JPS63219715A - Multi-stage type fender - Google Patents

Multi-stage type fender

Info

Publication number
JPS63219715A
JPS63219715A JP62050387A JP5038787A JPS63219715A JP S63219715 A JPS63219715 A JP S63219715A JP 62050387 A JP62050387 A JP 62050387A JP 5038787 A JP5038787 A JP 5038787A JP S63219715 A JPS63219715 A JP S63219715A
Authority
JP
Japan
Prior art keywords
cylindrical
elastic body
deformation
cylindrical elastic
fender
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62050387A
Other languages
Japanese (ja)
Inventor
Haruyoshi Yamase
山瀬 晴義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP62050387A priority Critical patent/JPS63219715A/en
Publication of JPS63219715A publication Critical patent/JPS63219715A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/30Adapting or protecting infrastructure or their operation in transportation, e.g. on roads, waterways or railways

Abstract

PURPOSE:To increase the absorbency of energy against alongside-contact load as well as lessen reaction by providing a guide for deformation of at least one elastic body in a fender consisting of a number of elastic bodies connected in series. CONSTITUTION:A cylindrical bottomed frame 4 having an anti-friction layer 4a made of a metal, a synthetic resin, etc., is fixed to the quaywall and the wall of other alongside-contact facility 3. One cylindrical elastic body 2 is fixed to the inside of the frame 4 and then a cylindrical part 5 having an antifriction layer 5a on its periphery is fixed. The other cylindrical part 1 is then attached to the end of the part 5 in such a way as to form a guide for the proper compressive deformation of the cylindrical elastic part by the inner surface of the frame 4 and the periphery of the cylindrical part 5. The binding and excess deformation in shearing direction of the cylindrical elastic body can thus be prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、エネルギー吸収能力が大きく、しかも、反
力が小さい多段式防舷材の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in a multi-stage fender that has a large energy absorption capacity and a small reaction force.

(従来の技術) 複数個、たとえば2個の同一種類の弾性体を並列に配設
して防舷材とした場合には、船舶の接舷に際し、1個の
弾性体のエネルギー吸収能力の2倍のエネルギー吸収能
力を発揮することができるも、反力もまた2倍になるこ
とから、近年においては、これもたとえば、2個の弾性
体を直列に連結して防舷材を構成することによって、エ
ネルギー吸収能力を、弾性体単体の2倍とする一方、反
力を弾性体単体のそれと同一とすることが提案されてい
る。
(Prior art) When a fender is made by arranging a plurality of elastic bodies, for example two of the same type in parallel, when coming alongside a ship, the energy absorption capacity of one elastic body is reduced by 2. Although it can exhibit twice the energy absorption capacity, the reaction force also doubles, so in recent years, for example, fenders have been constructed by connecting two elastic bodies in series. It has been proposed to make the energy absorption capacity twice that of the elastic body alone, while making the reaction force the same as that of the elastic body alone.

ところで、複数個の弾性体を、たとえば第7図に示すよ
うに、単に直列連結しただけで岸壁その他の接舷施設に
取り付けた場合には、各弾性体に作用する重力、筒状と
することができる各弾性体の、寸法その他の不均一性な
どに起因して、そこへの接舷荷重の作用に際して、それ
ぞれの弾性体が、たとえば第7図(b)に示すように、
剪断方向へ大きく変形することになるため、それの適正
なる圧縮変形をもたらすことができず、この故に、接舷
エネルギーの有効なる吸収が実質的に不可能であるとい
う問題があった。
By the way, when a plurality of elastic bodies are simply connected in series and attached to a quay or other alongside facilities, as shown in FIG. Due to the size and other non-uniformity of each elastic body, when a side load is applied to it, each elastic body may cause the following, for example, as shown in FIG.
Since it is greatly deformed in the shear direction, it is not possible to bring about proper compressive deformation, and therefore, there is a problem in that it is virtually impossible to effectively absorb the energy coming alongside.

