JPS63223108A - Production of metallic grain - Google Patents

Production of metallic grain

Info

Publication number
JPS63223108A
JPS63223108A JP5420387A JP5420387A JPS63223108A JP S63223108 A JPS63223108 A JP S63223108A JP 5420387 A JP5420387 A JP 5420387A JP 5420387 A JP5420387 A JP 5420387A JP S63223108 A JPS63223108 A JP S63223108A
Authority
JP
Japan
Prior art keywords
molten metal
nozzle
molten
metal
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5420387A
Other languages
Japanese (ja)
Other versions
JPH0776362B2 (en
Inventor
Akira Katai
片井 彰
Kazumasa Ikeda
池田 一征
Masakatsu Abe
阿部 政克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP62054203A priority Critical patent/JPH0776362B2/en
Publication of JPS63223108A publication Critical patent/JPS63223108A/en
Publication of JPH0776362B2 publication Critical patent/JPH0776362B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To stably produce metallic grains having a uniform grain size and shape by adjusting the dropping speed of a molten metal at the time of dropping the molten metal into a cooling water tank and producing the metallic grains. CONSTITUTION:The molten metal 12 such as molten Zn is put into a vessel 10 having a penetrated hole 10a in the central part and is dropped from plural nozzles 13 provided in the bottom part into the lower cooling water tank 11 where the molten metal is quickly cooled to form the spherical metal; thereafter, the metal is recovered from a recovering port 23 provided in the bottom by a bucket elevator 24. A burner 25 is disposed on the penetrated hole 10a of the vessel 10 and the temp. of the molten Zn 12 is adjusted by heating the vessel 10. The exhaust gas thereof is supplied to the circumference of the nozzles 13 to shut off the molten Zn flowing down from the nozzles 13 from the air and to prevent the oxidation thereof. The cooling water is supplied from a bottom inlet 22. The cooling water heated up to a high temp. flows out of an overflow trough 21 while always the specified level is maintained. The down flow rate of the molten Zn is adjusted according to the temp. of said water by adjusting the apertures of the nozzles 13. The Zn grains having the uniform grain size and shape are thus produced.

Description

【発明の詳細な説明】 [技術分野] 本発明は、溶湯を水中に滴下して金属粒を製造する際に
溶湯の高さや温度に応じて滴下速度を調整し粒径や形状
の一定な金属粒を製造する方法に関する。
Detailed Description of the Invention [Technical Field] The present invention is a method of producing metal particles with a constant particle size and shape by adjusting the dropping speed according to the height and temperature of the molten metal when producing metal particles by dropping molten metal into water. The present invention relates to a method for producing grains.

[従来技術と問題点] 従来、金属粒を製造する一般的な方法として、機械的粉
砕法、液体噴霧法1滴下法、気化凝縮法、転造法、電解
法などが夫々目的に応じて利用されている。上記方法の
中で、滴下法は金属の溶湯を容器の小孔(ノズル)から
水中に滴下させて粒状化する方法であり、操作としては
極めて簡単であるが、生成粒子は溶湯温度、溶湯から水
面までの落下距離、ノズル孔径、水温などにより微妙な
影響を受け、所望の粒径や形状の金属粒を得るには見掛
は程容易ではない。
[Prior art and problems] Conventionally, as general methods for manufacturing metal particles, mechanical crushing, liquid spraying, one drop method, vaporization condensation method, rolling method, electrolytic method, etc. have been used depending on the purpose. has been done. Among the above methods, the dripping method is a method in which molten metal is dropped into water from a small hole (nozzle) in a container and granulated.It is extremely simple to operate, but the generated particles vary depending on the temperature of the molten metal. It is not as easy as it seems to obtain metal particles with the desired particle size and shape, as they are subtly affected by the falling distance to the water surface, nozzle hole diameter, water temperature, etc.

