WO2016163452A1 - Fender device - Google Patents

Fender device Download PDF

Info

Publication number
WO2016163452A1
WO2016163452A1 PCT/JP2016/061383 JP2016061383W WO2016163452A1 WO 2016163452 A1 WO2016163452 A1 WO 2016163452A1 JP 2016061383 W JP2016061383 W JP 2016061383W WO 2016163452 A1 WO2016163452 A1 WO 2016163452A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
plate portion
support portions
support
impact
Prior art date
Application number
PCT/JP2016/061383
Other languages
French (fr)
Japanese (ja)
Inventor
謙太郎 清水
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to JP2017511046A priority Critical patent/JPWO2016163452A1/en
Priority to BR112017021430A priority patent/BR112017021430A2/en
Publication of WO2016163452A1 publication Critical patent/WO2016163452A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/20Equipment for shipping on coasts, in harbours or on other fixed marine structures, e.g. bollards
    • E02B3/26Fenders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/30Adapting or protecting infrastructure or their operation in transportation, e.g. on roads, waterways or railways

Definitions

  • the present invention relates to a fender.
  • This application claims priority based on Japanese Patent Application No. 2015-078515 filed in Japan on April 7, 2015, the contents of which are incorporated herein by reference.
  • a fender device described in Patent Document 1 below is known.
  • the fender is divided into an impact plate portion facing the quay wall surface, an intermediate plate portion disposed between the quay wall surface and the impact plate portion, and an intermediate plate portion, the quay wall surface and the impact plate portion.
  • guide means for guiding the compression deformation of the support portion is provided separately from the impact plate portion, the intermediate plate portion, and the support portion. Since the compressive deformation of the support portion is guided by the guide means, the shear deformation of the support portion is suppressed.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to simplify the fender.
  • the fender according to the present invention includes an impact receiving plate portion facing the quay wall surface, an intermediate plate portion disposed between the quay wall surface and the impact plate portion, the intermediate plate portion, the quay wall surface,
  • the armoring device includes a pair of support portions that are connected to the receiving plate portion separately and are directly connected to each other via the intermediate plate portion. A plurality of sets of the pair of support portions are arranged in the creeping direction along the front and back surfaces of the receiving plate portion.
  • the shortest distance from the center of the support portion to the outer periphery of the impact plate portion is defined as a distance X, and the minimum of the distances X for each of the multiple support portions the distance X in the case of the minimum distance X min of, in a plan view of the impact receiving plate portion, the distance between the centers of the bearing portion adjacent to each other in said creeping direction is the minimum distance X min or more.
  • simplification can be achieved.
  • FIG. 1 is a front view of a fender according to an embodiment of the present invention. It is a top view of the fender shown in FIG. It is a side view of the fender shown in FIG. It is a perspective view of the support part which comprises the fender shown in FIG. It is a top view which shows the state by which the piercing energy was input into the fender apparatus shown in FIG. It is the front view of the fender shown in Drawing 1, and is a figure which added various dimensions.
  • the fender 10 is attached to a quay, for example, in order to bring the ship safely into the berth and absorbs the berthing energy of the ship by compressing and deforming it.
  • the fender 10 includes an impact plate portion 11 (front frame) facing the quay wall surface Q and an intermediate portion disposed between the quay wall surface Q and the impact plate portion 11.
  • a pair of support portions 13 (fenders) that are connected to each other through the intermediate plate portion 12 by connecting the plate portion 12 (intermediate frame), the intermediate plate portion 12, the quay wall surface Q, and the receiving plate portion 11 to each other. ) And.
  • the impact plate portion 11 and the intermediate plate portion 12 are arranged in parallel to each other and are arranged in parallel to the quay wall surface Q.
  • the front and back surfaces of the impact receiving plate portion 11 and the intermediate plate portion 12 extend along both the vertical direction D1 and the horizontal direction D2.
  • the impact receiving plate portion 11 and the intermediate plate portion 12 are arranged coaxially with each other, and are formed in a similar shape in a plan view of the impact receiving plate portion 11.
  • the intermediate plate portion 12 is disposed on the inner side of the outer peripheral edge 11 a of the impact receiving plate portion 11 in a plan view of the impact receiving plate portion 11.
  • a mooring line 14 is connected to a portion of the receiving plate portion 11 that is located outside the intermediate plate portion 12 in a plan view of the receiving plate portion 11.
  • the mooring cable 14 moores the receiving plate portion 11 to the quay wall surface Q and restricts displacement of the receiving plate portion 11 due to its own weight.
  • the pair of support portions 13 are arranged on the same straight line with the intermediate plate portion 12 therebetween, and are arranged coaxially with each other. Each central axis O of the pair of support portions 13 is disposed on a common axis.
  • a plurality of pairs of support portions 13 are arranged in a creeping direction D along the front and back surfaces of the impact plate portion 11. In the present embodiment, four pairs of the support portions 13 are arranged so as to form a corner portion A of the rectangle R in the plan view of the impact receiving plate portion 11.
  • the rectangle R has a pair of first sides S1 extending in the vertical direction D1 as the creeping direction D and a pair of second sides S2 extending in the horizontal direction D2 as the creeping direction D.
  • the interval I1 between the centers of the support portions 13 adjacent to each other in the vertical direction D1 (the interval I between the center axes O of the support portions 13) is larger than the interval I2 between the centers of the support portions 13 adjacent to each other in the horizontal direction D2.
  • the first side S1 is longer than the second side S2.
  • the pair of support portions 13 are formed symmetrically with respect to the intermediate plate portion 12.
  • the pair of support parts 13 are formed by attaching the same support part 13 to the intermediate plate part 12 in a state where the pair of support parts 13 are reversed.
  • the support portion 13 is formed in a cylindrical shape that gradually decreases in diameter as it goes from the quay wall surface Q or the impact plate portion 11 toward the intermediate plate portion 12. In the illustrated example, the support portion 13 is formed in a truncated cone shape (conical shape).
  • the base end portion 13a on the quay wall surface Q side or the impact plate portion 11 side of the support portion 13 has a larger diameter than the distal end portion 13b on the intermediate plate portion 12 side.
  • the support portion 13 is made of an elastic material such as rubber. Attachment members (not shown) are fixed to the base end portion 13a and the tip end portion 13b of the support portion 13, respectively.
  • the attachment member is attached to the quay wall surface Q, the impact plate portion 11 or the intermediate plate portion 12.
  • the attachment member is made of, for example, metal, and is fixed to the quay wall surface Q, the impact plate portion 11 or the intermediate plate portion 12 via a fastening member such as a bolt.
  • the entire mounting member can be embedded in the support portion 13, and a part of the mounting member can be exposed to the outside from the support portion 13.
  • the support part 13 is compressed and deformed in an orthogonal direction D3 orthogonal to the front and back surfaces of the receiving plate part 11.
  • the bearing 13 is provided with a buckling inducer 15 that induces buckling of the bearing 13 when the bearing 13 is compressed and deformed.
  • the buckling induction portion 15 includes a first buckling induction portion (not shown) provided at the base end portion 13 a of the support portion 13, a second buckling induction portion 16 provided at the distal end portion 13 b of the support portion 13, and Is provided.
  • the first buckling induction portion is formed in a step shape on the inner peripheral surface of the support portion 13.
  • the second buckling induction portion 16 is formed by an annular concave groove formed on the outer peripheral surface of the support portion 13.
  • the distance from the center of the support portion 13 (the central axis of the support portion 13) to the outer peripheral edge 11 a of the impact plate portion 11 in the plan view of the impact plate portion 11 is a distance.
  • X be.
  • the distance X for each of the plurality of bearings 13 a minimum distance X min the minimum distance X.
  • the interval I between the centers of the bearing 13 in the tangential D adjacent to each other is the minimum distance X min or more is larger than the minimum distance X min.
  • all the distances X for each of the plurality of support parts 13 are the same, and the distance X for each support part 13 is the minimum distance Xmin .
  • the distance I between the centers of the support portions 13 adjacent to each other in the creeping direction D is preferably 1.7 times or more the height H of the support portion 13. In this case, it is possible to reliably prevent the support portions 13 adjacent in the creeping direction D from interfering with each other when the support portion 13 is compressed and deformed.
  • the distance X for each of the plurality of support portions 13 is preferably 1.8 times or less the height H of the support portion 13. If the distance X exceeds 1.8 times the height H, the displacement of the impact receiving plate portion 11 may be too large.
  • the pair of support portions 13 are directly connected via the intermediate plate portion 12. Therefore, the reaction force is halved compared to the case where the same number of support portions 13 as the support portions 13 used in the fender 10 are arranged in parallel without being directly connected as in the pair of support portions 13.
  • the energy absorption capacity can be equally ensured while suppressing.
  • the interval I between the centers of the bearing 13 in the tangential D adjacent to each other is the minimum distance X min or more. That is, the space
  • FIG. Therefore, for example, as shown in FIG. 5, even when a ship berthing with respect to the quay wall surface Q inputs berthing energy from a direction inclined with respect to the front and back surfaces of the receiving plate 11, a plurality of Among the pair of support portions 13, any one pair of support portions 13 can be reliably compressed and deformed in the orthogonal direction D ⁇ b> 3. As a result, the intermediate plate portion 12 can be clamped in the orthogonal direction D3 by the pair of compression-supported support portions 13, and displacement of the intermediate plate portion 12 in the creeping direction D can be restricted.
  • the minimum distance X min is equal to or smaller than the interval I between the centers of the support portions 13 adjacent to each other in the creeping direction D in the plan view of the impact receiving plate portion 11. That is, the shortest distance from the center of the support portion 13 to the outer peripheral edge 11a of the impact plate portion 11 in plan view of the impact plate portion 11 is shortened, and the support portion 13 is outside the impact plate portion 11. It is close to the peripheral edge 11a. Therefore, even if the berthing energy is input to the outer peripheral edge 11a of the impact receiving plate portion 11, the pair of support portions 13 disposed close to the input position are compressed and deformed to sandwich the intermediate plate portion 12. It becomes possible. Thereby, it is possible to regulate the displacement of the intermediate plate portion 12 in the creeping direction D.
  • the interval I1 between the centers of the support portions 13 adjacent to each other in the vertical direction D1 is larger than the interval I2 between the centers of the support portions 13 adjacent to each other in the horizontal direction D2. That is, the space
  • abutted in the perpendicular direction D1 is ensured large. Therefore, even if the berthing energy is input to the impact receiving plate portion 11 from a portion having a large inclination angle with respect to the vertical direction D1, such as the bow or stern of the ship, the displacement of the intermediate plate portion 12 in the vertical direction D1. Can be effectively suppressed.
  • the support portion 13 is formed in a cylindrical shape that gradually decreases in diameter as it goes from the quay wall surface Q or the impact plate portion 11 toward the intermediate plate portion 12. Therefore, as shown in FIG. 5, when the support portion 13 is compressed and deformed, the base end portion 13 a and the tip end portion 13 b of the support portion 13 are buckled, and the base portion 13 a and the tip end portion 13 b of the support portion 13 are buckled.
