JPS63218844A - Apparatus for evaluating quality of rice - Google Patents

Apparatus for evaluating quality of rice

Info

Publication number
JPS63218844A
JPS63218844A JP62052614A JP5261487A JPS63218844A JP S63218844 A JPS63218844 A JP S63218844A JP 62052614 A JP62052614 A JP 62052614A JP 5261487 A JP5261487 A JP 5261487A JP S63218844 A JPS63218844 A JP S63218844A
Authority
JP
Japan
Prior art keywords
rice
sample
quality evaluation
light
quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62052614A
Other languages
Japanese (ja)
Other versions
JPH07104278B2 (en
Inventor
Toshihiko Satake
佐竹 利彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Engineering Co Ltd
Original Assignee
Satake Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Engineering Co Ltd filed Critical Satake Engineering Co Ltd
Priority to JP5261487A priority Critical patent/JPH07104278B2/en
Publication of JPS63218844A publication Critical patent/JPS63218844A/en
Publication of JPH07104278B2 publication Critical patent/JPH07104278B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To easily and accurately evaluate the quality of rice within a short time, by measuring the light absorbancy of sample rice using near infrared rays and operating the quality evaluation value of the rice on the basis of the measured value to display the same. CONSTITUTION:The sample rice charged in a supply hopper 10 is polished by a rice polishing apparatus 11 and ground by a sample grinder to be received in a sample container 13 and moved to the position directly under a near infrared analyzer 3. The light emitted from a light source 17 passes through a narrow-band pass filter 19 consisting of a plurality of filters 19a-19f having a wavelength region of 1,900-2,500nm to become near infrared monochromatic light having a specific wavelength to irradiate the sample rice in the analyzer 3. The diffused reflected light from the sample rice 24 is incident to detectors 21a, 21b to measure the intensity thereof. The measured values detected by the detectors 21a, 21b are sent to a control apparatus 4 to be stored in a memory apparatus 4b. The operation apparatus 4c of the apparatus 4 calculates the quality evaluation value of the rice on the basis of the measured values stored in the apparatus 4b and the calculation result is visually displayed or printed by a printer 8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は米の品質を評価する品質評価装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a quality evaluation device for evaluating the quality of rice.

〔従来の技術とその問題点〕 米の品質、特にその食味は、品種の選択、生産地、栽培
方法、収穫方法等の生産段階で決定するもの、乾燥、貯
蔵、精米加工等の収穫後の加工処理段階で決定するもの
、また、炊飯加工時に影響を受けるものと多岐に亘るも
のであるが、米の食味が最も大きな影響を受けるのは生
産段階であり、次に加工処理段階である。
[Conventional technology and its problems] The quality of rice, especially its taste, is determined at the production stage such as variety selection, production area, cultivation method, and harvesting method, as well as post-harvest processing such as drying, storage, and rice polishing. There are a wide variety of factors, including those determined at the processing stage and those affected during the cooking process, but the taste of rice is most influenced at the production stage, followed by the processing stage.

従来、米の品質評価、特に食味に関する評価は、複数の
専門審査官が食味評価の対象となる米の外観、香り、味
、粘り、硬さ等の各比較項目を、評価の基準となる基準
米のそれらと比較してどれだけ優れているか或いは劣っ
ているかを繰り返し試験し、その平均値をとる、所謂官
能試験により行われていた。しかしながら、この官能試
験は、人により個人差がある味覚に基づき行われるもの
であるため、たとえ複数の審査官による複数の評価結果
の平均をとったとしても、その評価値が時と場所を変え
ても不変な客観的且一つ絶対的な値とは言えない。また
、米の組成、理科学的性質を科学向に測定・分析し、前
述官能試験で得られた食味評価値との間の相関関係を調
べ、最終的には科学的に得られた測定値から米の品質評
価を行おうとする研究が進められてきた結果、米を構成
する成分のうち米の品質を評価する上で特に重要なもの
が、米の澱粉質を構成するアミロースとアミロペクチン
の含有比率、蛋白質の含有率及び水分の含有率であるこ
とが判明しつつある。
Traditionally, quality evaluation of rice, especially evaluation of taste, has been carried out by multiple expert examiners who have compared various items such as the appearance, aroma, taste, stickiness, and hardness of the rice to be evaluated. This was done through a so-called sensory test, in which tests were repeated to determine how superior or inferior it was to those of rice, and the average value was taken. However, since this sensory test is conducted based on taste, which varies from person to person, even if the results of multiple evaluations by multiple examiners are averaged, the evaluation value may vary depending on time and place. However, it cannot be said to be an unchanging objective and absolute value. In addition, we scientifically measure and analyze the composition and scientific properties of rice, examine the correlation with the taste evaluation values obtained in the aforementioned sensory test, and finally obtain the scientifically obtained measured values. As a result of research that attempts to evaluate the quality of rice, it has been found that among the components that make up rice, those that are particularly important in evaluating the quality of rice are amylose and amylopectin, which make up the starch of rice. It is becoming clear that the ratio, protein content and water content.