このような事情から従来、上記条件の設定に関して種々
検討されており、例えば、冷却水の温度を上下二層に区
分し、上層の温度を60℃以上、下の水中での衝突によ
る凝集を防止する方法(特開昭52−88254) 、
或は、セラミックス製ノズルを用い、特定の湯温、深さ
、ノズル径、水温において滴下する方法(特公昭6O−
14052)等が知られている。
For this reason, various studies have been conducted regarding the setting of the above conditions.For example, the temperature of the cooling water is divided into two layers, upper and lower, and the temperature of the upper layer is set at 60℃ or higher to prevent agglomeration due to collision in the water below. method (Japanese Patent Application Laid-Open No. 52-88254),
Alternatively, a method of dripping at a specific water temperature, depth, nozzle diameter, and water temperature using a ceramic nozzle (Japanese Patent Publication No. 6 O-
14052) etc. are known.

然しながら従来の方法や装置では滴下速度を調整するこ
とができない、この為、溶湯の滴下を継続する間に湯温
、湯の深さ等示変化して生成される金属粒の形状や粒径
が不均一になる問題を有している。更に滴下粒が水面に
達する間に表面が酸化し、金属光沢を失う問題がある。
However, with conventional methods and equipment, it is not possible to adjust the dropping speed. Therefore, while the molten metal continues to be dripped, the temperature and depth of the molten metal change, causing the shape and size of the metal particles to change. This has the problem of non-uniformity. Furthermore, while the dropped particles reach the water surface, the surface is oxidized and loses its metallic luster.

[問題解決に係る知見] 本発明者等は、溶湯を滴下するノズルに滴下速度を調整
する機構を設けることにより粒径、形状の均一な金属粒
を製造できることを見出した。
[Findings Related to Problem Solving] The present inventors have discovered that metal particles with uniform particle size and shape can be produced by providing a mechanism for adjusting the dropping speed in a nozzle that drops molten metal.

また貯留槽の溶湯をガスバーナーにより加熱し同時に排
ガスを滴下ノズル周辺に導いてガスシールドすれば湯温
の保持と溶湯滴下時の酸化防止が同時に果たされ、良質
な金属粒を製造できる知見を得た。
In addition, by heating the molten metal in the storage tank with a gas burner and at the same time guiding the exhaust gas around the dripping nozzle to provide a gas shield, the temperature of the molten metal can be maintained and oxidation prevented when the molten metal is dripped at the same time, making it possible to produce high-quality metal particles. Obtained.

[発明の構成] 本発明によれば、金属の溶湯をノズルを通じて水中に滴
下して金属粒を製造する方法において、溶湯溜め容器と
;該容器の下方に配設された冷却水槽と;上記容器の底
部に設けられた溶湯滴下用ノズルと;該ノズルの溶湯側
流入口に向ってその突出長さがmftf自在であり、こ
れにより溶湯の滴下速度を調節する調節手段と;溶湯を
加熱しかつその排ガスがノズル滴下口周辺に導かれる加
熱バーナーとを具えた製造装置を用いて金属粒を製造す
る方法が提供される。
[Structure of the Invention] According to the present invention, in a method for manufacturing metal particles by dropping a molten metal into water through a nozzle, a molten metal reservoir; a cooling water tank disposed below the container; and the container a nozzle for dripping molten metal provided at the bottom of the nozzle; a length of protrusion of the nozzle toward the inlet on the molten metal side is freely mftf, and adjusting means for adjusting the dripping speed of the molten metal; a means for heating the molten metal and A method is provided for manufacturing metal grains using a manufacturing apparatus equipped with a heating burner whose exhaust gas is guided around a nozzle drip opening.

またその好適な実施態様として、上記容器の中央に貫通
孔が形成され、鎖孔に上記バーナーが、その噴出口を容
器底部に向けて設けられており。
In a preferred embodiment, a through hole is formed in the center of the container, and the burner is provided in the chain hole with its spout facing toward the bottom of the container.