  • the intermediate portion 13c positioned therebetween in the radial direction the base end portion 13a and the distal end portion 13b of the support portion 13 can be embedded inside the intermediate portion 13c. As a result, shear deformation in the creeping direction D of the support portion 13 can be restricted.
  • the displacement to the creeping direction D of the intermediate plate part 12 can be controlled effectively. If the elastic modulus of the rubber of the pair of support parts 13 is greatly different, the support part 13 having a small elastic modulus of the rubber of the pair of support parts 13 is greatly crushed (compressed and deformed). And the rubber
  • the intermediate plate portion 12 is a solid plate body. That is, the intermediate plate 12 is not a hollow frame (spacer) formed by combining frame materials. Therefore, the strength of the intermediate plate portion 12 can be ensured and the input of the berthing energy can be reliably received. Moreover, the excessive weight reduction of the intermediate plate part 12 can be suppressed, and the displacement of the intermediate plate part 12 in the creeping direction D can be easily controlled.
  • the same material can be adopted as the elastic material forming each of the pair of support portions 13, and the elastic moduli of the pair of support portions 13 can be made equal to each other.
  • the equivalent elastic modulus means that the difference in JIS A type hardness between the support portions 13 is less than 1 °, or the difference in elastic modulus between the support portions 13 is within ⁇ 10%, preferably Means within ⁇ 5%.
  • one bearing part 13 carries out an excessive compression deformation by compressing and deforming both the bearing parts 13 equally.
  • the amount of compressive deformation of the support portion 13 can be suppressed to an appropriate range without providing a stopper that restricts excessive compressive deformation of the support portion 13.
  • simplification of the fender apparatus 10 can be achieved.
  • the elastic modulus of the rubber of the pair of support portions 13 is greatly different, the support portion 13 having a low elastic modulus is compressed first. As a result, not only is a stopper required, but the berthing energy cannot be effectively absorbed. Therefore, there is a possibility that the amount of displacement in the creeping direction D of the impact receiving plate portion 11 and the intermediate plate portion 12 will increase.
  • the distance is a distance Xv
  • the shortest distance along the horizontal direction D2 is a distance Xh.
  • the distance Xv for the two pairs of support portions 13 (hereinafter referred to as “upper support portions 13”) positioned on the upper side in the vertical direction D ⁇ b> 1 is received.
  • This is the distance from the center of the support portion 13 to the upper side in the vertical direction D1 to the outer peripheral edge 11a of the impact plate portion 11 in a plan view of the impact plate portion 11. That is, the distance Xv with respect to the upper support portion 13 is from the center of the support portion 13 to the lower side in the vertical direction D1 when reaching the outer peripheral edge 11a of the impact plate portion 11 in a plan view of the impact plate portion 11. Not the distance.
  • the distance Xv for the two pairs of support portions 13 (hereinafter referred to as “lower support portions 13”) positioned below the vertical direction D ⁇ b> 1 is: This is the distance from the center of the support portion 13 to the lower edge of the vertical direction D1 to the outer peripheral edge 11a of the impact plate portion 11 in a plan view of the impact plate portion 11. That is, the distance Xv with respect to the lower support portion 13 is from the center of the support portion 13 toward the upper side in the vertical direction D1 to the outer peripheral edge 11a of the impact plate portion 11 in a plan view of the impact plate portion 11. Not the distance.
  • the distance Xv with respect to the upper support portion 13 is equal to or less than the distance Xv with respect to the lower support portion 13. In this embodiment, the distance Xv with respect to the upper support portion 13 and the distance with respect to the lower support portion 13. Xv is equivalent.
  • left support portions 13 two pairs of support portions 13 (hereinafter referred to as "left support portions 13") located on the left side in the horizontal direction D2. .)) Is a distance from the center of the support 13 toward the left side in the horizontal direction D2 to the outer peripheral edge 11a of the impact receiving plate 11 in a plan view of the impact receiving plate 11. That is, the distance Xh with respect to the left support portion 13 is the distance from the center of the support portion 13 to the right side in the horizontal direction D2 to the outer peripheral edge 11a of the impact plate portion 11 in plan view of the impact plate portion 11. Not distance.
  • two pairs of support portions 13 located on the right side in the horizontal direction D2. .
  • the distance Xh for the left support portion 13 and the distance Xh for the right support portion 13 are the same.
  • At least one of the distance Xv and the distance Xh is the distance X. That is, at least one of the distance Xv and the distance Xh is the shortest distance from the center of the support portion 13 to the outer peripheral edge 11a of the impact plate portion 11 in a plan view of the impact plate portion 11.
  • the distance Xv is the distance X in each support portion 13.
  • the minimum distance Xv is the minimum distance Xv min
  • the minimum distance Xh is the minimum distance Xh min .
  • at least one of the minimum distance Xv min and the minimum distance Xh min is the minimum distance X min .
  • the minimum distance Xv min is smaller than the minimum distance Xh min and is the minimum distance X min .
  • the minimum distance Xv min or the minimum distance Xh min is the minimum distance X min . Therefore, in the plan view of the impact receiving plate portion 11, the shortest distance in the vertical direction D1 or the horizontal direction D2 from the center of the support portion 13 to the outer peripheral edge 11a of the impact receiving plate portion 11 is shortened. That is, the support portion 13 is close to the outer peripheral edge 11a of the impact receiving plate portion 11 in the vertical direction D1 or the horizontal direction D2, and the support portion 13 is arranged over a wide range of the creeping direction D. Thereby, the berthing energy can be absorbed reliably.
  • the minimum distance Xv min is smaller than the minimum distance Xh min and is the minimum distance X min . Accordingly, the shortest distance in the vertical direction D ⁇ b> 1 from the center of the support portion 13 to the outer peripheral edge 11 a of the impact plate portion 11 is shortened in plan view of the impact plate portion 11. Thereby, even if it is a case where piercing energy is input into the receiving plate part 11 from the direction which inclines with respect to the perpendicular direction D1, any one pair of a pair of a pair of support parts 13 is comprised.
  • the support portion 13 can be reliably compressed and deformed in the orthogonal direction D3.
  • the distance Xv with respect to the upper support portion 13 is from the center of the support portion 13 to the upper side in the vertical direction D1 until reaching the outer peripheral edge 11a of the impact plate portion 11 in a plan view of the impact plate portion 11.
  • the distance Xv with respect to the lower support portion 13 is the outer peripheral edge 11a of the impact plate portion 11 from the center of the support portion 13 toward the lower side in the vertical direction D1 in the plan view of the impact plate portion 11. It is the distance to reach. Therefore, the lower support portion 13 is brought close to the lower end edge (outer peripheral edge 11a) of the impact receiving plate portion 11 while the upper support portion 13 is brought closer to the upper end edge (outer peripheral edge 11a) of the impact receiving plate portion 11. Can do.
  • the upper support portion 13 or the lower support portion 13 or the lower support portion 11 is not required even if the intermediate plate portion 12 is not restrained by the mooring line 14.
  • the side support portion 13 can be reliably compressed and deformed in the orthogonal direction D3.
  • the distance Xv for the upper support portion 13 is equal to or less than the distance Xv for the lower support portion 13. Therefore, the upper support portion 13 can be reliably brought close to the upper end edge of the impact receiving plate portion 11. Thereby, when the berthing energy is input to the impact receiving plate portion 11 from the vicinity of the upper end edge of the impact receiving plate portion 11, the upper support portion 13 can be reliably compressed and deformed in the orthogonal direction D3.
  • the general ship is formed in the shape which protrudes in the front-back direction or the left-right direction as it goes upwards from the ship bottom. Such a ship can easily input berthing energy to the impact plate portion 11 from the vicinity of the upper edge of the impact plate portion 11.
  • the support portion 13 can be formed of an elastic material other than rubber, and can be made of a synthetic resin, for example. Further, the support portion 13 is not limited to the truncated cone type, and a hollow cylindrical type or the like can also be adopted. Furthermore, although four pairs of support parts 13 are arrange
  • the verification test about the said effect was implemented.
  • the fenders of Examples 1 to 9 and Comparative Examples 1 and 2 were prepared.
  • the same configuration as that of the fender 10 shown in the above embodiment is adopted.
  • Each of the fenders of Examples 2 to 9 and Comparative Examples 1 and 2 employs a configuration in which the fender device of Example 1 is partially different.
  • the support portion 13 has a common configuration.
  • the same rubber is used for the rubber of the support portion 13 of each fender.
  • the outer diameter (maximum outer diameter) of the end edge of each support portion 13 on the base end portion 13a side is 150 mm.
  • the outer diameter (minimum outer diameter) of the end edge of each support portion 13 on the distal end portion 13b side is 85 mm.
  • the shortest distance Xv min is made smaller than that of the fender according to the first embodiment.
  • the shortest distance Xh min is made smaller than that of the fender according to the first embodiment.
  • the distance Xv at the upper support portion 13 is reduced and the distance Xv at the lower support portion 13 is increased as compared with the fender device according to the first embodiment.
  • the arrangement position of the support portion 13 is changed between the vertical direction D1 and the horizontal direction D2 with respect to the fender device according to the first embodiment.
  • the shape of the receiving plate portion 11 in plan view is changed from a square to a rectangle with respect to the fender according to the first embodiment.
  • one set of the support portions 13 is added to the fender device according to the first embodiment.
  • the added set of support portions 13 is arranged on the intersection of the diagonal lines of the rectangle R in the plan view of the impact plate portion 11.
  • the fender device of Example 8 the interval I1 between the centers in the vertical direction D1 in adjacent bearings 13, although equal to the shortest distance X min, is less than the minimum distance Xv min.
  • the fender device of Example 9 the interval I2 between the centers of the bearings 13 adjacent in the horizontal direction D2 is, although equal to the shortest distance X min, is less than the minimum distance Xh min.
  • both the interval I1 and the interval I2 are smaller than the shortest distance Xmin .
  • a hollow frame was employed instead of the solid intermediate plate portion 12.
  • the maximum displacement of the impact receiving plate portion 11 before and after energy was input to the impact receiving plate portion 11 was measured for each of the fenders of Examples 1 to 9 and Comparative Examples 1 and 2.
  • the measuring method is as follows. Usually, the locations with the largest displacement are the three upper portions of the impact plate portion 11 indicated by the symbol P in FIG. Therefore, in this verification test, the measurement position of the displacement amount was set at these three locations. And energy was input perpendicularly (orthogonal direction D3) with respect to the receiving plate part 11 of each fender.
  • the displacement amounts at the three locations at this time were determined by image analysis, and the numerical value (displacement amount) at the location with the largest displacement amount was extracted and indexed. The larger the amount of displacement of the impact receiving plate portion 11, the larger the index number.
  • test results are shown in Tables 1 and 2 below.
  • the dimensions are those of an actual miniature model.
  • Simplification of the fender can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Vibration Dampers (AREA)
  • Devices Affording Protection Of Roads Or Walls For Sound Insulation (AREA)