次に、米を構成する各成分の含有率の大小が米の品質、
特にその食味にどのように影響するかを説明する。
Next, the quality of rice is determined by the content of each component that makes up rice.
In particular, explain how it affects its taste.

一般的に、日本で食味の良い米として人気が高い銘柄は
、コシヒカリとササニシキである。
In general, Koshihikari and Sasanishiki are popular brands of rice with good taste in Japan.

−例として、コシヒカリ、ササニシキを含む数種銘柄米
の各標準精白度の白米が含有する蛋白質の含有率と澱粉
質に占めるアミロースの含有比率を比較して表にすると
次の第1表の通りとなる。なお、同一銘柄であれば各成
分の含有率が表に示すものと常に同一であるというもの
ではなく、栽培された産地の地質条件(土質、水質)に
よっても、また気象条件(気温1日照時間、降雨量等)
によっても各成分の含有率が微妙に変化することは言う
までもない。
- As an example, the following Table 1 compares the protein content and amylose content of starch in several brands of white rice, including Koshihikari and Sasanishiki, with standard milling levels. becomes. Please note that the content of each component of the same brand is not always the same as shown in the table, and may vary depending on the geological conditions (soil quality, water quality) of the region where it was grown, and the meteorological conditions (temperature, sunlight hours per day). , rainfall, etc.)
Needless to say, the content of each component changes slightly depending on the amount of water.

上記第1表より、コシヒカリとササニシキの食味が良い
とする主要素が、他の一般銘柄米に比べて、蛋白質の含
有率が少ないことと、澱粉質に占めるアミロースの含有
比率が少ないことにあることが理解できる。
From Table 1 above, the main factors that give Koshihikari and Sasanishiki good taste are that they have a lower protein content and a lower amylose content compared to other general brands of rice. I can understand that.

上述したように蛋白質の含有率及び澱粉質に占めるアミ
ロースの含有比率が米の食味、従って米の品質に大きな
影響を及ぼすこととは別に、白米の含水率も、品質、特
に炊飯時の米の粘度。
As mentioned above, apart from the fact that the protein content and the amylose content ratio in starch have a great influence on the taste of rice, and therefore on the quality of rice, the moisture content of white rice also affects the quality, especially the quality of rice during cooking. viscosity.