かつ該貫通孔の周囲に複数のノズルが配設されている装
置を用いる方法が提供される。
Also provided is a method using an apparatus in which a plurality of nozzles are arranged around the through hole.

本発明を実施する実施装置の一例を図に示す。An example of an implementation device for implementing the present invention is shown in the figure.

本装置は溶湯溜め容器10と冷却水槽11とを具える。The apparatus includes a molten metal reservoir 10 and a cooling water tank 11.

該容器10は金属の溶湯12を貯留するため耐火製の材
料から造られており、その底部中央に溶湯12を滴下す
るためのノズル13が設けられている。
The container 10 is made of a fireproof material to store a molten metal 12, and a nozzle 13 for dropping the molten metal 12 is provided at the center of its bottom.

該容器10およびノズル13の具体的な材質としては溶
湯10の付着やノズル13の目詰まりを生じないように
溶湯10との濡れ性の悪い材質が好ましく、例えばセラ
ミックや加工性の良いカーボンが用いられる。容器lO
は、図示するように筒状とし、その中央にノズル13を
設ける構造でもよく、また容器中央に筒状の内51jl
Oaを設け゛て貫通孔を形成し。
The specific material of the container 10 and the nozzle 13 is preferably a material that has poor wettability with the molten metal 10 so as to prevent the molten metal 10 from adhering to the nozzle 13 and clogging the nozzle 13. For example, ceramic or carbon with good workability is used. It will be done. container lO
The container may have a cylindrical shape as shown in the figure, and a nozzle 13 may be provided in the center of the container.
A through hole is formed by providing Oa.

その周囲に複数個のノズル13を配設した構造でも良い
A structure in which a plurality of nozzles 13 are arranged around it may also be used.

/グル13の上方には調節棒14が配設されており、該
調節棒14の下端1噂aがノズル13の溶湯側流入口1
3aに面している。調節棒!4はノズル13に向って往
復動するようにバネ15によってフレーム16に弾発支
持されている。該調節棒!4の上方には該調節棒14の
突出長さを調節するための調節ネジ17が設けられてお
り、該11mネジ17はフレームIBに螺合され、その
下端17aが上記調節棒14の上端14bに圧接してい
る。該調節ネジ17を下方に突出して押下げられ、調節
棒下端14aとノズル流入口13aとの間隙を狭め流量
を減少させる。一方、調節ネジ17を緩めることにより
バネ15の弾発力により調節棒14が上方に押戻されて
上記間隙が広げられ、流量が増加する。
An adjustment rod 14 is disposed above the glue 13, and the lower end 1a of the adjustment rod 14 is connected to the molten metal side inlet 1 of the nozzle 13.
Facing 3a. Adjustment rod! 4 is resiliently supported by a frame 16 by a spring 15 so as to reciprocate toward the nozzle 13. The adjustment rod! An adjustment screw 17 for adjusting the protruding length of the adjustment rod 14 is provided above the adjustment rod 14. The 11m screw 17 is screwed into the frame IB, and its lower end 17a is connected to the upper end 14b of the adjustment rod 14. It is in pressure contact with the The adjustment screw 17 is projected downward and pushed down to narrow the gap between the lower end 14a of the adjustment rod and the nozzle inlet 13a, thereby reducing the flow rate. On the other hand, by loosening the adjustment screw 17, the adjustment rod 14 is pushed back upward by the elastic force of the spring 15, thereby widening the gap and increasing the flow rate.

