'.
·····heater.

Claims (3)

【特許請求の範囲】[Claims] (1)第1の加熱板に固定した固体拡散源と、第2の加
熱板に固定した半導体基板とを、平行して向い合わせて
設置し、前記第1.第2の加熱板を加熱することにより
、前記固体拡散源から前記半導体基板に不純物を拡散す
ることを特徴とする不純物拡散方法。
(1) A solid diffusion source fixed to a first heating plate and a semiconductor substrate fixed to a second heating plate are installed in parallel and facing each other, and the first. An impurity diffusion method characterized in that impurities are diffused from the solid diffusion source into the semiconductor substrate by heating a second heating plate.
(2)固体拡HHy源が5iP707を含む板状の拡散
源からなることを特徴とする特許 記載の不純物拡散方法。
(2) The impurity diffusion method described in the patent, characterized in that the solid expanded HHy source consists of a plate-shaped diffusion source containing 5iP707.
(3)固体拡散源がボロンナイ1・ライドを含む板状の
拡散源からなることを特徴とする特許請求の範囲第1項
に記載の不純物拡散方法。
(3) The impurity diffusion method according to claim 1, wherein the solid diffusion source is a plate-shaped diffusion source containing boron nylide 1.
JP12836783A 1983-07-13 1983-07-13 Diffusing method of impurity Pending JPS6020510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12836783A JPS6020510A (en) 1983-07-13 1983-07-13 Diffusing method of impurity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12836783A JPS6020510A (en) 1983-07-13 1983-07-13 Diffusing method of impurity

Publications (1)

Publication Number Publication Date
JPS6020510A true JPS6020510A (en) 1985-02-01

Family

ID=14983067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12836783A Pending JPS6020510A (en) 1983-07-13 1983-07-13 Diffusing method of impurity

Country Status (1)

Country Link
JP (1) JPS6020510A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293927A (en) * 1985-10-08 1987-04-30 バリアン・アソシエイツ・インコ−ポレイテツド Doping of semiconductor wafer by quick heat treatment of solid flat diffusion source
US5223452A (en) * 1989-12-21 1993-06-29 Knepprath Vernon E Method and apparatus for doping silicon spheres
JP2003031515A (en) * 2001-07-12 2003-01-31 Hitachi Kokusai Electric Inc Substrate processing apparatus and method of manufacturing semiconductor device
JP2003529221A (en) * 2000-03-29 2003-09-30 テクネグラス,インコーポレイテッド Method of doping silicon with phosphorus and growing oxides on silicon in the presence of vapor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910665A (en) * 1972-03-31 1974-01-30
JPS5064186A (en) * 1973-10-12 1975-05-31
JPS511066A (en) * 1974-06-21 1976-01-07 Hitachi Ltd Handotaiueehano kakusanhoho

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910665A (en) * 1972-03-31 1974-01-30
JPS5064186A (en) * 1973-10-12 1975-05-31
JPS511066A (en) * 1974-06-21 1976-01-07 Hitachi Ltd Handotaiueehano kakusanhoho

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293927A (en) * 1985-10-08 1987-04-30 バリアン・アソシエイツ・インコ−ポレイテツド Doping of semiconductor wafer by quick heat treatment of solid flat diffusion source
US5223452A (en) * 1989-12-21 1993-06-29 Knepprath Vernon E Method and apparatus for doping silicon spheres
JP2003529221A (en) * 2000-03-29 2003-09-30 テクネグラス,インコーポレイテッド Method of doping silicon with phosphorus and growing oxides on silicon in the presence of vapor
JP2003031515A (en) * 2001-07-12 2003-01-31 Hitachi Kokusai Electric Inc Substrate processing apparatus and method of manufacturing semiconductor device
JP4509433B2 (en) * 2001-07-12 2010-07-21 株式会社日立国際電気 Substrate processing apparatus and semiconductor device manufacturing method

Similar Documents

Publication Publication Date Title
TW200411717A (en) Method and apparatus for supporting semiconductor wafers
JPS5588323A (en) Manufacture of semiconductor device
JPS6020510A (en) Diffusing method of impurity
US4016006A (en) Method of heat treatment of wafers
JPH11121311A (en) Silicon carbide material, its manufacture and silicon carbide wafer
JPH0727870B2 (en) Low pressure vapor deposition method
JPH01117319A (en) Manufacture of semiconductor device
JPH1050613A (en) Epitaxial growth device
JPH05190468A (en) Low-pressure cvd apparatus
JPS63110632A (en) Diffusion of impurity
JP2511845B2 (en) Processing equipment for vapor phase growth
JP2013229517A (en) Horizontal type diffusion furnace, and dopant diffusion method for semiconductor substrate
JPS587817A (en) Vapor growth method for semiconductor
JPH08139035A (en) Cvd method and equipment
JPS5974621A (en) Impurity diffusion and jig therefor
JPH01223726A (en) Lamp annealing device
JPS598351Y2 (en) Semiconductor wafer processing jig
JPS60140814A (en) Production equipment for semiconductor
JPH07161640A (en) Temperature control of heat-treating furnace
JPS6092611A (en) Diffusing method of impurity of semiconductor element
JPS6236086A (en) Manufacture of silicon carbide product
JPH04152517A (en) Manufacture of semiconductor element
JPH0325922A (en) Production device for semiconductor
JPS58155721A (en) Method of diffusing impurity into semiconductor
JPH0493026A (en) Apparatus for forming insulating film