硬度に関連して食味に大きな影響を及ぼす。白米の含水
率が15%程度の場合、炊飯時釜の水中に浸漬しても白
米に亀裂が生じず完全な飯粒に炊き上がるが、含水率が
14%を割った白米の場合には、浸漬時の吸水速度が速
すぎて瞬間的に米粒に亀裂を生じ、間もなく米粒内質に
貫通亀裂を生じるため、その割れ目に吸水し割れ目から
糊を涌出し、また砕米も同様に一気に吸水するのでべた
ついた米飯に炊き上がり、しかも米飯が崩れているため
噛みごたえも粘りもない低品質の米飯となる。白米の含
水率が14%を割ることの主な原因は、米の収穫後の加
工処理段階、特に乾燥作業での過剰乾燥と、これに続く
精米作業での砕米の発生とm擦発熱に伴う乾燥の進行と
言える。したがって、含水率が14%を割り品質が低下
した白米としないためには、乾燥作業においては、過剰
乾燥とならないように乾燥機の機械操作が必要であるし
、また精米作業においては、部品の摩耗等による砕米の
発生あるいは摩擦発熱による過剰乾燥を誘起しないよう
に精米機の管理及び調整が必要である。
Hardness has a large effect on taste. If the moisture content of white rice is around 15%, even if it is soaked in water during cooking, the rice will not crack and will be cooked into perfect rice grains, but if the moisture content of white rice is less than 14%, it will not be possible to soak it in water. The water absorption rate is so fast that cracks appear in the rice grains instantaneously, and penetrating cracks soon occur within the rice grains.Water is absorbed into the cracks, and glue comes out of the cracks.The broken rice also absorbs water all at once, making it sticky. However, since the rice is cooked to pieces, and the rice has crumbled, the resulting rice is of low quality and lacks chewiness and stickiness. The main reason why the moisture content of polished rice is less than 14% is due to excessive drying during the post-harvest processing stage, especially during the drying process, and the generation of broken rice and heat generation during the subsequent milling process. This can be said to be the progress of drying. Therefore, in order to prevent the moisture content from dropping below 14% and resulting in poor quality polished rice, it is necessary to operate the dryer mechanically to avoid excessive drying during the drying process, and to remove parts during the rice polishing process. It is necessary to manage and adjust the rice milling machine so as not to cause broken rice due to abrasion or excessive drying due to frictional heat generation.

なお、米の品質に大きな影響を及ぼす米の上記成分、即
ち蛋白質、澱粉質、水分の各含有率の他、脂肪と脂肪酸
の含有率の大小も、その含有率が低いほど米の食味が良
いとされるように、米の食味、したがって米の品質に影
響を及ぼすが、影響の度合いは前記3成分の含有率の大
小による程大ぎなものではないと言える。
In addition to the above-mentioned components of rice that greatly affect the quality of rice, namely protein, starch, and water content, the lower the content of fat and fatty acids, the better the taste of the rice. As stated above, it affects the taste of rice and therefore the quality of rice, but it can be said that the degree of influence is not as great as the content of the three components mentioned above.

通常、精米工場では、品質の良い単一銘柄米のみを大量
に確保することが困難なため、品質において差のある数
種類或いは数銘柄の米、例えば品質評価の上位ランク米
と低位ランク米とを混合して精米し、その混合比を適度
に調節することにより品質の安定した精白米の流通を図
っているが、混合する米の数種銘柄の選定と混合比の決
定は、過去に調査した品質データを基に勘に頼って処理
がなされているのが実情で、科学的な裏付けが全くない
ために、目標通りの品質の安定した精白米とはならない
場合も多く、消費者から苦情が提起されることが度々あ
った。
Normally, it is difficult for rice milling factories to secure a large quantity of only a single brand of high quality rice, so they process several types or brands of rice with different quality, such as rice with a high quality rating and rice with a low quality rating. By mixing and polishing the rice and adjusting the mixing ratio appropriately, we aim to distribute polished rice with stable quality.However, the selection of several brands of rice to be mixed and the determination of the mixing ratio were determined based on past research. The reality is that processing is done based on intuition based on quality data, and because there is no scientific backing, there are many cases where the quality of polished rice is not as consistent as the target, leading to complaints from consumers. It was often brought up.

また一方、うるち米(一般白米)にモチ米を若干量加え
て炊飯すると、米飯の粘性が増大して食味が向上するこ
とが従来より経験的に知られているが、これを化学成分
の変化との関係で説明すると次のことが言える。澱粉質
はアミロースとアミロペクチンとによって構成されてお
り、澱粉質に占めるアミロースの含有比率が多くなると
、前掲第1表に関連して説明した通り、米の食味は低下
する傾向となる。そこで、澱粉質に占めるアミロペクチ
ンの含有比率が78%程度である一般うるち米に、アミ
ロペクチンの含有比率がほぼ100%であるモチ米を若
干量添加して炊飯すれば、アミロペクチンの含有比率が
多い、即ちアミロースの含有比率が少ない米の食味とほ
ぼ同等に食味が向上するのである。しかし、アミロペク
チン含有比率がある適度を越すと、粘性が強くなり過ぎ
て米飯として逆に食味を低下させることになる。
On the other hand, it has been empirically known that when a small amount of glutinous rice is added to non-glutinous rice (general white rice) and cooked, the viscosity of the rice increases and the flavor improves. Explaining this in terms of the relationship, the following can be said. Starch is composed of amylose and amylopectin, and as the content ratio of amylose in starch increases, the taste of rice tends to deteriorate, as explained in connection with Table 1 above. Therefore, if you add a small amount of sticky rice, which has an amylopectin content of almost 100%, to regular non-glutinous rice, which has a starch content of about 78%, and cook the rice, the amylopectin content will be high. The taste is improved to be almost the same as that of rice with a low amylose content. However, if the amylopectin content exceeds a certain level, the viscosity becomes too strong and the taste of cooked rice deteriorates.