Abstract

Provided is a fender device (10) that comprises an impact receiving plate (11) facing the quay side, an intermediate plate disposed between the impact receiving plate (11) and the quay side, and a pair of supports (13) that each connect the intermediate plate to the quay side and the impact receiving plate (11) and that are directly coupled across the intermediate plate. A plurality of pairs of supports (13) is disposed in the surface direction D which follows the front and rear faces of the impact receiving plate (11). In the planar view of the impact receiving plate (11), the interval I between the centers of supports (13) that are mutually adjacent in the surface direction D is at least the minimum distance Xmin, where the distance X, in the planar view of the impact receiving plate (11), is the shortest distance from the center of the support (13) to the peripheral edge (11a) of the impact receiving plate (11) and the minimum distance Xmin is the shortest distance X from among the distances X for each of the plurality of supports (13).

Description

防舷装置Fender
 本発明は、防舷装置に関する。
 本願は、2015年4月7日に、日本に出願された特願2015-078515号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a fender.
This application claims priority based on Japanese Patent Application No. 2015-078515 filed in Japan on April 7, 2015, the contents of which are incorporated herein by reference.
 従来から、例えば下記特許文献1記載の防舷装置が知られている。防舷装置は、岸壁面に対向する受衝板部と、岸壁面と受衝板部との間に配置される中間板部と、中間板部と岸壁面および受衝板部とを各別に連結し、中間板部を介して互いに直結された一対の支承部と、を備えている。防舷装置には、支承部の圧縮変形を案内するガイド手段が、受衝板部、中間板部および支承部とは別個に設けられている。ガイド手段により支承部の圧縮変形が案内されることで、支承部のせん断変形が抑制されている。 Conventionally, for example, a fender device described in Patent Document 1 below is known. The fender is divided into an impact plate portion facing the quay wall surface, an intermediate plate portion disposed between the quay wall surface and the impact plate portion, and an intermediate plate portion, the quay wall surface and the impact plate portion. A pair of support portions that are connected and directly connected to each other via an intermediate plate portion. In the fender, guide means for guiding the compression deformation of the support portion is provided separately from the impact plate portion, the intermediate plate portion, and the support portion. Since the compressive deformation of the support portion is guided by the guide means, the shear deformation of the support portion is suppressed.
特開昭63-219715号公報Japanese Unexamined Patent Publication No. 63-219715
 しかしながら、前記従来の防舷装置では、簡素化を図ることに改善の余地がある。 However, there is room for improvement in simplification in the conventional protection device.
 本発明は、前述した事情に鑑みてなされたものであって、防舷装置の簡素化を図ることを目的とする。 The present invention has been made in view of the above-described circumstances, and an object thereof is to simplify the fender.
 前記課題を解決するために、本発明は以下の手段を提案している。
 本発明に係る防舷装置は、岸壁面に対向する受衝板部と、前記岸壁面と前記受衝板部との間に配置される中間板部と、前記中間板部と前記岸壁面および前記受衝板部とを各別に連結し、前記中間板部を介して互いに直結された一対の支承部と、を備えた防舷装置である。前記一対の支承部は、前記受衝板部の表裏面に沿う沿面方向に複数組配置されている。前記受衝板部の平面視において、前記支承部の中心から前記受衝板部の外周縁に至るまでの最短距離を距離Xとし、複数の前記支承部それぞれについての前記距離Xのうち、最小の前記距離Xを最小距離Xminとしたときに、前記受衝板部の平面視において、前記沿面方向で互いに隣り合う前記支承部の中心同士の間隔は、前記最小距離Xmin以上である。
In order to solve the above problems, the present invention proposes the following means.
The fender according to the present invention includes an impact receiving plate portion facing the quay wall surface, an intermediate plate portion disposed between the quay wall surface and the impact plate portion, the intermediate plate portion, the quay wall surface, The armoring device includes a pair of support portions that are connected to the receiving plate portion separately and are directly connected to each other via the intermediate plate portion. A plurality of sets of the pair of support portions are arranged in the creeping direction along the front and back surfaces of the receiving plate portion. In a plan view of the impact plate portion, the shortest distance from the center of the support portion to the outer periphery of the impact plate portion is defined as a distance X, and the minimum of the distances X for each of the multiple support portions the distance X in the case of the minimum distance X min of, in a plan view of the impact receiving plate portion, the distance between the centers of the bearing portion adjacent to each other in said creeping direction is the minimum distance X min or more.
 本発明によれば、簡素化を図ることができる。 According to the present invention, simplification can be achieved.
本発明の一実施形態に係る防舷装置の正面図である。1 is a front view of a fender according to an embodiment of the present invention. 図1に示す防舷装置の上面図である。It is a top view of the fender shown in FIG. 図1に示す防舷装置の側面図である。It is a side view of the fender shown in FIG. 図1に示す防舷装置を構成する支承部の斜視図である。It is a perspective view of the support part which comprises the fender shown in FIG. 図1に示す防舷装置に接岸エネルギーが入力された状態を示す上面図である。It is a top view which shows the state by which the piercing energy was input into the fender apparatus shown in FIG. 図1に示す防舷装置の正面図であって、各種寸法を追記した図である。It is the front view of the fender shown in Drawing 1, and is a figure which added various dimensions.
 以下、図1から図5を参照し、本発明の一実施形態に係る防舷装置10を説明する。
 防舷装置10は、例えば船舶を安全に接岸させるために岸壁に取り付けられ、船舶の接岸エネルギーを圧縮変形することによって吸収する。
 図1から図3に示すように、防舷装置10は、岸壁面Qに対向する受衝板部11(前面フレーム)と、岸壁面Qと受衝板部11との間に配置される中間板部12(中間フレーム)と、中間板部12と岸壁面Qおよび受衝板部11とを各別に連結し、中間板部12を介して互いに直結された一対の支承部13(防舷材)と、を備えている。
Hereinafter, a fender apparatus 10 according to an embodiment of the present invention will be described with reference to FIGS. 1 to 5.
The fender 10 is attached to a quay, for example, in order to bring the ship safely into the berth and absorbs the berthing energy of the ship by compressing and deforming it.
As shown in FIGS. 1 to 3, the fender 10 includes an impact plate portion 11 (front frame) facing the quay wall surface Q and an intermediate portion disposed between the quay wall surface Q and the impact plate portion 11. A pair of support portions 13 (fenders) that are connected to each other through the intermediate plate portion 12 by connecting the plate portion 12 (intermediate frame), the intermediate plate portion 12, the quay wall surface Q, and the receiving plate portion 11 to each other. ) And.
 受衝板部11および中間板部12は、互いに平行に配置されていて、岸壁面Qに平行に配置される。受衝板部11および中間板部12それぞれの表裏面は、鉛直方向D1および水平方向D2の両方向に沿って延びる。受衝板部11および中間板部12は、互いに同軸に配置され、受衝板部11の平面視において、相似形状に形成されている。中間板部12は、受衝板部11の平面視において、受衝板部11の外周縁11aよりも内側に配置されている。なお図示の例では、受衝板部11のうち、受衝板部11の平面視において、中間板部12よりも外側に位置する部分には、係留索14が接続されている。係留索14は、受衝板部11を岸壁面Qに係留し、受衝板部11の自重による変位を規制する。 The impact plate portion 11 and the intermediate plate portion 12 are arranged in parallel to each other and are arranged in parallel to the quay wall surface Q. The front and back surfaces of the impact receiving plate portion 11 and the intermediate plate portion 12 extend along both the vertical direction D1 and the horizontal direction D2. The impact receiving plate portion 11 and the intermediate plate portion 12 are arranged coaxially with each other, and are formed in a similar shape in a plan view of the impact receiving plate portion 11. The intermediate plate portion 12 is disposed on the inner side of the outer peripheral edge 11 a of the impact receiving plate portion 11 in a plan view of the impact receiving plate portion 11. In the illustrated example, a mooring line 14 is connected to a portion of the receiving plate portion 11 that is located outside the intermediate plate portion 12 in a plan view of the receiving plate portion 11. The mooring cable 14 moores the receiving plate portion 11 to the quay wall surface Q and restricts displacement of the receiving plate portion 11 due to its own weight.
 一対の支承部13は、中間板部12を間に挟んで同一直線上に配置され、互いに同軸に配置されている。一対の支承部13の各中心軸線Oは、共通軸上に配置されている。一対の支承部13は、受衝板部11の表裏面に沿う沿面方向Dに複数組配置されている。本実施形態では、一対の支承部13は、受衝板部11の平面視において、矩形Rの角部Aを形成するように4組配置されている。前記矩形Rは、沿面方向Dとしての鉛直方向D1に延びる一対の第1辺部S1、および沿面方向Dとしての水平方向D2に延びる一対の第2辺部S2を有している。鉛直方向D1で互いに隣り合う支承部13の中心同士の間隔I1(支承部13の中心軸線O同士の間隔I)は、水平方向D2で互いに隣り合う支承部13の中心同士の間隔I2よりも大きい。前述の矩形Rでは、第1辺部S1が第2辺部S2よりも長い。 The pair of support portions 13 are arranged on the same straight line with the intermediate plate portion 12 therebetween, and are arranged coaxially with each other. Each central axis O of the pair of support portions 13 is disposed on a common axis. A plurality of pairs of support portions 13 are arranged in a creeping direction D along the front and back surfaces of the impact plate portion 11. In the present embodiment, four pairs of the support portions 13 are arranged so as to form a corner portion A of the rectangle R in the plan view of the impact receiving plate portion 11. The rectangle R has a pair of first sides S1 extending in the vertical direction D1 as the creeping direction D and a pair of second sides S2 extending in the horizontal direction D2 as the creeping direction D. The interval I1 between the centers of the support portions 13 adjacent to each other in the vertical direction D1 (the interval I between the center axes O of the support portions 13) is larger than the interval I2 between the centers of the support portions 13 adjacent to each other in the horizontal direction D2. . In the above-described rectangle R, the first side S1 is longer than the second side S2.
 図2および図3に示すように、一対の支承部13は、中間板部12を基準に対称に形成されている。一対の支承部13は、同一の支承部13を一対、互いに反転させた状態で中間板部12に取り付けることで形成されている。支承部13は、岸壁面Qまたは受衝板部11から中間板部12に向かうに従い漸次、縮径する筒状に形成されている。図示の例では、支承部13は、円錐台型(円錐型)に形成されている。支承部13の岸壁面Q側または受衝板部11側の基端部13aは、中間板部12側の先端部13bよりも大径である。 2 and 3, the pair of support portions 13 are formed symmetrically with respect to the intermediate plate portion 12. The pair of support parts 13 are formed by attaching the same support part 13 to the intermediate plate part 12 in a state where the pair of support parts 13 are reversed. The support portion 13 is formed in a cylindrical shape that gradually decreases in diameter as it goes from the quay wall surface Q or the impact plate portion 11 toward the intermediate plate portion 12. In the illustrated example, the support portion 13 is formed in a truncated cone shape (conical shape). The base end portion 13a on the quay wall surface Q side or the impact plate portion 11 side of the support portion 13 has a larger diameter than the distal end portion 13b on the intermediate plate portion 12 side.
 図4に示すように、支承部13は、例えばゴム等の弾性材料により形成されている。支承部13の基端部13aおよび先端部13bにはそれぞれ、図示しない取付け部材が固着されている。前記取付け部材は、岸壁面Q、受衝板部11または中間板部12に取付けされる。前記取付け部材は、例えば金属により形成され、岸壁面Q、受衝板部11または中間板部12に、ボルト等の締結部材を介して固定される。なお、前記取付け部材の全体を支承部13内に埋設することも可能であり、前記取付け部材の一部を支承部13から外部に露出させることも可能である。 As shown in FIG. 4, the support portion 13 is made of an elastic material such as rubber. Attachment members (not shown) are fixed to the base end portion 13a and the tip end portion 13b of the support portion 13, respectively. The attachment member is attached to the quay wall surface Q, the impact plate portion 11 or the intermediate plate portion 12. The attachment member is made of, for example, metal, and is fixed to the quay wall surface Q, the impact plate portion 11 or the intermediate plate portion 12 via a fastening member such as a bolt. The entire mounting member can be embedded in the support portion 13, and a part of the mounting member can be exposed to the outside from the support portion 13.