そこで、第8図に示すように、下端部を地中へ埋め込ん
だパイルの上端部に、そのパイルを隔てて2個の弾性体
を直列に固定してなる多段式防舷材が実用化されており
、この防舷材によれば、そこへの接舷荷重の作用に際し
、第8図(b)に示すように、パイルの傾動下で、一方
の弾性体は、そのパイルと舷側との間で、また他方の弾
性体は、パイルと接舷施設との間でそれぞれ圧縮変形さ
れるので、接舷エネルギーの有効なる吸収が行われるこ
とになる。
Therefore, as shown in Figure 8, a multi-stage fender has been put into practical use, consisting of two elastic bodies fixed in series to the upper end of a pile whose lower end is buried underground, with the pile separated. According to this fender material, when the berthing load is applied to it, one of the elastic bodies moves between the pile and the berth under the tilting of the pile, as shown in Figure 8(b). Since the other elastic body is compressively deformed between the pile and the berthing facility, effective absorption of the berthing energy is achieved.

(発明が解決しようとする問題点) ところが、かかる実用技術によれば、パイルの下端部を
地中へ埋め込むことが必須の要件となることから、水底
までの距離(水深)が大きい場合、水底の地質が軟弱で
ある場合などには、パイルの埋め込み、ひいて防舷材の
設置が不可能になるという問題があった。
(Problem to be solved by the invention) However, according to this practical technology, it is essential to bury the lower end of the pile underground, so if the distance to the water bottom (water depth) is large, the bottom end of the pile must be buried underground. In cases where the geology is soft, it becomes impossible to embed piles and install fenders.

この発明は、従来技術のかかる問題点を有利に解決する
ものであり、水深の深浅、水底地質のいかんにかかわり
な(、接舷施設に対して、簡単に横築でき、しかも、大
きなエネルギー吸収能力を有する多段式防舷材を提供す
るものである。
This invention advantageously solves the problems of the prior art, and can easily be built horizontally to the alongside facilities, regardless of the depth of the water or the underwater geology, and can absorb a large amount of energy. The objective is to provide a multi-stage fender with the following capabilities.

(問題点を解決するための手段) この発明は、複数個の、同種もしくは異種の弾性体を直
列に連結してなる多段式防舷材において、少なくとも一
の弾性体の圧縮変形を案内するガイド手段を設けてなる
(Means for Solving the Problems) The present invention provides a guide for guiding compressive deformation of at least one elastic body in a multi-stage fender formed by connecting a plurality of elastic bodies of the same type or different types in series. We will provide means.

(作 用) この防舷材では、そこへの接舷荷重の作用に際し、少な
くとも一の弾性体が、ガイド手段によって十分適正に圧
縮変形されることから、接舷エネルギーの有効なる吸収
が実現されることになる。
(Function) In this fender, at least one of the elastic bodies is compressed and deformed appropriately by the guide means when the arming load is applied to it, so effective absorption of arming energy is realized. That will happen.

また、ここにおけるガイド手段は、たとえば、弾性体に
取り付けたインナ一部材と、岸壁その他の接舷施設に取
り付けたアウタ一部材とで構成することができるので、
水深の深浅、水底地質のいかんにかかわりなく、防舷材
を、接舷施設に対して常に確実に、かつ簡単に構築する
ことができる。
Further, the guide means here can be composed of, for example, an inner member attached to an elastic body and an outer member attached to a quay or other alongside facilities.
To be able to always reliably and easily construct a fender for a alongside facility regardless of the depth of the water or the geology of the seabed.

(実施例) 以下にこの本発明の実施例を図面基づいてに説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

図中1.2はそれぞれ、弾性体の一例としての筒状弾性
体を示し、ここでは同一寸法を有するこれらの筒状弾性
体1.2はいずれも、それらの両端部にフランジla、
 2aをそれぞれ有し、また、それらの各フランジla
、 2a内に埋設した剛性リングlb、 2bをそれぞ
れ有する。
1.2 in the figure each shows a cylindrical elastic body as an example of an elastic body, and here, these cylindrical elastic bodies 1.2 having the same dimensions each have flanges la,
2a, and their respective flanges la
, 2a respectively have rigid rings lb, 2b embedded within them.