以上述べたことにより、米を構成する化学成分を科学的
に測定・分析することにより、米の品質評価を客観的に
行うこと、また一般的に品質の良いとされる特定の有名
銘柄にとられれず、一般銘柄米の中から良品質の米を見
出すこと、さらには、銘柄の異なる又は成分含有率の異
なる複数種類の米を混合して米の品質、あるいは食味を
向上させることのテーマが生まれる。
As described above, it is possible to objectively evaluate the quality of rice by scientifically measuring and analyzing the chemical components that make up rice, and to evaluate the quality of rice objectively by scientifically measuring and analyzing the chemical components that make up rice. The theme is to find high-quality rice from common brands of rice, and to improve the quality or taste of rice by mixing multiple types of rice with different brands or ingredient contents. to be born.

本発明は上記に鑑み、米の品質差を生じる要因である米
を構成する成分の多少が吸光度差として顕著に現れる波
長の近赤外線を用いて吸光度を測定し、その測定値と品
質評価のための品質評価係数値に基づき、米の品質評価
値を演算・表示することのできる米の品質評価装置を提
供することを技術的課題とする。
In view of the above, the present invention measures the absorbance using near-infrared rays at a wavelength where the difference in absorbance of some of the ingredients that make up rice, which is a factor that causes differences in rice quality, is noticeable as a difference in absorbance, and the measured value and quality evaluation. A technical problem is to provide a rice quality evaluation device that can calculate and display a rice quality evaluation value based on a quality evaluation coefficient value.

C問題点を解決するための手段) 上記問題点を解決するために本発明は、光源と、該光源
が発する光のうち1900nm〜 2500nmの波長
域において、異なる品質の試料米に対して近赤外線光を
照射したとき、米の品質差が吸光度差として顕著に現わ
れる波長のみを透過する狭帯域透過フィルターと、前記
測定部に配置する試料米からの光量を検出する検出器と
を備えた近赤外分光分析装置と、 既知の米の官能試験による品質評価と吸光度とで演算さ
れ設定された品質評価値計算のための品質評価係数値を
記憶する記憶装置と、この記憶装置に記憶された前記品
質評価係数値と前記検出器からの検出信号とに基づき、
試料米の品質評価値とを演算する演算装置とを備えた制
御装置と、 この制御装置に接続され、前記演算装置が演算した試料
米の品質評価値を可視表示又は印字表示する表示装置と
、 前記試料米が充填され、前記近赤外分光分析装置の前記
測定部に配置される試料容器とによって形成されるもの
である。
Means for Solving Problem C) In order to solve the above problems, the present invention provides a light source and a near-infrared ray for sample rice of different quality in the wavelength range of 1900 nm to 2500 nm of the light emitted by the light source. A near-infrared sensor equipped with a narrow-band transmission filter that transmits only wavelengths at which differences in rice quality become noticeable as differences in absorbance when irradiated with light, and a detector that detects the amount of light from the sample rice placed in the measurement section. an external spectroscopic analyzer; a storage device for storing a quality evaluation coefficient value for calculating a quality evaluation value calculated and set based on the known quality evaluation by a sensory test of rice and the absorbance; Based on the quality evaluation coefficient value and the detection signal from the detector,
a control device equipped with a calculation device that calculates the quality evaluation value of the sample rice; a display device connected to the control device that visually or print-displays the quality evaluation value of the sample rice calculated by the calculation device; It is formed by a sample container filled with the sample rice and placed in the measurement section of the near-infrared spectrometer.