 支承部13は、受衝板部11の表裏面に直交する直交方向D3に圧縮変形する。支承部13には、支承部13の圧縮変形時に支承部13の座屈を誘発する座屈誘発部15が設けられている。座屈誘発部15には、支承部13の基端部13aに設けられた図示しない第1座屈誘発部と、支承部13の先端部13bに設けられた第2座屈誘発部16と、が備えられている。前記第1座屈誘発部は、支承部13の内周面に段状に形成されている。第2座屈誘発部16は、支承部13の外周面に形成された環状の凹溝により形成されている。 The support part 13 is compressed and deformed in an orthogonal direction D3 orthogonal to the front and back surfaces of the receiving plate part 11. The bearing 13 is provided with a buckling inducer 15 that induces buckling of the bearing 13 when the bearing 13 is compressed and deformed. The buckling induction portion 15 includes a first buckling induction portion (not shown) provided at the base end portion 13 a of the support portion 13, a second buckling induction portion 16 provided at the distal end portion 13 b of the support portion 13, and Is provided. The first buckling induction portion is formed in a step shape on the inner peripheral surface of the support portion 13. The second buckling induction portion 16 is formed by an annular concave groove formed on the outer peripheral surface of the support portion 13.
 ここで図1に示すように、受衝板部11の平面視において、支承部13の中心(支承部13の中心軸)から受衝板部11の外周縁11aに至るまでの最短距離を距離Xとする。また、受衝板部11の平面視において、複数の支承部13それぞれについての距離Xのうち、最小の距離Xを最小距離Xminとする。すると、受衝板部11の平面視において、沿面方向Dで互いに隣り合う支承部13の中心同士の間隔Iは、最小距離Xmin以上であり、最小距離Xminよりも大きくなっている。本実施形態では、複数の支承部13それぞれについての距離X全てが同等となっていて、各支承部13についての距離Xが、最小距離Xminとなっている。 Here, as shown in FIG. 1, the distance from the center of the support portion 13 (the central axis of the support portion 13) to the outer peripheral edge 11 a of the impact plate portion 11 in the plan view of the impact plate portion 11 is a distance. Let X be. Further, in a plan view of the impact receiving plate portion 11, of the distance X for each of the plurality of bearings 13, a minimum distance X min the minimum distance X. Then, in a plan view of the impact receiving plate portion 11, the interval I between the centers of the bearing 13 in the tangential D adjacent to each other is the minimum distance X min or more is larger than the minimum distance X min. In this embodiment, all the distances X for each of the plurality of support parts 13 are the same, and the distance X for each support part 13 is the minimum distance Xmin .
 なお受衝板部11の平面視において、沿面方向Dで互いに隣り合う支承部13の中心同士の間隔Iは、支承部13の高さHの1.7倍以上が好ましい。この場合、支承部13の圧縮変形時に、沿面方向Dに隣り合う支承部13同士が互いに干渉し合うのを確実に防ぐことができる。また、複数の支承部13それぞれについての距離Xは、支承部13の高さHの1.8倍以下が好ましい。距離Xが高さHの1.8倍を超えると、受衝板部11の変位が大きくなりすぎるおそれがある。 In the plan view of the impact receiving plate portion 11, the distance I between the centers of the support portions 13 adjacent to each other in the creeping direction D is preferably 1.7 times or more the height H of the support portion 13. In this case, it is possible to reliably prevent the support portions 13 adjacent in the creeping direction D from interfering with each other when the support portion 13 is compressed and deformed. Further, the distance X for each of the plurality of support portions 13 is preferably 1.8 times or less the height H of the support portion 13. If the distance X exceeds 1.8 times the height H, the displacement of the impact receiving plate portion 11 may be too large.
 以上説明したように、本実施形態に係る防舷装置10によれば、一対の支承部13が、中間板部12を介して直結されている。したがって、この防舷装置10に用いられている支承部13と同数の支承部13を、一対の支承部13のように直結せずに並列して配置した場合に比べて、反力を半分に抑えつつエネルギー吸収容量を同等に確保することができる。 As described above, according to the fender device 10 according to the present embodiment, the pair of support portions 13 are directly connected via the intermediate plate portion 12. Therefore, the reaction force is halved compared to the case where the same number of support portions 13 as the support portions 13 used in the fender 10 are arranged in parallel without being directly connected as in the pair of support portions 13. The energy absorption capacity can be equally ensured while suppressing.
 また、受衝板部11の平面視において、沿面方向Dで互いに隣り合う支承部13の中心同士の間隔Iが、最小距離Xmin以上である。つまり、支承部13の中心同士の間隔Iが大きく確保されていて、支承部13が沿面方向Dの広い範囲にわたって配置されている。したがって、例えば図5に示すように、岸壁面Qに対して接岸する船舶が、受衝板部11の表裏面に対して傾斜する向きから接岸エネルギーを入力するような場合であっても、複数組の一対の支承部13のうち、いずれか一組の一対の支承部13を直交方向D3に確実に圧縮変形させることができる。その結果、圧縮変形された一対の支承部13によって中間板部12を直交方向D3に挟持することが可能になり、中間板部12が沿面方向Dに変位するのを規制することができる。 Further, in a plan view of the impact receiving plate portion 11, the interval I between the centers of the bearing 13 in the tangential D adjacent to each other is the minimum distance X min or more. That is, the space | interval I of the centers of the support part 13 is ensured largely, and the support part 13 is arrange | positioned over the wide range of the creeping direction D. FIG. Therefore, for example, as shown in FIG. 5, even when a ship berthing with respect to the quay wall surface Q inputs berthing energy from a direction inclined with respect to the front and back surfaces of the receiving plate 11, a plurality of Among the pair of support portions 13, any one pair of support portions 13 can be reliably compressed and deformed in the orthogonal direction D <b> 3. As a result, the intermediate plate portion 12 can be clamped in the orthogonal direction D3 by the pair of compression-supported support portions 13, and displacement of the intermediate plate portion 12 in the creeping direction D can be restricted.
 さらに、最小距離Xminが、受衝板部11の平面視において、沿面方向Dで互いに隣り合う支承部13の中心同士の間隔I以下である。つまり、受衝板部11の平面視において、支承部13の中心から受衝板部11の外周縁11aに至るまでの最短距離が短くなっていて、支承部13が受衝板部11の外周縁11aに近接している。したがって、接岸エネルギーが受衝板部11の外周縁11aに入力されたとしても、その入力された位置に近接して配置された一対の支承部13を圧縮変形させて中間板部12を挟持することが可能になる。これにより、中間板部12が沿面方向Dに変位するのを規制することができる。 Further, the minimum distance X min is equal to or smaller than the interval I between the centers of the support portions 13 adjacent to each other in the creeping direction D in the plan view of the impact receiving plate portion 11. That is, the shortest distance from the center of the support portion 13 to the outer peripheral edge 11a of the impact plate portion 11 in plan view of the impact plate portion 11 is shortened, and the support portion 13 is outside the impact plate portion 11. It is close to the peripheral edge 11a. Therefore, even if the berthing energy is input to the outer peripheral edge 11a of the impact receiving plate portion 11, the pair of support portions 13 disposed close to the input position are compressed and deformed to sandwich the intermediate plate portion 12. It becomes possible. Thereby, it is possible to regulate the displacement of the intermediate plate portion 12 in the creeping direction D.
 以上より、複数組の一対の支承部13の配置位置を調整することで、例えば、受衝板部11の表裏面に対して傾斜する向きから接岸エネルギーが入力された場合や、接岸エネルギーが受衝板部11の外周縁11aに入力された場合等であっても、中間板部12が沿面方向Dに変位するのを規制することができる。これにより、前記従来技術におけるガイド手段を設けることなく、支承部13を確実に圧縮変形させて接岸エネルギーを吸収することが可能になり、防舷装置10の簡素化を図ることができる。 As described above, by adjusting the arrangement positions of the plurality of pairs of support portions 13, for example, when the berthing energy is input from a direction inclined with respect to the front and back surfaces of the impact receiving plate portion 11, or when the berthing energy is received. Even if it is a case where it inputs into the outer periphery 11a of the impact plate part 11, it can control that the intermediate plate part 12 displaces in the creeping direction D. FIG. This makes it possible to absorb the berthing energy by reliably compressing and deforming the support portion 13 without providing the guide means in the prior art, thereby simplifying the fender 10.
 また、鉛直方向D1で互いに隣り合う支承部13の中心同士の間隔I1が、水平方向D2で互いに隣り合う支承部13の中心同士の間隔I2よりも大きい。つまり、鉛直方向D1で互いに隣り合う支承部13の中心同士の間隔I1が大きく確保されている。したがって、例えば船舶の船首や船尾など、鉛直方向D1に対して傾斜する角度が大きい部分から、受衝板部11に接岸エネルギーが入力されたとしても、中間板部12の鉛直方向D1への変位を効果的に抑制することができる。 Further, the interval I1 between the centers of the support portions 13 adjacent to each other in the vertical direction D1 is larger than the interval I2 between the centers of the support portions 13 adjacent to each other in the horizontal direction D2. That is, the space | interval I1 of the centers of the support parts 13 mutually adjacent | abutted in the perpendicular direction D1 is ensured large. Therefore, even if the berthing energy is input to the impact receiving plate portion 11 from a portion having a large inclination angle with respect to the vertical direction D1, such as the bow or stern of the ship, the displacement of the intermediate plate portion 12 in the vertical direction D1. Can be effectively suppressed.
 また支承部13が、岸壁面Qまたは受衝板部11から中間板部12に向かうに従い漸次、縮径する筒状に形成されている。したがって図5に示すように、支承部13が圧縮変形するときに、支承部13の基端部13aおよび先端部13bそれぞれを座屈させ、支承部13において基端部13aと先端部13bとの間に位置する中間部13cを、径方向の外側に向けて膨出させることで、支承部13の基端部13aおよび先端部13bを中間部13cの内側に潜り込ませることができる。その結果、支承部13の沿面方向Dへのせん断変形を規制することができる。これにより、中間板部12の沿面方向Dへの変位を効果的に規制することができる。もし一対の支承部13のゴムの弾性率が大きく異なる場合、一対の支承部13のうちのゴムの弾性率が小さい支承部13が大きくつぶれて(圧縮変形して)しまう。そして、先端部13bと中間部13cとの境界のゴムがちぎれてしまう可能性がある。 Further, the support portion 13 is formed in a cylindrical shape that gradually decreases in diameter as it goes from the quay wall surface Q or the impact plate portion 11 toward the intermediate plate portion 12. Therefore, as shown in FIG. 5, when the support portion 13 is compressed and deformed, the base end portion 13 a and the tip end portion 13 b of the support portion 13 are buckled, and the base portion 13 a and the tip end portion 13 b of the support portion 13 are buckled. By bulging the intermediate portion 13c positioned therebetween in the radial direction, the base end portion 13a and the distal end portion 13b of the support portion 13 can be embedded inside the intermediate portion 13c. As a result, shear deformation in the creeping direction D of the support portion 13 can be restricted. Thereby, the displacement to the creeping direction D of the intermediate plate part 12 can be controlled effectively. If the elastic modulus of the rubber of the pair of support parts 13 is greatly different, the support part 13 having a small elastic modulus of the rubber of the pair of support parts 13 is greatly crushed (compressed and deformed). And the rubber | gum of the boundary of the front-end | tip part 13b and the intermediate part 13c may tear off.
 また、図1から図3に示されているように、本実施形態では、中間板部12が中実の板体である。つまり中間板部12が、フレーム材が組み合わされてなる中空の枠体(スペーサ)などではない。したがって、中間板部12の強度を確保し、接岸エネルギーの入力を確実に受け止めることができる。また、中間板部12の過度な軽量化を抑え、中間板部12の沿面方向Dへの変位を規制し易くすることができる。 Further, as shown in FIGS. 1 to 3, in the present embodiment, the intermediate plate portion 12 is a solid plate body. That is, the intermediate plate 12 is not a hollow frame (spacer) formed by combining frame materials. Therefore, the strength of the intermediate plate portion 12 can be ensured and the input of the berthing energy can be reliably received. Moreover, the excessive weight reduction of the intermediate plate part 12 can be suppressed, and the displacement of the intermediate plate part 12 in the creeping direction D can be easily controlled.
 本実施形態において、一対の支承部13それぞれを形成する弾性材料として同一材料を採用することが可能であり、一対の支承部13の弾性率を互いに同等とすることができる。なお、ここでの弾性率が同等とは、支承部13間におけるJIS A型硬さの差が1°未満であること、または、支承部13間における弾性率の差が±10%以内、好ましくは±5%以内の範囲に収まることを言う。
 このように、一対の支承部13の弾性率が互いに同等である場合、防舷装置10に接岸エネルギーが入力されたときに、一方の支承部13を優先的に圧縮変形させるのではなく、両方の支承部13を同等に圧縮変形させ易くすることができる。これにより、接岸エネルギーを効果的に吸収することができる。
 また、両方の支承部13を同等に圧縮変形させることで、一方の支承部13が過度に圧縮変形するのを抑えることができる。その結果、支承部13の過度な圧縮変形を規制するストッパを設けることなく、支承部13の圧縮変形量を適正な範囲に抑えることができる。これにより、防舷装置10の簡素化を図ることができる。なお、もし一対の支承部13のゴムの弾性率が大きく異なる場合、弾性率が低い支承部13が先に圧縮してしまう。その結果、ストッパが必要になるばかりか、接岸エネルギーを効果的に吸収できなくなってしまう。そのため、受衝板部11や中間板部12の沿面方向Dへの変位量が大きくなってしまうおそれがある。