ノズル13の流入口13aと1lilf棒下端14aと
に相対抗するテーパーを設けるのが好ましい0図示され
る例では調節棒下端14aが先細りに形成され、これに
対応してノズル流入口13aが漏斗状に形成されている
。ノズル内側の流路形状については、図示するように内
側に段差を設け、内径又、m、nを次第に小さく(Jl
>m>n)形成すると良い、最終的なノズル径nは滴下
口13bの部分の流路長さαよりも小さい方が好ましい
、ノズル掻立、m、nが同一であると溶湯がノズル13
に流入し難く、ノズル内径を段階的に縮小することによ
り溶湯の流入が円滑になる0段差の数や肉厚は適宜定め
ることができる。
It is preferable that the inlet 13a of the nozzle 13 and the lower end 14a of the 1lilf rod be provided with opposing tapers. In the illustrated example, the lower end 14a of the adjustment rod is tapered, and correspondingly the nozzle inlet 13a is funnel-shaped. is formed. Regarding the shape of the flow path inside the nozzle, as shown in the figure, a step is provided on the inside, and the inner diameter, m, and n are gradually decreased (Jl
>m>n) The final nozzle diameter n is preferably smaller than the flow path length α of the dripping port 13b.If the nozzle agitation, m, and n are the same, the molten metal will flow through the nozzle 13.
The number and wall thickness of zero steps can be determined as appropriate so that the molten metal does not easily flow into the nozzle and the molten metal flows smoothly by gradually reducing the inner diameter of the nozzle.

該ノズル径nが小さい場合、例えば3■禦以下のし 都
te +↓ik 78−に′nI Q k M Z t
l tw口IMt 4+ rrs −−,61すCを設
けると良い、該テーバを形成することにより滴下口13
bからの溶湯の切れが良くなる。
If the nozzle diameter n is small, for example, if the nozzle diameter is less than 3.
l tw port IMt 4+ rrs --,61 C is preferably provided, and by forming the taper, the drip port 13
The molten metal from b will cut better.

最終的なノズル径nの大きさに対応して次の粒径rの金
属粒が形成される。    (単位l1)ノズル滴下口
13bから冷却水面までの距離りは目標とする金属粒の
粒径rの1.5〜2.5倍程度が好ましい0例えば、n
=2、r=4〜6のとき、h=8〜15  膳厘とする
のが良い、h≧15では金属粒が偏平になり、h≦8で
は溶湯の冷却によりノズル滴下口が目詰まりを生じる。
Metal grains having the next grain size r are formed corresponding to the final nozzle diameter n. (Unit l1) The distance from the nozzle dripping port 13b to the cooling water surface is preferably about 1.5 to 2.5 times the particle size r of the target metal particles. For example, n
= 2, when r = 4 to 6, it is better to set h = 8 to 15. If h≧15, the metal particles will become flat, and if h≦8, the nozzle dripping port will become clogged due to cooling of the molten metal. arise.

ノズル13の溶湯溜り容器内部への突出長さaと該容器
外部への突出長さbは夫々適宜定められる。尚、ノズル
13の容器底部への取付は手段は格別制限されないが溶
湯に対して濡れ性の悪い材質のものを用いれば、ネジ止
めにより固定しても螺合部分に溶湯が浸透せず漏れを生
じない、従ってノズルの交換が容易になる利点がある。
The protrusion length a of the nozzle 13 into the interior of the molten metal reservoir container and the protrusion length b of the nozzle to the outside of the container are determined as appropriate. The means for attaching the nozzle 13 to the bottom of the container is not particularly limited, but if a material with poor wettability to molten metal is used, the molten metal will not penetrate into the threaded part even if it is fixed with screws, preventing leakage. This has the advantage that nozzle replacement is easy.

冷却水槽11には冷却水20が貯留され、該冷却水20
の水面を一定の高さに保持するため、該水槽11の上端
外周には溢流樋21が設けられている。他方水槽20の
下部には冷却水供給口22および金属粒の回収口23が
設けられている0滴下される金属粒を容易に回収するた
め該水槽2Gの底部を回収口23に向って傾斜されてい
る0回収口23には金属粒を引上げるパケット24を付
設すると良い、勿論、上記パケット以外に他の適当な手
段を用いることができる。
Cooling water 20 is stored in the cooling water tank 11, and the cooling water 20
In order to maintain the water surface at a constant height, an overflow gutter 21 is provided on the outer periphery of the upper end of the water tank 11. On the other hand, the lower part of the water tank 20 is provided with a cooling water supply port 22 and a collection port 23 for metal particles.The bottom of the water tank 2G is inclined toward the collection port 23 in order to easily collect the dropped metal particles. It is preferable to attach a packet 24 for pulling up the metal particles to the 0 collection port 23.Of course, other suitable means can be used in addition to the above-mentioned packet.