ここでは、岸壁その他の接舷施設3の壁面に、有底円筒
状をなす枠体4を固定するとともに、この枠体4内の中
央部に、一方の筒状弾性体2を、そこへの剛性リング2
bの埋設位置で、その軸線を枠体底壁と直交する方向へ
向けて固定し、そしてこの筒状弾性体2の他端面に、枠
体4内へ嵌まり込む内筒部材5を固定する。
Here, a frame body 4 having a cylindrical shape with a bottom is fixed to the wall surface of a quay or other berth facility 3, and one cylindrical elastic body 2 is placed in the center of this frame body 4. Rigid ring 2
At the buried position b, the cylindrical elastic body 2 is fixed with its axis directed in a direction perpendicular to the bottom wall of the frame body, and the inner cylinder member 5 that fits into the frame body 4 is fixed to the other end surface of this cylindrical elastic body 2. .

ここでこの内筒部材5は、そこに設けた端壁部分5aを
筒状弾性体2の端面に取り付けることによって、その筒
状弾性体2および枠体4の両者と同心をなし、その外周
面は、枠体4の内周面から幾分離間する。
Here, by attaching the end wall portion 5a provided thereon to the end face of the cylindrical elastic body 2, the inner cylindrical member 5 is concentric with both the cylindrical elastic body 2 and the frame 4, and its outer peripheral surface is separated from the inner circumferential surface of the frame 4 by some distance.

そしてまたここでは、内筒部材5の端壁部分外表面に、
他方の筒状弾性体1を、前記筒状弾性体2に整列させて
取り付けて、両筒状弾性体1.2の、内筒部材5を介し
た直列連結をもたらす。
And here, on the outer surface of the end wall portion of the inner cylinder member 5,
The other cylindrical elastic body 1 is attached in alignment with said cylindrical elastic body 2, resulting in a series connection of both cylindrical elastic bodies 1.2 via the inner cylindrical member 5.

このように構成してなる多段式防舷材においては、枠体
4の筒状部分内周面と、内筒部材5の筒状部分外周面と
によって、筒状弾性体2の適正なる圧縮変形を案内する
ガイド手段6が構成されることになり、このガイド手段
6にて筒状弾性体2の曲がり、剪断方向への余剰変形な
どが有効に防止されることになる。
In the multi-stage fender configured in this manner, the inner circumferential surface of the cylindrical portion of the frame 4 and the outer circumferential surface of the cylindrical portion of the inner cylindrical member 5 allow appropriate compression deformation of the cylindrical elastic body 2. A guide means 6 is configured to guide the cylindrical elastic body 2, and this guide means 6 effectively prevents bending of the cylindrical elastic body 2 and excessive deformation in the shearing direction.

なお、ここにおいて、内筒部材5の枠体4に対する摺動
抵抗を小さくして、筒状弾性体2の変形を十分円滑なら
しめるためには、枠体4の筒状部分内周面および内筒部
材5の筒状部分外周面の全体にわたって、または第1図
(b)に示すように、周方向へ所定の間隔をおいて、金
属材料、合成樹脂材料などからなる減摩層4a、 5b
をそれぞれ形成することが好ましく、より好ましくは、
MPJ層4a。
Here, in order to reduce the sliding resistance of the inner cylindrical member 5 with respect to the frame 4 and to make the deformation of the cylindrical elastic body 2 sufficiently smooth, it is necessary to Anti-friction layers 4a, 5b made of metal material, synthetic resin material, etc. are applied over the entire outer circumferential surface of the cylindrical portion of the cylindrical member 5, or at predetermined intervals in the circumferential direction as shown in FIG. 1(b).
It is preferable to form respectively, more preferably,
MPJ layer 4a.

5bに、グリースその他の潤滑剤を塗布する。5b, apply grease or other lubricant.

第2図は、以上のように構成してなる多段式防舷材の作
用状態を示す断面図である。
FIG. 2 is a sectional view showing the operating state of the multi-stage fender constructed as described above.