(作 用) 異なる試料米に対して近赤外線光を照射したとき、複数
の品質の異なる米の品質差が吸光度差として顕著に現わ
れる。波長が見られる。
(Function) When different rice samples are irradiated with near-infrared light, the quality differences between multiple rices of different quality appear conspicuously as differences in absorbance. Wavelengths can be seen.

本発明はこの吸光度特性を利用し、吸光度を検出する検
出器からの検出信号と、品質評価値計算のためにあらか
じめ官能試験により求めた多数の米の品質評価値と同じ
米の吸光度とで演算した品質評価係数値に基づき、試料
米の品質評価値を演算して表示するものである。
The present invention utilizes this absorbance characteristic and calculates the absorbance using the detection signal from the detector that detects the absorbance and the absorbance of the same rice as the quality evaluation value of a large number of rice obtained in advance through a sensory test in order to calculate the quality evaluation value. Based on the determined quality evaluation coefficient value, the quality evaluation value of the sample rice is calculated and displayed.

〔発明の実施例〕[Embodiments of the invention]

以下、第1図〜第7図に例示するところに従って、本発
明に使用する装置及び作業方法を説明する。
Hereinafter, the apparatus and working method used in the present invention will be explained according to the examples shown in FIGS. 1 to 7.

第1図は本発明による米の品質評価装置1を正面から見
たときの概略図である。キャビネット2の内部には、そ
の詳細な構成は次の第2図を参照して説明する近赤外分
光分析装置3及び制御装置4が配設される。キャビネッ
ト2の前面パネルには、被測定試料米を入れる試料容器
を装備するための試料容器装着箱5、装置の操作手順や
演算結果等を可視表示する発光ダイオード又はCRT形
式の表示装置6、操作用ブツシュボタン7及び演算結果
のハードコピーを可能とするプリンター8が配設される
。制御装置4は、近赤外分光分析装置3の光源、検出器
や、表示装置6、操作用ブツシュボタン7、プリンター
8等に接続され各種信号を処理するための入出力信号処
理装置4aと、品質評価値を計算するために設定された
品質評価係数値、各成分含有率を計算するための成分換
算係数値、入力装@(キーボード)9を介して入力され
る各銘柄削成いは等駅別の米価類、各種補正値及び各種
制御手順等を記憶するための記憶装置4bと、近赤外分
光分析装置3により得られる吸光度測定値と前記品質評
価係数値とに基づき米の品質評価値等を演算するための
演算装置4cとから成る。なお、米の主要成分ごとに個
別に設定される品質評価係数値、成分換算計数値、必要
な補正値が、記憶装置4b内の読み出し専用のメモリ(
以下、ROMと言う)に予め記憶されていて、品質評価
装置1に要求される機能が単に米の品質評価値を求める
ものであり、各種設定条件に基づく各成分含有率や最適
混合比率を求める機能が要求されないような場合には、
入力装置としてのキーボード9は必ずしも必要ではない
。また、プリンター8は内蔵型に限られず、外部接続型
であっても構わない。
FIG. 1 is a schematic diagram of a rice quality evaluation apparatus 1 according to the present invention viewed from the front. Inside the cabinet 2, a near-infrared spectrometer 3 and a control device 4, the detailed configuration of which will be explained with reference to FIG. 2 below, are disposed. The front panel of the cabinet 2 includes a sample container mounting box 5 for mounting a sample container containing a sample to be measured, a display device 6 in the form of a light emitting diode or CRT for visually displaying the operating procedures and calculation results of the device, and an operation panel. A pushbutton 7 and a printer 8 capable of making a hard copy of the calculation results are provided. The control device 4 includes an input/output signal processing device 4a that is connected to the light source and detector of the near-infrared spectrometer 3, a display device 6, an operation button 7, a printer 8, etc., and processes various signals. , the quality evaluation coefficient value set for calculating the quality evaluation value, the component conversion coefficient value for calculating the content rate of each component, and the reduction of each brand input via the input device @ (keyboard) 9. A storage device 4b for storing rice prices for each station, various correction values, various control procedures, etc., and the quality of rice are determined based on the absorbance measurement value obtained by the near-infrared spectrometer 3 and the quality evaluation coefficient value. It consists of a calculation device 4c for calculating evaluation values and the like. In addition, the quality evaluation coefficient value, component conversion count value, and necessary correction value that are individually set for each main component of rice are stored in a read-only memory (
The function required of the quality evaluation device 1 is simply to obtain the quality evaluation value of rice, and to obtain the content rate of each component and the optimal mixing ratio based on various setting conditions. In cases where the functionality is not required,
The keyboard 9 as an input device is not necessarily required. Further, the printer 8 is not limited to a built-in type, and may be an externally connected type.