更に、溶湯温度を保持するために上記容器10に加熱手
段を配設するのが好ましい0図示する実施例では該容器
10の中央に貫通孔を形成し、この部分に該加熱手段と
してバーナー25を設けている。この場合、バーナー2
5により溶湯12を加熱すると同時に排ガスをノズル周
辺に導き、ノズル滴下口を保温し、かつ該滴下口から冷
却水面までの間を非酸化性雰囲気に保持する。尚、冷却
Bitの上端11aを容器10の底部付近まで突出させ
て排ガスが冷却水面上に滞留し易いようにし、かつ所定
位nに冷却水の溢流用スリ・ット26を形成して冷却水
面を所定の高さに保持させるようにすると良い。
Further, in order to maintain the temperature of the molten metal, it is preferable to provide heating means in the container 10. In the illustrated embodiment, a through hole is formed in the center of the container 10, and a burner 25 is installed in this portion as the heating means. It is set up. In this case, burner 2
5 to heat the molten metal 12 and at the same time guide the exhaust gas around the nozzle to keep the nozzle dripping port warm and maintain a non-oxidizing atmosphere between the dripping port and the cooling water surface. The upper end 11a of the cooling bit is made to protrude to the vicinity of the bottom of the container 10 so that the exhaust gas can easily stay on the cooling water surface, and a slit 26 for overflowing the cooling water is formed at a predetermined position n to prevent the cooling water from rising. It is preferable to keep it at a predetermined height.

金属粒の製造時において、上記容器10に亜鉛等の所定
の金属湯12が貯留され、ノズル13を通じて溶湯12
が冷却水槽11の水中に滴下される。該滴下時に調節棒
14により溶湯の滴下速度が制御される8例えば、溶湯
の湯温が高く、かつ湯面も高いときには溶湯の粘性が低
く、ノズル13への流入圧も大きいので、調節ネジ17
によりTA節線棒14下方に僅かに突出させて調節棒下
端14aとノズル流入口13aとの間隙を狭め、溶湯の
滴下速度を遅くする。他方、湯面および湯温が低い場合
には溶湯のノズル口13への流入を容易にするため、I
1m棒14を僅かに引上げて上記間隙を広くする。
When manufacturing metal grains, a predetermined metal hot water 12 such as zinc is stored in the container 10, and the molten metal 12 is poured through the nozzle 13.
is dropped into the water in the cooling water tank 11. During the dripping, the dropping speed of the molten metal is controlled by the adjusting rod 14 8 For example, when the temperature of the molten metal is high and the level of the molten metal is high, the viscosity of the molten metal is low and the pressure flowing into the nozzle 13 is also high, so the adjusting screw 17
The TA node wire rod 14 is slightly protruded downward to narrow the gap between the lower end 14a of the adjustment rod and the nozzle inlet 13a, thereby slowing down the dripping speed of the molten metal. On the other hand, when the molten metal surface and temperature are low, I
The 1 m rod 14 is slightly pulled up to widen the gap.

尚、滴下速度を遅くすると金属粒の径が大きくなり、滴
下速度を速くすると金属粒の径は小さくなる。
Note that when the dropping speed is slowed, the diameter of the metal particles increases, and when the dropping speed is increased, the diameter of the metal particles becomes small.

溶湯の滴下速度は該湯温により影響されるのでバーナー
25により容器10を加熱し、湯温を一定に保持する。
Since the dropping speed of the molten metal is affected by the temperature of the molten metal, the burner 25 heats the container 10 to keep the temperature constant.