第2図(a)は、船舶の舷側7が、防舷材に、筒状弾性
体1,2のほぼ軸線方向へ向く外力を及ぼす場合を示し
この場合には、筒状弾性体1.2および内筒部材5への
重力の作用に基づき、減摩層4a、 5bがそれらの下
端部分にて相互接触した状態で、両筒状弾性体1,2の
適正なる圧縮変形がもたらされ、なかでも、一方の筒状
弾性体2の変形は、両減摩層4a、 5bの接触下で、
いいかえればガイド手段6の作用により、極めて円滑に
かつ確実に行われることになる。
FIG. 2(a) shows a case in which the ship's side 7 exerts an external force on the fender that is directed approximately in the axial direction of the cylindrical elastic bodies 1, 2. In this case, the cylindrical elastic bodies 1, 2 Based on the action of gravity on the inner cylindrical member 5, appropriate compressive deformation of both cylindrical elastic bodies 1 and 2 is brought about with the anti-friction layers 4a and 5b in mutual contact at their lower end portions, Among these, the deformation of one of the cylindrical elastic bodies 2 occurs under the contact of both anti-friction layers 4a and 5b.
In other words, due to the action of the guide means 6, the operation is carried out extremely smoothly and reliably.

従って、船舶の接舷エネルギーは、それぞれの筒状弾性
体1.2によって十分に吸収されることになる。
Therefore, the ship's coming alongside energy is sufficiently absorbed by each cylindrical elastic body 1.2.

またここでは、筒状弾性体2の過剰なる変形が、ストッ
パーを兼ねる内筒部材5と、枠体底壁との図示のような
当接によって有効に防止されるので、メンテナンスを比
較的行い難いその筒状弾性体2を十分に保護してそれの
耐久性を向上させることができる。
In addition, here, excessive deformation of the cylindrical elastic body 2 is effectively prevented by the contact between the inner cylindrical member 5, which also serves as a stopper, and the bottom wall of the frame as shown in the figure, making maintenance relatively difficult. The cylindrical elastic body 2 can be sufficiently protected and its durability can be improved.

また、第2図(b)は、舷側7が、防舷材に、筒状弾性
体1,2の軸線と交差する方向の外力を及ぼす場合を示
し、この場合には、内筒部材5が、それと枠体4との間
に存在する間隙骨だけ、舷側7の傾斜方向へ図示pよう
に傾動した状態で、主には、先端側の筒状弾性体1が、
舷側7の傾きを吸収し、そして、後端側の筒状弾性体2
が、ガイド手段6による、それの剪断方向および曲げ方
向への変形の拘束下で、適正なる圧縮変形を行う。
Further, FIG. 2(b) shows a case where the side 7 applies an external force to the fender in a direction intersecting the axes of the cylindrical elastic bodies 1 and 2. In this case, the inner cylindrical member 5 , in a state where only the gap bone existing between it and the frame body 4 is tilted in the direction of inclination of the side 7 as shown in the figure p, mainly the cylindrical elastic body 1 on the tip side,
It absorbs the inclination of the gunwale side 7, and the cylindrical elastic body 2 on the rear end side
However, under the restraint of deformation in the shearing direction and the bending direction by the guide means 6, appropriate compressive deformation is performed.

従って、この防舷材は、かかる場合においても、とくに
は筒状弾性体2の圧縮変形に基づき、接舷エネルギーを
有効に吸収することができる。
Therefore, even in such a case, the fender can effectively absorb the energy coming alongside, especially based on the compressive deformation of the cylindrical elastic body 2.