In the present embodiment, the same material can be adopted as the elastic material forming each of the pair of support portions 13, and the elastic moduli of the pair of support portions 13 can be made equal to each other. Here, the equivalent elastic modulus means that the difference in JIS A type hardness between the support portions 13 is less than 1 °, or the difference in elastic modulus between the support portions 13 is within ± 10%, preferably Means within ± 5%.
Thus, when the elastic moduli of the pair of support portions 13 are equal to each other, when the piercing energy is input to the fender 10, one of the support portions 13 is not preferentially compressed and deformed. Can be easily compressed and deformed equally. Thereby, berthing energy can be absorbed effectively.
Moreover, it can suppress that one bearing part 13 carries out an excessive compression deformation by compressing and deforming both the bearing parts 13 equally. As a result, the amount of compressive deformation of the support portion 13 can be suppressed to an appropriate range without providing a stopper that restricts excessive compressive deformation of the support portion 13. Thereby, simplification of the fender apparatus 10 can be achieved. Note that if the elastic modulus of the rubber of the pair of support portions 13 is greatly different, the support portion 13 having a low elastic modulus is compressed first. As a result, not only is a stopper required, but the berthing energy cannot be effectively absorbed. Therefore, there is a possibility that the amount of displacement in the creeping direction D of the impact receiving plate portion 11 and the intermediate plate portion 12 will increase.
 ところで前記防舷装置10において、図6に示すように、受衝板部11の平面視において、支承部13の中心から受衝板部11の外周縁11aに至るまでの鉛直方向D1に沿う最短距離を距離Xvとし、水平方向D2に沿う最短距離を距離Xhとする。 By the way, in the fender 10, as shown in FIG. 6, the shortest along the vertical direction D <b> 1 from the center of the support portion 13 to the outer peripheral edge 11 a of the impact plate portion 11 in a plan view of the impact plate portion 11. The distance is a distance Xv, and the shortest distance along the horizontal direction D2 is a distance Xh.
 このとき、4組の一対の支承部13のうち、鉛直方向D1の上側に位置する2組の一対の支承部13(以下、「上側の支承部13」という。)についての距離Xvは、受衝板部11の平面視において、支承部13の中心から鉛直方向D1の上側に向けて受衝板部11の外周縁11aに至るまでの距離である。つまり、上側の支承部13についての距離Xvは、受衝板部11の平面視において、支承部13の中心から鉛直方向D1の下側に向けて受衝板部11の外周縁11aに至るまでの距離ではない。 At this time, among the four pairs of support portions 13, the distance Xv for the two pairs of support portions 13 (hereinafter referred to as “upper support portions 13”) positioned on the upper side in the vertical direction D <b> 1 is received. This is the distance from the center of the support portion 13 to the upper side in the vertical direction D1 to the outer peripheral edge 11a of the impact plate portion 11 in a plan view of the impact plate portion 11. That is, the distance Xv with respect to the upper support portion 13 is from the center of the support portion 13 to the lower side in the vertical direction D1 when reaching the outer peripheral edge 11a of the impact plate portion 11 in a plan view of the impact plate portion 11. Not the distance.
 また、4組の一対の支承部13のうち、鉛直方向D1の下側に位置する2組の一対の支承部13(以下、「下側の支承部13」という。)についての距離Xvは、受衝板部11の平面視において、支承部13の中心から鉛直方向D1の下側に向けて受衝板部11の外周縁11aに至るまでの距離である。つまり、下側の支承部13についての距離Xvは、受衝板部11の平面視において、支承部13の中心から鉛直方向D1の上側に向けて受衝板部11の外周縁11aに至るまでの距離ではない。
 上側の支承部13についての距離Xvは、下側の支承部13についての距離Xv以下であり、本実施形態では、上側の支承部13についての距離Xvと、下側の支承部13についての距離Xvと、が同等となっている。
Further, among the four pairs of support portions 13, the distance Xv for the two pairs of support portions 13 (hereinafter referred to as “lower support portions 13”) positioned below the vertical direction D <b> 1 is: This is the distance from the center of the support portion 13 to the lower edge of the vertical direction D1 to the outer peripheral edge 11a of the impact plate portion 11 in a plan view of the impact plate portion 11. That is, the distance Xv with respect to the lower support portion 13 is from the center of the support portion 13 toward the upper side in the vertical direction D1 to the outer peripheral edge 11a of the impact plate portion 11 in a plan view of the impact plate portion 11. Not the distance.
The distance Xv with respect to the upper support portion 13 is equal to or less than the distance Xv with respect to the lower support portion 13. In this embodiment, the distance Xv with respect to the upper support portion 13 and the distance with respect to the lower support portion 13. Xv is equivalent.
 さらに、受衝板部11の平面視において、4組の一対の支承部13のうち、水平方向D2の左側に位置する2組の一対の支承部13(以下、「左側の支承部13」という。)についての距離Xhは、受衝板部11の平面視において、支承部13の中心から水平方向D2の左側に向けて受衝板部11の外周縁11aに至るまでの距離である。つまり、左側の支承部13についての距離Xhは、受衝板部11の平面視において、支承部13の中心から水平方向D2の右側に向けて受衝板部11の外周縁11aに至るまでの距離ではない。 Further, in the plan view of the impact receiving plate portion 11, of the four pairs of support portions 13, two pairs of support portions 13 (hereinafter referred to as "left support portions 13") located on the left side in the horizontal direction D2. .)) Is a distance from the center of the support 13 toward the left side in the horizontal direction D2 to the outer peripheral edge 11a of the impact receiving plate 11 in a plan view of the impact receiving plate 11. That is, the distance Xh with respect to the left support portion 13 is the distance from the center of the support portion 13 to the right side in the horizontal direction D2 to the outer peripheral edge 11a of the impact plate portion 11 in plan view of the impact plate portion 11. Not distance.
 また、受衝板部11の平面視において、4組の一対の支承部13のうち、水平方向D2の右側に位置する2組の一対の支承部13(以下、「右側の支承部13」という。)についての距離Xhは、受衝板部11の平面視において、支承部13の中心から水平方向D2の右側に向けて受衝板部11の外周縁11aに至るまでの距離である。つまり、右側の支承部13についての距離Xhは、受衝板部11の平面視において、支承部13の中心から水平方向D2左側に向けて受衝板部11の外周縁11aに至るまでの距離ではない。
 左側の支承部13についての距離Xhと、右側の支承部13についての距離Xhと、は同等となっている。
In addition, in the plan view of the impact receiving plate portion 11, of the four pairs of support portions 13, two pairs of support portions 13 (hereinafter referred to as "right support portions 13") located on the right side in the horizontal direction D2. .) Is a distance from the center of the support portion 13 to the outer peripheral edge 11a of the impact plate portion 11 toward the right side in the horizontal direction D2 in plan view of the impact plate portion 11. That is, the distance Xh with respect to the right support portion 13 is the distance from the center of the support portion 13 to the outer peripheral edge 11a of the impact plate portion 11 toward the left side in the horizontal direction D2 in plan view of the impact plate portion 11. is not.
The distance Xh for the left support portion 13 and the distance Xh for the right support portion 13 are the same.
 ここで、複数の支承部13それぞれにおいて、距離Xvおよび距離Xhのうちの少なくとも一方が距離Xである。つまり、距離Xvおよび距離Xhのうちの少なくとも一方が、受衝板部11の平面視において、支承部13の中心から受衝板部11の外周縁11aに至るまでの最短距離である。なお図示の例では、各支承部13において、距離Xvが距離Xである。 Here, in each of the plurality of support portions 13, at least one of the distance Xv and the distance Xh is the distance X. That is, at least one of the distance Xv and the distance Xh is the shortest distance from the center of the support portion 13 to the outer peripheral edge 11a of the impact plate portion 11 in a plan view of the impact plate portion 11. In the illustrated example, the distance Xv is the distance X in each support portion 13.
 また、複数の支承部13それぞれについての距離Xvのうち、最小の距離Xvを最小距離Xvminとし、複数の支承部13それぞれについての距離Xhのうち、最小の距離Xhを最小距離Xhminとしたときに、最小距離Xvminおよび最小距離Xhminのうちの少なくとも一方が最小距離Xminである。なお図示の例では、最小距離Xvminが、最小距離Xhminよりも小さく最小距離Xminである。 Of the distances Xv for each of the plurality of support portions 13, the minimum distance Xv is the minimum distance Xv min, and among the distances Xh for each of the plurality of support portions 13, the minimum distance Xh is the minimum distance Xh min . Sometimes, at least one of the minimum distance Xv min and the minimum distance Xh min is the minimum distance X min . In the illustrated example, the minimum distance Xv min is smaller than the minimum distance Xh min and is the minimum distance X min .
 以上のように、前記防舷装置10では、最小距離Xvminまたは最小距離Xhminが、最小距離Xminである。したがって、受衝板部11の平面視において、支承部13の中心から受衝板部11の外周縁11aに至るまでの鉛直方向D1または水平方向D2の最短距離が短くなっている。つまり支承部13が、受衝板部11の外周縁11aに鉛直方向D1または水平方向D2に近接しており、支承部13が沿面方向Dの広い範囲にわたって配置されている。これにより、接岸エネルギーを確実に吸収することができる。 As described above, in the fender 10, the minimum distance Xv min or the minimum distance Xh min is the minimum distance X min . Therefore, in the plan view of the impact receiving plate portion 11, the shortest distance in the vertical direction D1 or the horizontal direction D2 from the center of the support portion 13 to the outer peripheral edge 11a of the impact receiving plate portion 11 is shortened. That is, the support portion 13 is close to the outer peripheral edge 11a of the impact receiving plate portion 11 in the vertical direction D1 or the horizontal direction D2, and the support portion 13 is arranged over a wide range of the creeping direction D. Thereby, the berthing energy can be absorbed reliably.
 また、最小距離Xvminが、最小距離Xhminよりも小さく最小距離Xminである。したがって、受衝板部11の平面視において、支承部13の中心から受衝板部11の外周縁11aに至るまでの鉛直方向D1の最短距離が短くなっている。これにより、受衝板部11に、鉛直方向D1に対して傾斜する向きから接岸エネルギーが入力される場合であっても、複数組の一対の支承部13のうち、いずれか一組の一対の支承部13を、直交方向D3に確実に圧縮変形させることができる。 The minimum distance Xv min is smaller than the minimum distance Xh min and is the minimum distance X min . Accordingly, the shortest distance in the vertical direction D <b> 1 from the center of the support portion 13 to the outer peripheral edge 11 a of the impact plate portion 11 is shortened in plan view of the impact plate portion 11. Thereby, even if it is a case where piercing energy is input into the receiving plate part 11 from the direction which inclines with respect to the perpendicular direction D1, any one pair of a pair of a pair of support parts 13 is comprised. The support portion 13 can be reliably compressed and deformed in the orthogonal direction D3.
 さらに、上側の支承部13についての距離Xvが、受衝板部11の平面視において、支承部13の中心から鉛直方向D1の上側に向けて受衝板部11の外周縁11aに至るまでの距離である。その上で、下側の支承部13についての距離Xvが、受衝板部11の平面視において、支承部13の中心から鉛直方向D1の下側に向けて受衝板部11の外周縁11aに至るまでの距離である。したがって、上側の支承部13を受衝板部11の上端縁(外周縁11a)に近接させつつ、下側の支承部13を受衝板部11の下端縁(外周縁11a)に近接させることができる。これにより、受衝板部11に、鉛直方向D1に対して傾斜する向きから接岸エネルギーが入力される場合において、係留索14により中間板部12を拘束しなくとも、上側の支承部13または下側の支承部13を直交方向D3に確実に圧縮変形させることができる。 Further, the distance Xv with respect to the upper support portion 13 is from the center of the support portion 13 to the upper side in the vertical direction D1 until reaching the outer peripheral edge 11a of the impact plate portion 11 in a plan view of the impact plate portion 11. Distance. In addition, the distance Xv with respect to the lower support portion 13 is the outer peripheral edge 11a of the impact plate portion 11 from the center of the support portion 13 toward the lower side in the vertical direction D1 in the plan view of the impact plate portion 11. It is the distance to reach. Therefore, the lower support portion 13 is brought close to the lower end edge (outer peripheral edge 11a) of the impact receiving plate portion 11 while the upper support portion 13 is brought closer to the upper end edge (outer peripheral edge 11a) of the impact receiving plate portion 11. Can do. Thus, when the berthing energy is input to the impact receiving plate portion 11 from the direction inclined with respect to the vertical direction D1, the upper support portion 13 or the lower support portion 13 or the lower support portion 11 is not required even if the intermediate plate portion 12 is not restrained by the mooring line 14. The side support portion 13 can be reliably compressed and deformed in the orthogonal direction D3.