同時にバーナー25の排ガスをノズル13の周辺に導き
、ノズル口13bから冷却水面までの間を非酸化性雰囲
気に保ち、滴下する金属粒の表面酸化を防止する。これ
によりノズル滴下口に酸化物が付着するのを防止するこ
とができる。尚、加熱手段としてバーナーに代えて電気
的手段を用い、ノズル周辺を不活性ガスでシールしても
よい。
At the same time, exhaust gas from the burner 25 is guided around the nozzle 13 to maintain a non-oxidizing atmosphere between the nozzle port 13b and the cooling water surface, thereby preventing surface oxidation of the metal particles dropping. This can prevent oxides from adhering to the nozzle drip opening. Note that an electric means may be used instead of a burner as the heating means, and the periphery of the nozzle may be sealed with an inert gas.

具体的な例として亜鉛の粒を製造する場合には、亜鉛の
湯温を430〜600℃に保持し、冷却水温を0〜80
℃、ノズル最終径nを0.3〜4IIImとし、調節棒
により滴下速度を調整して、滴下量をノズル1本当り、
5〜15Kg/時間、好ましくは13Kg/時間に調整
し、粒径3.00〜6.00mmの亜鉛粒を製造するこ
とができる。
As a specific example, when manufacturing zinc grains, the zinc water temperature is maintained at 430 to 600°C, and the cooling water temperature is maintained at 0 to 80°C.
℃, the nozzle final diameter n is 0.3 to 4IIIm, and the dripping speed is adjusted with the adjustment rod to adjust the dripping amount per nozzle.
Zinc particles having a particle size of 3.00 to 6.00 mm can be produced by adjusting the rate to 5 to 15 kg/hour, preferably 13 kg/hour.

[実施例] カーボン製容器の底面に孔径2■φ(最終ノズル径)の
ノズル10本が該底面から下方に5■突出されており、
更に該ノズル上方にカーボン製調節棒を有し、容器中央
の貫通孔にバーナーを具えた容器を用い、該容器に予め
ルツボで溶融した亜鉛純度9f3.99%以上の最純亜
鉛を貯留し、湯の深さを10〜150■に保ち、バーナ
ーの加熱により湯温を435〜480℃に保持し、上記
ノズルを通じて亜鉛溶湯な水中に滴下した。ノズル下端
と冷却水面間の距離は8層重である。同時にバーナーの
熱によりノズル先端を保温し、かつ上記間隙にバーナー
の排気を導き、該間隙を非酸化性雰囲気に保った。溶湯
の滴下速度を遅くすると粒径の大きなものの粒度分布が
増加するので、所望の粒度分布となるようにWf!g棒
で滴下速度を調節した。
[Example] Ten nozzles with a hole diameter of 2 mm (final nozzle diameter) were protruded 5 mm downward from the bottom of a carbon container,
Further, using a container having a carbon adjustment rod above the nozzle and a burner in the through hole in the center of the container, storing the purest zinc with a zinc purity of 9f3.99% or more that has been previously melted in a crucible in the container, The depth of the hot water was maintained at 10 to 150 cm, the temperature of the hot water was maintained at 435 to 480°C by heating with a burner, and the water was dropped into the molten zinc water through the nozzle. The distance between the lower end of the nozzle and the cooling water surface is 8 layers. At the same time, the nozzle tip was kept warm by the heat of the burner, and exhaust gas from the burner was introduced into the gap to maintain the gap in a non-oxidizing atmosphere. When the dropping speed of the molten metal is slowed down, the particle size distribution of large particles increases, so Wf! The dropping speed was adjusted with a g rod.

上記操作により得た100 Kgの粒状亜鉛の粒度分布
は次の通りであり、4.00〜5.88腸■の粒状亜鉛
を99.5%の収率で得ることができた。
The particle size distribution of 100 kg of granular zinc obtained by the above operation was as follows, and granular zinc of 4.00 to 5.88 kg could be obtained at a yield of 99.5%.