そして、第2図(c)は、舷側7が防舷材に、圧縮方向
および剪断方向の両性力を及ぼす場合を示し、・この場
合には、内筒部材5が、枠体4に対して剪断外力の作用
方向へ偏ってそれら両者の当接をもたらすことにより、
後端側の筒状弾性体2が、剪断変形を有効に阻止される
一方、ガイド手段6の作用によって、十分大きな圧縮変
形をもたらされることになり、これがため、先端側の筒
状弾性体1が、たとえ図示のように剪断変形されたとし
ても、接舷エネルギーの有効なる吸収が担保されること
になる。
FIG. 2(c) shows a case where the side 7 exerts both compressive and shearing forces on the fender. In this case, the inner cylinder member 5 is applied to the frame 4. By bringing the two into contact in the direction of action of the external shearing force,
While the cylindrical elastic body 2 on the rear end side is effectively prevented from shearing deformation, a sufficiently large compressive deformation is brought about by the action of the guide means 6, so that the cylindrical elastic body 1 on the distal end side However, even if it is sheared as shown, effective absorption of the coming alongside energy will be ensured.

第3図はこの発明の他の例を示す図であり、この例は、
一方の筒状弾性体2を、接舷施設3の壁面に直接的に固
定するとともに、他方の筒状弾性体1を、プレート8を
介して前記筒状弾性体2に、直列に連結し、そして、そ
のプレート8に取り付けた、好ましくは複数本のガイド
ロッド9と、接舷施設3に固定されて各ガイドロッド9
と丁度嵌まり合うガイドスリーブ10とによってガイド
手段11を構成することにより、防舷材の構造を簡単な
らしめるとともに、それ全体を軽量かつ小型とし、しか
もガイドロッド9とガイドスリーブ10との間のクリア
ランスを適宜に選択することにて、後端側の筒状弾性体
2の、剪断方向および曲げ方向への変形を、はぼ完全に
除去するものである。
FIG. 3 is a diagram showing another example of the present invention, and this example includes:
One cylindrical elastic body 2 is directly fixed to the wall surface of the alongside facility 3, and the other cylindrical elastic body 1 is connected in series to the cylindrical elastic body 2 via a plate 8, Preferably, a plurality of guide rods 9 are attached to the plate 8, and each guide rod 9 is fixed to the berth facility 3.
By configuring the guide means 11 by the guide sleeve 10 that fits exactly with the guide rod 9, the structure of the fender is simplified, the whole is lightweight and compact, and the distance between the guide rod 9 and the guide sleeve 10 is reduced. By appropriately selecting the clearance, deformation of the cylindrical elastic body 2 on the rear end side in the shearing direction and the bending direction can be almost completely eliminated.

この例によれば、両筒状弾性体1,2の軸線方向へ向く
外力の作用に際し、それらの筒状弾性体1.2は、第3
図(b)に示すように、ともにほぼ均等な圧縮変形のみ
を行って接舷エネルギーを、十分大きなエネルギー吸収
能力の下にて有効に吸収することになる。
According to this example, when an external force is applied to both cylindrical elastic bodies 1.2 in the axial direction, the cylindrical elastic bodies 1.2
As shown in Figure (b), both ships undergo only approximately uniform compressive deformation to effectively absorb the coming alongside energy with a sufficiently large energy absorption capacity.

また、この例の防舷材では、先端側の筒状弾性体1に、
第2図(b) 、 (c)でそれぞれ述^たような傾斜
方向外力および剪断・圧縮外力が作用した場合であって
も、後端側の防舷材2は、ガイド手段11の作用により
、曲げ変形、剪断変形などをほとんどもしくは全く行う
ことなく圧縮変形を行うので、接舷エネルギーの常に確
実なる吸収が行われることになる。
In addition, in the fender of this example, the cylindrical elastic body 1 on the tip side has
Even when the external force in the inclination direction and the external shearing/compression force as described in FIGS. 2(b) and 2(c) are applied, the fender 2 on the rear end side is Since compressive deformation is performed with little or no bending deformation, shearing deformation, etc., the energy coming alongside is always reliably absorbed.