 また、上側の支承部13についての距離Xvが、下側の支承部13についての距離Xv以下である。したがって、上側の支承部13を受衝板部11の上端縁に確実に近接させることができる。これにより、受衝板部11のうち、上端縁付近から受衝板部11に接岸エネルギーが入力されたときに、上側の支承部13を直交方向D3に確実に圧縮変形させることができる。
 ここで、一般的な船舶は、船底から上方に向かうに従い、前後方向や左右方向に張り出す形状に形成されている。このような船舶は、受衝板部11のうち、上端縁付近から受衝板部11に接岸エネルギーを入力させ易い。
 以上から、上側の支承部13についての距離Xvが、下側の支承部13についての距離Xv以下であることにより、船舶から受衝板部11に接岸エネルギーが入力されたときであっても、上側の支承部13を確実に圧縮変形させ易くすることができる。
Further, the distance Xv for the upper support portion 13 is equal to or less than the distance Xv for the lower support portion 13. Therefore, the upper support portion 13 can be reliably brought close to the upper end edge of the impact receiving plate portion 11. Thereby, when the berthing energy is input to the impact receiving plate portion 11 from the vicinity of the upper end edge of the impact receiving plate portion 11, the upper support portion 13 can be reliably compressed and deformed in the orthogonal direction D3.
Here, the general ship is formed in the shape which protrudes in the front-back direction or the left-right direction as it goes upwards from the ship bottom. Such a ship can easily input berthing energy to the impact plate portion 11 from the vicinity of the upper edge of the impact plate portion 11.
From the above, even when the berthing energy is input from the ship to the impact receiving plate part 11 because the distance Xv about the upper support part 13 is equal to or less than the distance Xv about the lower support part 13, It is possible to reliably compress and deform the upper support portion 13 reliably.
 なお、本発明の技術的範囲は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 The technical scope of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
 例えば、支承部13は、ゴム以外の弾性材料で形成することも可能であり、例えば合成樹脂製にすることも可能である。
 また支承部13は、円錐台型に限られず、中空円筒型などを採用することも可能である。
 さらに一対の支承部13が、4組配置されているが、2組や3組であってもよく、5組以上であってもよい。
For example, the support portion 13 can be formed of an elastic material other than rubber, and can be made of a synthetic resin, for example.
Further, the support portion 13 is not limited to the truncated cone type, and a hollow cylindrical type or the like can also be adopted.
Furthermore, although four pairs of support parts 13 are arrange | positioned, 2 sets, 3 sets, and 5 sets or more may be sufficient.
 その他、本発明の趣旨に逸脱しない範囲で、前記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、前記した変形例を適宜組み合わせてもよい。 In addition, it is possible to appropriately replace the constituent elements in the embodiment with well-known constituent elements without departing from the spirit of the present invention, and the above-described modified examples may be appropriately combined.
 前記作用効果についての検証試験を実施した。
 この検証試験では、実施例1~9および比較例1、2の防舷装置を準備した。実施例1の防舷装置には、前記実施形態に示す防舷装置10と同等の構成を採用している。実施例2~9および比較例1、2の各防舷装置には、実施例1の防舷装置を部分的に異ならせた構成を採用している。
The verification test about the said effect was implemented.
In this verification test, the fenders of Examples 1 to 9 and Comparative Examples 1 and 2 were prepared. In the fender according to the first embodiment, the same configuration as that of the fender 10 shown in the above embodiment is adopted. Each of the fenders of Examples 2 to 9 and Comparative Examples 1 and 2 employs a configuration in which the fender device of Example 1 is partially different.
 なお、実寸の防舷装置を用いた現場での試験では、天候に影響されたり、荷重が非常に大きい船の防舷装置への当たり方を均一にすることが難しかったり等、外的要因による影響が大きい。そのため本検証試験では、ミニチュアモデルを用いた傾斜圧縮試験を実施した。ただし、実施例、比較例それぞれにおける受衝板部11や中間板部12、支承部13の材料には、実物と同じ材料を使用している。実施例、比較例の各防舷装置では、それぞれの寸法だけが実物と異なっている。 It should be noted that in on-site tests using full-scale fenders, due to external factors, such as being affected by the weather, it is difficult to make uniform contact with fenders on very heavy ships. A large impact. Therefore, in this verification test, a gradient compression test using a miniature model was performed. However, the same material as the real thing is used for the material of the impact plate part 11, the intermediate | middle board part 12, and the support part 13 in an Example and each comparative example. In each of the fenders of Examples and Comparative Examples, only the respective dimensions are different from the actual ones.
 上記各防舷装置において、支承部13は共通の構成を採用した。各防舷装置の支承部13のゴムには、全て同一のゴムを使用している。各支承部13の基端部13a側の端縁の外径(最大外径)は、150mmである。各支承部13の先端部13b側の端縁の外径(最小外径)は、85mmである。
 上記各防舷装置において相違が生じる各寸法などは、後述する表1および表2に記載している。
 以下では、実施例1との主たる相違を中心として上記各防舷装置について説明する。
In each of the above fenders, the support portion 13 has a common configuration. The same rubber is used for the rubber of the support portion 13 of each fender. The outer diameter (maximum outer diameter) of the end edge of each support portion 13 on the base end portion 13a side is 150 mm. The outer diameter (minimum outer diameter) of the end edge of each support portion 13 on the distal end portion 13b side is 85 mm.
Each dimension etc. which produce a difference in each said fender is described in Table 1 and Table 2 mentioned later.
Below, each said fender is demonstrated centering on the main difference with Example 1. FIG.
 実施例2の防舷装置では、実施例1の防舷装置に比べて、最短距離Xvminを小さくした。
 実施例3の防舷装置では、実施例1の防舷装置に比べて、最短距離Xhminを小さくした。
 実施例4の防舷装置では、実施例1の防舷装置に比べて、上側の支承部13における距離Xvを小さくし、下側の支承部13における距離Xvを大きくした。
In the fender according to the second embodiment, the shortest distance Xv min is made smaller than that of the fender according to the first embodiment.
In the fender according to the third embodiment, the shortest distance Xh min is made smaller than that of the fender according to the first embodiment.
In the fender device according to the fourth embodiment, the distance Xv at the upper support portion 13 is reduced and the distance Xv at the lower support portion 13 is increased as compared with the fender device according to the first embodiment.
 実施例5の防舷装置では、実施例1の防舷装置に対して、支承部13の配置位置を鉛直方向D1と水平方向D2とで入れ替えた。
 実施例6の防舷装置では、実施例1の防舷装置に対して、受衝板部11の平面視形状を、正方形から長方形に変更した。
In the fender device according to the fifth embodiment, the arrangement position of the support portion 13 is changed between the vertical direction D1 and the horizontal direction D2 with respect to the fender device according to the first embodiment.
In the fender according to the sixth embodiment, the shape of the receiving plate portion 11 in plan view is changed from a square to a rectangle with respect to the fender according to the first embodiment.
 実施例7の防舷装置では、実施例1の防舷装置に対して、支承部13の組数を1組追加した。追加した1組の支承部13は、受衝板部11の平面視において、前記矩形Rの対角線の交点上に配置した。
 実施例8の防舷装置では、鉛直方向D1で隣り合う支承部13の中心同士の間隔I1が、最短距離Xminと等しいものの、最短距離Xvminよりは小さい。
 実施例9の防舷装置では、水平方向D2で隣り合う支承部13の中心同士の間隔I2が、最短距離Xminと等しいものの、最短距離Xhminよりは小さい。
In the fender device according to the seventh embodiment, one set of the support portions 13 is added to the fender device according to the first embodiment. The added set of support portions 13 is arranged on the intersection of the diagonal lines of the rectangle R in the plan view of the impact plate portion 11.
The fender device of Example 8, the interval I1 between the centers in the vertical direction D1 in adjacent bearings 13, although equal to the shortest distance X min, is less than the minimum distance Xv min.
The fender device of Example 9, the interval I2 between the centers of the bearings 13 adjacent in the horizontal direction D2 is, although equal to the shortest distance X min, is less than the minimum distance Xh min.
 比較例1の防舷装置では、前記間隔I1および前記間隔I2が、いずれも最短距離Xminよりも小さい。
 比較例2の防舷装置では、中実の中間板部12に代えて、中空の枠体を採用した。
In the fender according to Comparative Example 1, both the interval I1 and the interval I2 are smaller than the shortest distance Xmin .
In the fender device of Comparative Example 2, a hollow frame was employed instead of the solid intermediate plate portion 12.
 この検証試験では、上記実施例1~9および比較例1、2の防舷装置それぞれについて、受衝板部11にエネルギーが入力された前後における受衝板部11の最大変位量を測定した。
 測定方法は、以下に示すとおりである。
 通常、変位量が最も大きい箇所は、図6に符号Pで示す受衝板部11における上部3箇所である。そのため、本検証試験において、変位量の測定位置はこれらの3箇所にした。
 そして、各防舷装置の受衝板部11に対して垂直(直交方向D3)にエネルギーを入力した。このときの前記3箇所の変位量を画像解析で判定し、最も変位量が大きい箇所の数値(変位量)を抽出して指数化した。受衝板部11の変位量が大きいほど、指標の数字が大きくなる。
In this verification test, the maximum displacement of the impact receiving plate portion 11 before and after energy was input to the impact receiving plate portion 11 was measured for each of the fenders of Examples 1 to 9 and Comparative Examples 1 and 2.
The measuring method is as follows.
Usually, the locations with the largest displacement are the three upper portions of the impact plate portion 11 indicated by the symbol P in FIG. Therefore, in this verification test, the measurement position of the displacement amount was set at these three locations.
And energy was input perpendicularly (orthogonal direction D3) with respect to the receiving plate part 11 of each fender. The displacement amounts at the three locations at this time were determined by image analysis, and the numerical value (displacement amount) at the location with the largest displacement amount was extracted and indexed. The larger the amount of displacement of the impact receiving plate portion 11, the larger the index number.
 試験結果を以下の表1、表2に示す。なお寸法は、実際のミニチュアモデルの数値である。 The test results are shown in Tables 1 and 2 below. The dimensions are those of an actual miniature model.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上から、実施例1~9では、比較例1、2よりも受衝板部11の最大変位量が抑えられることが確認された。 From the above, it was confirmed that in Examples 1 to 9, the maximum displacement amount of the impact receiving plate portion 11 was suppressed more than in Comparative Examples 1 and 2.
 なお上記検証試験では、受衝板部11に平行に荷重をかけた。ここで別途、角度を付けて受衝板部11に荷重をかけた補助試験を行った。この補助試験では、受衝板部11の表面に対して15度の角度を付けて荷重をかけた。その結果、各防舷装置は図5に示すような状態になった。そして、比較例2の防舷装置では、中間板部12が中央付近で折れ曲がった。しかしながら、それ以外の防舷装置では、特に問題はなかった。
 また、一対の支承部13のゴムの材料を互いに異ならせ、一対の支承部13の弾性率を互いに異ならせて、上記検証試験と同様の試験を行った。この場合、弾性率が低いゴムの支承部13のつぶれが大きくなり、中間部13cのゴムに破損が見られた。
In the verification test, a load was applied in parallel to the impact receiving plate portion 11. Here, separately, an auxiliary test was performed in which a load was applied to the receiving plate 11 at an angle. In this auxiliary test, a load was applied at an angle of 15 degrees with respect to the surface of the receiving plate 11. As a result, each fender was in the state shown in FIG. And in the fender apparatus of the comparative example 2, the intermediate | middle board part 12 was bent in the center vicinity. However, there was no particular problem with the other fenders.
Further, a test similar to the above-described verification test was performed by making the rubber materials of the pair of support portions 13 different from each other and changing the elastic moduli of the pair of support portions 13 from each other. In this case, the crushing of the rubber support portion 13 having a low elastic modulus was increased, and the rubber in the intermediate portion 13c was damaged.
 防舷装置の簡素化を図ることができる。 Simplification of the fender can be achieved.
10   防舷装置
11   受衝板部
11a 外周縁
12   中間板部
13   支承部
A     角部
D     沿面方向
D1   鉛直方向
D2   水平方向
I     間隔
Q     岸壁面
R     矩形
S1   第1辺部
S2   第2辺部
X     距離
Xv   距離
Xh   距離
min 最小距離
Xvmin 最小距離
Xhmin 最小距離
DESCRIPTION OF SYMBOLS 10 Barrier device 11 Receiving plate part 11a Outer peripheral edge 12 Intermediate plate part 13 Bearing part A Corner part D Creeping direction D1 Vertical direction D2 Horizontal direction I Space | interval Q Rectangle S1 First side part S2 Second side part X Distance Xv distance Xh distance X min minimum distance Xv min minimum distance Xh min minimum distance