粒径■        分布% 4.00〜4.78      35.24.76〜5
.88      134.35.6El>     
     0・5また得られた亜鉛粒は大部分が球状で
あり、不定形な粒は殆ど見られなかった。
Particle size ■ Distribution % 4.00~4.78 35.24.76~5
.. 88 134.35.6El>
0.5 Most of the obtained zinc grains were spherical, and hardly any irregularly shaped grains were observed.

尚、溶湯の流出時において滴下速度は一定であり、ノズ
ルの閉塞は認められなかった。
Note that the dropping rate was constant when the molten metal flowed out, and no clogging of the nozzle was observed.

[発明の効果] 本発明の方法および装置によれば、調節棒により溶湯の
滴下速度が一定に保持されるので粒径、形状の均一な金
属粒が得られる。
[Effects of the Invention] According to the method and apparatus of the present invention, since the dropping rate of the molten metal is kept constant by the adjusting rod, metal particles having a uniform particle size and shape can be obtained.

溶湯を加熱すると同時にノズル口から水面までの間が非
酸化性雰囲気に保たれるので金属粒の表面酸化が防止さ
れ光沢のある金属粒が得られる。
At the same time as the molten metal is heated, a non-oxidizing atmosphere is maintained between the nozzle opening and the water surface, thereby preventing surface oxidation of the metal grains and producing shiny metal grains.

ノズルの材質にカーボンを用いることにより加工性の良
いノズルが得られ、任意の孔径のノズルを用いることが
できるので従来より細粒の金属粒を製造することができ
る。尚、カーボン性ノズルをSiC化すれば、強度が大
きく長期間の使用に適す−る。
By using carbon as the nozzle material, a nozzle with good workability can be obtained, and since a nozzle with an arbitrary hole diameter can be used, it is possible to produce metal particles that are finer than before. Incidentally, if the carbon nozzle is made of SiC, the strength will be large and it will be suitable for long-term use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の係る装置の一例を示す概略断面図、第
2図はその容器部分の断面図、第3図は容器部分の他の
例を示す部分−面図、第4図はノズル部分の断面図であ
る。 図面中、1〇−容器、  11−水槽、12−溶湯、1
3−ノズル  14−調節棒、15−バネ    18
−フレーム 17−調節ネジ、25−バーナー。
Fig. 1 is a schematic sectional view showing an example of the device according to the present invention, Fig. 2 is a sectional view of the container portion thereof, Fig. 3 is a partial cross-sectional view showing another example of the container portion, and Fig. 4 is a nozzle. FIG. In the drawings, 10-container, 11-water tank, 12-molten metal, 1
3-Nozzle 14-Adjustment rod, 15-Spring 18
- Frame 17-Adjustment screw, 25-Burner.

Claims (2)

【特許請求の範囲】[Claims] (1)金属の溶湯をノズルを通じて水中に滴下して金属
粒を製造する方法において、溶湯溜め容器と;該容器の
下方に配設された冷却水槽と;上記容器の底部に設けら
れた溶湯滴下用ノズルと;該ノズルの溶湯側流入口に向
ってその突出長さが調節自在であり、これにより溶湯の
滴下速度を調節する調節手段と;溶湯を加熱しかつその
排ガスがノズル滴下口周辺に導かれる加熱バーナーとを
具えた製造装置を用いて金属粒を製造する方法。
(1) In a method of manufacturing metal particles by dropping molten metal into water through a nozzle, a molten metal storage container; a cooling water tank provided below the container; and a molten metal dripping container provided at the bottom of the container. a nozzle for heating the molten metal and an adjusting means for controlling the dripping speed of the molten metal by adjusting its protruding length toward the inlet on the molten metal side of the nozzle; A method of manufacturing metal grains using a manufacturing device comprising a guided heating burner.
(2)上記容器の中央に貫通孔が形成され、該孔に上記
バーナーが、その噴出口を容器底部に向けて設けられて
おり、かつ該貫通孔の周囲に複数のノズルが配設されて
いる装置を用いる特許請求の範囲第1項の方法。
(2) A through hole is formed in the center of the container, the burner is provided in the hole with its spout facing toward the bottom of the container, and a plurality of nozzles are arranged around the through hole. 2. A method according to claim 1, using an apparatus comprising:
JP62054203A 1987-03-11 1987-03-11 Metal grain manufacturing equipment Expired - Lifetime JPH0776362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62054203A JPH0776362B2 (en) 1987-03-11 1987-03-11 Metal grain manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62054203A JPH0776362B2 (en) 1987-03-11 1987-03-11 Metal grain manufacturing equipment