第4図は、直径および長さの相違する筒状弾性体を直列
連結した他の実施例であり、ここでは、大型の筒状弾性
体12を接舷施設3の壁面に直接的に固定するとともに
、この筒状弾性体12の先端に、第1図で述べた枠体4
とほぼ同様の形状を有する外筒部材13を介して、小型
の筒状弾性体14を、それと同心に連結し、さらに、こ
の小型の筒状弾性体14の先端に、これもまた、第1図
で述べた内筒部材5とほぼ同様の形状を有する内筒部材
15を取り付けることにより、外筒部材13の筒状部分
内周面と、内筒部材15の筒状部分外周面とによってガ
イド手段16を構成゛する。
FIG. 4 shows another embodiment in which cylindrical elastic bodies having different diameters and lengths are connected in series. At the same time, the frame 4 described in FIG.
A small cylindrical elastic body 14 is concentrically connected to the outer cylindrical member 13 having a shape substantially similar to that of the first cylindrical elastic body 14. By attaching the inner cylinder member 15 having substantially the same shape as the inner cylinder member 5 described in the figure, the inner cylinder member 13 is guided by the inner peripheral surface of the cylindrical part of the outer cylinder member 13 and the outer peripheral surface of the cylindrical part of the inner cylinder member 15. The means 16 is constituted.

かかる防舷材によれば、と(には、小型の筒状弾性体1
4の圧縮変形が、そこへの外力の作用方向のいかんを問
わず、ガイド手段16によって十分に担保されることに
なるので、これにてもまた、接舷エネルギーの常に有効
なる吸収が行われることになる。
According to such a fender, a small cylindrical elastic body 1
Since the compressive deformation of 4 is sufficiently ensured by the guide means 16 irrespective of the direction in which the external force acts thereon, there is also always an effective absorption of the berthing energy. It turns out.

第5図は、この発明のさらに他の実施例を示す側面図お
よび平面図であり、この例では、接舷施設3の上端から
チェーン17によってベースプレー目8を吊り下げ、こ
のベースプレート18の表裏両面に、U字状の条溝を有
するほぼチャンネル状の弾性体19.20を、それぞれ
のU字状溝がベースプレート18にて閉止される姿勢で
、上下方向へ延在させて取り付けることにより、両弾性
体19.20を、ベースプレート18に対して対称に位
置させ、そしてまた、ベースプレート1日の両側端部か
ら接舷施設側へ突出させた摺動子21と、接舷施設3か
ら突出してそれぞれの摺動子21の外表面に接触し得る
摺動ガイド22とでガイド手段23を構成する。
FIG. 5 is a side view and a plan view showing still another embodiment of the present invention. In this example, a base play eye 8 is suspended from the upper end of the berthing facility 3 by a chain 17, and the front and back sides of the base plate 18 are By attaching substantially channel-shaped elastic bodies 19 and 20 having U-shaped grooves on both sides so as to extend in the vertical direction with each U-shaped groove closed by the base plate 18, Both elastic bodies 19 and 20 are located symmetrically with respect to the base plate 18, and sliders 21 protrude from both ends of the base plate 1 toward the berth facility side, and sliders 21 protrude from the berth facility 3. A guide means 23 is constituted by a sliding guide 22 that can come into contact with the outer surface of each slider 21.

この防舷材によれば、ベースプレート18、ひいては両
弾性体19.20の、下方への移動はチェーン17によ
り、また、側方への移動は、摺動子21と摺動ガイド2
2との当接により、それぞれ確実に防止されるので、そ
こへの外力の作用に際し、弾性体20はベースプレート
18と接舷施設壁面との間で、常に適正なる圧縮変形を
受け、接舷エネルギーを十分を効に吸収することができ
る。なお、外力の作用方向によっては、他方の弾性体1
9もまたエネルギー吸収に十分に寄与し得ることはもち
ろんであり、このことによって、多量のエネルギーが吸
収されることになる。
According to this fender, the base plate 18 and eventually both elastic bodies 19 and 20 are moved downward by the chain 17, and laterally moved by the slider 21 and the sliding guide 2.
2, the elastic body 20 is reliably prevented from coming into contact with the base plate 18, so that when an external force is applied thereto, the elastic body 20 always undergoes appropriate compressive deformation between the base plate 18 and the wall of the berth facility, and the berthing energy is can be absorbed effectively. Note that depending on the direction of the external force, the other elastic body 1
Of course, 9 can also contribute sufficiently to energy absorption, which results in a large amount of energy being absorbed.