Claims (7)

  1.  岸壁面に対向する受衝板部と、
     前記岸壁面と前記受衝板部との間に配置される中間板部と、
     前記中間板部と前記岸壁面および前記受衝板部とを各別に連結し、前記中間板部を介して互いに直結された一対の支承部と、を備えた防舷装置であって、
     前記一対の支承部は、前記受衝板部の表裏面に沿う沿面方向に複数組配置され、
     前記受衝板部の平面視において、前記支承部の中心から前記受衝板部の外周縁に至るまでの最短距離を距離Xとし、複数の前記支承部それぞれについての前記距離Xのうち、最小の前記距離Xを最小距離Xminとしたときに、
     前記受衝板部の平面視において、前記沿面方向で互いに隣り合う前記支承部の中心同士の間隔は、前記最小距離Xmin以上である防舷装置。
    An impact plate facing the quay wall;
    An intermediate plate portion disposed between the quay wall surface and the receiving plate portion;
    A fender device comprising a pair of support portions that connect the intermediate plate portion and the quay wall surface and the receiving plate portion separately and are directly connected to each other via the intermediate plate portion,
    The pair of support parts are arranged in a plurality in a creeping direction along the front and back surfaces of the impact plate part,
    In a plan view of the impact plate portion, the shortest distance from the center of the support portion to the outer periphery of the impact plate portion is defined as a distance X, and the minimum of the distances X for each of the multiple support portions When the distance X is the minimum distance Xmin ,
    Wherein in a plan view of the impact receiving plate portion, the distance between the centers of the bearing portion adjacent to each other in said creeping direction, fender device wherein is the minimum distance X min or more.
  2.  前記一対の支承部は、前記受衝板部の平面視において、矩形の角部を形成するように4組配置され、
     前記矩形は、前記沿面方向としての鉛直方向に延びる一対の第1辺部、および前記沿面方向としての水平方向に延びる一対の第2辺部を有し、
     鉛直方向で互いに隣り合う前記支承部の中心同士の間隔は、水平方向で互いに隣り合う前記支承部の中心同士の間隔よりも大きい請求項1記載の防舷装置。
    The pair of support portions are arranged in four sets so as to form rectangular corners in a plan view of the receiving plate portion,
    The rectangle has a pair of first sides extending in the vertical direction as the creeping direction, and a pair of second sides extending in the horizontal direction as the creeping direction,
    The fender device according to claim 1, wherein an interval between centers of the support portions adjacent to each other in the vertical direction is larger than an interval between centers of the support portions adjacent to each other in the horizontal direction.
  3.  前記支承部は、前記岸壁面または前記受衝板部から前記中間板部に向かうに従い漸次、縮径する筒状に形成されている請求項1または2に記載の防舷装置。 3. The fender according to claim 1 or 2, wherein the support portion is formed in a cylindrical shape that gradually decreases in diameter from the quay wall surface or the receiving plate portion toward the intermediate plate portion.
  4.  前記受衝板部の表裏面は、前記沿面方向としての鉛直方向および水平方向の両方向に沿って延び、
     前記受衝板部の平面視において、前記支承部の中心から前記受衝板部の外周縁に至るまでの鉛直方向に沿う最短距離を距離Xvとし、水平方向に沿う最短距離を距離Xhとしたときに、
     複数の前記支承部それぞれにおいて、前記距離Xvおよび前記距離Xhのうちの少なくとも一方が前記距離Xであり、
     複数の前記支承部それぞれについての前記距離Xvのうち、最小の前記距離Xvを最小距離Xvminとし、複数の前記支承部それぞれについての前記距離Xhのうち、最小の前記距離Xhを最小距離Xhminとしたときに、
     前記最小距離Xvminおよび前記最小距離Xhminのうちの少なくとも一方が前記最小距離Xminである請求項1から3のいずれか1項に記載の防舷装置。
    The front and back surfaces of the impact plate portion extend along both the vertical direction and the horizontal direction as the creeping direction,
    In a plan view of the impact plate portion, the shortest distance along the vertical direction from the center of the support portion to the outer periphery of the impact plate portion is defined as a distance Xv, and the shortest distance along the horizontal direction is defined as a distance Xh. sometimes,
    In each of the plurality of support portions, at least one of the distance Xv and the distance Xh is the distance X,
    Among the distance Xv for a plurality of the bearing portions, respectively, the minimum of the distance Xv the minimum distance Xv min, among the distance Xh for a plurality of the bearing portions, respectively, the minimum and the minimum of the distance Xh distance Xh min And when
    4. The fender according to claim 1, wherein at least one of the minimum distance Xv min and the minimum distance Xh min is the minimum distance X min .
  5.  前記最小距離Xvminが、前記最小距離Xhminよりも小さく前記最小距離Xminである請求項4に記載の防舷装置。 The fender according to claim 4, wherein the minimum distance Xv min is smaller than the minimum distance Xh min and is the minimum distance X min .
  6.  前記一対の支承部は、前記受衝板部の平面視において、矩形の角部を形成するように4組配置され、
     前記矩形は、前記沿面方向としての鉛直方向に延びる一対の第1辺部、および前記沿面方向としての水平方向に延びる一対の第2辺部を有し、
     4組の前記一対の支承部のうち、鉛直方向上側に位置する2組の前記一対の支承部についての前記距離Xvは、前記受衝板部の平面視において、前記支承部の中心から鉛直方向上側に向けて前記受衝板部の外周縁に至るまでの距離であり、
     4組の前記一対の支承部のうち、鉛直方向下側に位置する2組の前記一対の支承部についての前記距離Xvは、前記受衝板部の平面視において、前記支承部の中心から鉛直方向下側に向けて前記受衝板部の外周縁に至るまでの距離である請求項4または5に記載の防舷装置。
    The pair of support portions are arranged in four sets so as to form rectangular corners in a plan view of the receiving plate portion,
    The rectangle has a pair of first sides extending in the vertical direction as the creeping direction, and a pair of second sides extending in the horizontal direction as the creeping direction,
    Among the four pairs of support portions, the distance Xv for the two pairs of support portions positioned on the upper side in the vertical direction is a vertical direction from the center of the support portion in the plan view of the impact plate portion. It is the distance to the outer periphery of the receiving plate part toward the upper side,
    Among the four pairs of support portions, the distance Xv for the two pairs of support portions positioned on the lower side in the vertical direction is perpendicular to the center of the support portion in plan view of the impact plate portion. The fender according to claim 4 or 5, wherein the fender device is a distance to the outer peripheral edge of the receiving plate portion toward the lower side in the direction.
  7.  4組の前記一対の支承部のうち、鉛直方向上側に位置する2組の前記一対の支承部についての前記距離Xvは、鉛直方向下側に位置する2組の前記一対の支承部についての前記距離Xv以下である請求項6に記載の防舷装置。 Among the four pairs of support portions, the distance Xv for the two pairs of support portions positioned on the upper side in the vertical direction is the distance Xv for the two sets of pair of support portions positioned on the lower side in the vertical direction. The fender according to claim 6, which is equal to or less than the distance Xv.
PCT/JP2016/061383 2015-04-07 2016-04-07 Fender device WO2016163452A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017511046A JPWO2016163452A1 (en) 2015-04-07 2016-04-07 Fender
BR112017021430A BR112017021430A2 (en) 2015-04-07 2016-04-07 nautical protection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-078515 2015-04-07
JP2015078515 2015-04-07