Publications (2)

Publication Number Publication Date
JPS63223108A true JPS63223108A (en) 1988-09-16
JPH0776362B2 JPH0776362B2 (en) 1995-08-16

Family

ID=12963991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62054203A Expired - Lifetime JPH0776362B2 (en) 1987-03-11 1987-03-11 Metal grain manufacturing equipment

Country Status (1)

Country Link
JP (1) JPH0776362B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024042824A1 (en) * 2022-08-23 2024-02-29 Jfeスチール株式会社 Granular metal production device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS539232A (en) * 1976-07-15 1978-01-27 Nippon Steel Corp Distributing method of melter promoting antiislug reaction
JPS56142805A (en) * 1980-04-04 1981-11-07 Kobe Steel Ltd Preparation of metallic powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS539232A (en) * 1976-07-15 1978-01-27 Nippon Steel Corp Distributing method of melter promoting antiislug reaction
JPS56142805A (en) * 1980-04-04 1981-11-07 Kobe Steel Ltd Preparation of metallic powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024042824A1 (en) * 2022-08-23 2024-02-29 Jfeスチール株式会社 Granular metal production device

Also Published As

Publication number Publication date
JPH0776362B2 (en) 1995-08-16

Similar Documents

Publication Publication Date Title
KR102535908B1 (en) Apparatus and method for vacuum deposition
KR102074861B1 (en) Apparatus and Method for Manufacturing Minute Powder
GB2155048A (en) Apparatus and method for atomization of unstable melt streams
EP0451552A1 (en) Process and apparatus for producing a liquid metal jet
JPH09142988A (en) Method and apparatus for forming silicon single crystal
CN105057688A (en) Method for producing superfine lead-free solder powder
JPH0639632B2 (en) Method and apparatus for melting rod-shaped material by induction coil
JPS63223108A (en) Production of metallic grain
US5992503A (en) Systems and methods for maintaining effective insulation between copper segments during electroslag refining process
JP3281019B2 (en) Method and apparatus for producing zinc particles
US3960200A (en) Apparatus for liquid quenching of free jet spun metal
CN217617738U (en) Granulating device
JPS58177403A (en) Method and device for manufacturing ceramic-free high purity metal powder
EA022298B1 (en) Device and method for cooling melt fragments
JPS60255906A (en) Method and equipment for manufacturing active metallic powder
JP4800095B2 (en) Granular silicon manufacturing method and manufacturing apparatus
EP0543017B1 (en) Method and device for making metallic powder
JPS59169654A (en) Method for adjusting chemical component of molten metal
US4060430A (en) Production of filaments of hexagonal close-packed metals and alloys thereof
JP4817329B2 (en) Method and apparatus for producing spherical crystals
JP4000389B2 (en) Metal grain manufacturing method and manufacturing apparatus
RU2123909C1 (en) Method of producing castings with oriented crystallization and device for its embodiment
JPS5914082B2 (en) Zinc shot ball manufacturing equipment
RU2141392C1 (en) Method for making metallic powder and apparatus for performing the same
JPS633706B2 (en)