第6図は、第3図に示す実施例の変形例を示す断面図で
あり、これは、同一寸法の2本の筒状弾性体1,2を第
3図で述べたと同様に、プレート8を介して直列に連結
し、そして、そのプレート8に、後端側の筒状弾性体2
を貫通して延在するガイドロッド24を設けるとともに
、接舷施設3に、ガイドロッド24の進入を丁度許容す
るスリーブ25を埋め込み固定して、これらのガイドロ
ッド24とスリーブ25とでガイド手段26を構成した
ものであり、この例によってもまた、外力の作用に際し
ては後端側の筒状弾性体2の適正なる圧縮変形、ひいて
はそれによる有効なるエネルギー吸収が実現されること
になる。
FIG. 6 is a sectional view showing a modification of the embodiment shown in FIG. The cylindrical elastic body 2 on the rear end side is connected to the plate 8 in series through the plate 8.
A guide rod 24 extending through the guide rod 24 is provided, and a sleeve 25 that just allows the guide rod 24 to enter is embedded and fixed in the berthing facility 3, and these guide rods 24 and sleeve 25 form the guide means 26. This example also achieves appropriate compressive deformation of the cylindrical elastic body 2 on the rear end side when an external force is applied, and thereby achieves effective energy absorption.

以上この発明を図示例に基づいて説明したが、防舷材の
エネルギー吸収能力、反力などとの関連において、弾性
体の形状を、所要に応じて適宜に変更することができる
他、弾性体の連結数を3個以上の複数個とすることもで
き、さらには、ガイド手段によって、2個以上の弾性体
の変形を案内することも可能である。
Although this invention has been explained above based on the illustrated examples, the shape of the elastic body can be changed as necessary in relation to the energy absorption capacity of the fender, reaction force, etc. The number of connections can be three or more, and furthermore, the deformation of two or more elastic bodies can be guided by the guide means.

(発明の効果) 従って、この発明によれば、そこへの接舷荷重の作用に
際し、複数個の弾性体の圧縮変形によって、小さな反力
の作用下で、大きな接舷エネルギーを十分に吸収し得る
ことはもちろん、ガイド手段の作用に基づき、接舷荷重
の作用方向のいかんを問わず、1個以上の弾性体の圧縮
変形を常に確実ならしめて、接舷エネルギーの有効なる
吸収を実現することができる。
(Effects of the Invention) Therefore, according to the present invention, when a berth load acts on the berth, a large berth energy can be sufficiently absorbed by the compressive deformation of the plurality of elastic bodies under the action of a small reaction force. Of course, based on the action of the guide means, regardless of the direction of action of the berthing load, one or more elastic bodies are constantly ensured to be compressively deformed, thereby achieving effective absorption of the raider energy. Can be done.

しかも、ここにおけるガイド手段は、弾性体相互の関連
下で、または弾性体と接舷施設との関連の下で、構成す
ることができるので、水深の深浅、水底地質のいかんに
係りなく、いかなる接舷施設に対しても簡単かつ容易に
、しかも確実に取り付けることができる。
Moreover, the guide means here can be configured in relation to each other or in relation to the elastic bodies and the berthing facilities, so it can be used regardless of the depth of the water or the geology of the seabed. It can be easily and reliably attached to the berthing facilities.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す図、第2図は第1図
に示す装置の作用状態を示す図、第3〜6図はそれぞれ
この発明の他の実施例を示す図、第7.8図はそれぞれ
従来例を示す図である。 1.2.12.14・・・筒状弾性体 3・・・接舷施
設4・・・枠体       4a、5b・・・減摩層
5.15・・・内筒部材 6、11.16.23.26・・・ガイド手段7・・・
舷側       8・・・プレート9.24・・・ガ
イドロッド  10.25・・・ガイドスリーブ13・
・・外筒部材     17・・・チェーン18・・・
ベースブレー)   19.20・・・弾性体21・・
・摺動子      22・・・摺動ガイド第2図 第3図 第6図 第7図 (a )        (b> ρ 第8図 (a) (b)
1 is a diagram showing one embodiment of the present invention, FIG. 2 is a diagram showing the operating state of the device shown in FIG. 1, and FIGS. 3 to 6 are diagrams showing other embodiments of the invention, respectively. 7.8 each shows a conventional example. 1.2.12.14... Cylindrical elastic body 3... Armpit facility 4... Frame body 4a, 5b... Anti-friction layer 5.15... Inner cylinder member 6, 11.16 .23.26...Guide means 7...
Broad side 8...Plate 9.24...Guide rod 10.25...Guide sleeve 13.
...Outer cylinder member 17...Chain 18...
Base brake) 19.20...Elastic body 21...
・Slider 22...Sliding guide Fig. 2 Fig. 3 Fig. 6 Fig. 7 (a) (b> ρ Fig. 8 (a) (b)