Publications (1)

Publication Number Publication Date
WO2016163452A1 true WO2016163452A1 (en) 2016-10-13

Family

ID=57073267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061383 WO2016163452A1 (en) 2015-04-07 2016-04-07 Fender device

Country Status (3)

Country Link
JP (1) JPWO2016163452A1 (en)
BR (1) BR112017021430A2 (en)
WO (1) WO2016163452A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492751B1 (en) * 1969-03-15 1974-01-22
JPS63219715A (en) * 1987-03-06 1988-09-13 Bridgestone Corp Multi-stage type fender
JP2013028908A (en) * 2011-07-27 2013-02-07 Sumitomo Rubber Ind Ltd Fender

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492751B1 (en) * 1969-03-15 1974-01-22
JPS63219715A (en) * 1987-03-06 1988-09-13 Bridgestone Corp Multi-stage type fender
JP2013028908A (en) * 2011-07-27 2013-02-07 Sumitomo Rubber Ind Ltd Fender

Also Published As

Publication number Publication date
BR112017021430A2 (en) 2018-07-03
JPWO2016163452A1 (en) 2018-02-01

Similar Documents

Publication Publication Date Title
WO2016004770A1 (en) Elastic structure anti-impact ship
US20130139452A1 (en) Buckling restrained brace
KR101753011B1 (en) Steel slit damper for prevention of out-of-plane buckling and stress concentration
US8622374B2 (en) Buffer for absorbing impacts
CN103144739A (en) Manufacturing method of active separated bulbous bow
CN203703379U (en) Adjustable ship pipeline impact resistant pipe clamp device
CN101898621A (en) Anti-collision method of ship made of composite materials and hull structure
US20170326974A1 (en) Vehicle Body Mounting Structure For a Fuel Tank
JP5453359B2 (en) Fender
WO2016163452A1 (en) Fender device
JP2008025830A (en) Base isolation device
KR101196230B1 (en) Slamming impact absorbing device of a ship and offshore structure
KR101544167B1 (en) Blast Relief Wall for offshore
JP2017211023A (en) Structure for fixing damping material
EP3838721A1 (en) Panel member
CN205395317U (en) Antidetonation aluminium -plastic panel
US9796570B2 (en) Lift arrangement of a lift truck with mast damping devices and lift truck
JP2010089627A (en) Impact reducing device
JP6211502B2 (en) Vehicle front structure
KR20130110814A (en) Elastic supporting apparatus without demage of elastic rubber
JP5703035B2 (en) Seismic isolation device
JP2008156925A (en) Buffering unit and impact receiving structure
CN215928052U (en) Impact-resistant bed board connecting piece
CN219583692U (en) Aluminum product with high strength and high compression resistance
CN203255539U (en) Panel packaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776618

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017511046

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017021430

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 16776618

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112017021430

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171005