Claims (1)

【特許請求の範囲】 1、複数個の弾性体を直列に連結してなる多段式防舷材
において、 少なくとも一の弾性体の変形を案内するガ イド手段を設けてなる多段式防舷材。
[Scope of Claims] 1. A multi-stage fender comprising a plurality of elastic bodies connected in series, the multi-stage fender comprising a guide means for guiding the deformation of at least one of the elastic bodies.
JP62050387A 1987-03-06 1987-03-06 Multi-stage type fender Pending JPS63219715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62050387A JPS63219715A (en) 1987-03-06 1987-03-06 Multi-stage type fender

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62050387A JPS63219715A (en) 1987-03-06 1987-03-06 Multi-stage type fender

Publications (1)

Publication Number Publication Date
JPS63219715A true JPS63219715A (en) 1988-09-13

Family

ID=12857458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62050387A Pending JPS63219715A (en) 1987-03-06 1987-03-06 Multi-stage type fender

Country Status (1)

Country Link
JP (1) JPS63219715A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5127354A (en) * 1991-03-06 1992-07-07 University Of Maryland At College Park Energy absorbing system
WO2016163452A1 (en) * 2015-04-07 2016-10-13 株式会社ブリヂストン Fender device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5127354A (en) * 1991-03-06 1992-07-07 University Of Maryland At College Park Energy absorbing system
WO2016163452A1 (en) * 2015-04-07 2016-10-13 株式会社ブリヂストン Fender device

Similar Documents

Publication Publication Date Title
US4463481A (en) Clamping device
JPS63219715A (en) Multi-stage type fender
DK0437570T3 (en) Shock absorbing fender for ships
US20020026765A1 (en) Structural members
JPS6038262A (en) Rack-and-pinion type steering device
US4974971A (en) Small-sized linear motion guide assembly
US4096075A (en) Self-lubricated solid materials
CN214245318U (en) Bridge damping tenon locking device
US4679521A (en) Ship with stabilizing device
FR2693524B1 (en) Piston with improved floating valve for hydraulic shock absorber, in particular the pressurized monotube type.
JP2002348089A (en) Base isolation device for cargo handling machine of type of traveling on rail
US4236387A (en) Energy storing device
CN213709172U (en) Wear-resisting type does not have crab-bolt multidirectional telescoping device that shifts
JP2711712B2 (en) Energy absorber for structures
SU1692884A1 (en) Trailer
JPH0241380Y2 (en)
SU653438A1 (en) Device for displacing flat bodies
SU839842A1 (en) Device for securing ship crane in travel position
CN213170490U (en) Underwater fixed-point riprap device
CN207526187U (en) A kind of vehicle bearing pallet for stereo garage
SU1138455A1 (en) Mast-type stationary offshore platform
JPS6118588A (en) Yoke type mooring system
CA1246940A (en) Hook-up between a main body and a superstructure
SU1672026A1 (en) Ball joint
RU2093337C1 (en) Device for transmitting motion to moving member