キャビネット2の上部には試料米を投入する供給ホッパ
ー10が装着され、供給ホッパー10の下端に接続して
前記試料米を精米する精米装置11が配設される。精米
装置11の下方には前記試料米を微細粒に粉砕する試料
粉砕装置12が設けられ、さらに試料粉砕装置12の下
方には、試料容器13を近赤外分光分析装置3の測定部
の直下位置まで移動させる試料供給装置14等からなる
試料供給装置が設けられる。
A supply hopper 10 into which sample rice is input is mounted on the upper part of the cabinet 2, and a rice polishing device 11 connected to the lower end of the supply hopper 10 for polishing the sample rice is disposed. A sample crusher 12 for crushing the sample rice into fine grains is provided below the rice milling device 11, and further below the sample crusher 12, a sample container 13 is placed directly below the measurement section of the near-infrared spectrometer 3. A sample supply device including a sample supply device 14 and the like is provided to move the sample to the position.

符号15は、試料粉砕装置によって粉砕された試料米が
試料容器13に必要量充填された後の不要試料米や、測
定が終了して排出された試料を受は取るための受箱を示
し、キャビネット2の前面パネルから出し入れできる。
Reference numeral 15 indicates a receiving box for receiving unnecessary sample rice after the sample container 13 is filled with the required amount of sample rice crushed by the sample crushing device, and the sample discharged after the measurement is completed; It can be put in and taken out from the front panel of cabinet 2.

また、符号16は、外部から単独に試料米を測定部に供
給するときの外部供給部である。
Further, reference numeral 16 denotes an external supply section for supplying sample rice to the measurement section independently from the outside.

第2図は、キャビネット2の内部に配設される近赤外分
光分析装置3の一実施例の要部断面図である。図示され
る近赤外分光分析装置3は反射式のものであり、主なる
構成部品として、光源17、反射鏡18、狭帯域透過フ
ィルター19、積分球20及び検出器218.21bを
有する。光源17から発せられ、適当な光学系(図示せ
ず)を通って平行光線となった近赤外線光は、狭帯域透
過フィルター19を透過することにより特定波長の近赤
外単色光となった後、傾斜角度を自由に変えられるよう
に構成された反射鏡18により、積分球20の上部を間
口して設けられた採光窓22に向けて方向変換させられ
る。こうして、積分球20の内部に入った近赤外単色光
は、積分球20の底部を開口して設けられた測定部23
から試料容器3内の試料米24に真上から照射される。
FIG. 2 is a sectional view of a main part of an embodiment of the near-infrared spectrometer 3 disposed inside the cabinet 2. As shown in FIG. The illustrated near-infrared spectrometer 3 is of a reflective type, and has a light source 17, a reflecting mirror 18, a narrow band transmission filter 19, an integrating sphere 20, and a detector 218.21b as main components. The near-infrared light emitted from the light source 17 passes through an appropriate optical system (not shown) and becomes parallel light, and after passing through the narrow-band transmission filter 19, it becomes near-infrared monochromatic light with a specific wavelength. By means of a reflecting mirror 18 whose inclination angle can be freely changed, the direction of the integrating sphere 20 is changed toward a lighting window 22 provided through the upper part of the integrating sphere 20. In this way, the near-infrared monochromatic light that has entered the interior of the integrating sphere 20 is transmitted to the measuring section 23 provided by opening the bottom of the integrating sphere 20.
The sample rice 24 in the sample container 3 is irradiated from directly above.

試料米24からの拡散反射光は、積分球20の内壁に反
射しながら、最終的には、測定部23を中心に対象な位
置に配設される一対の検出器21a 、21bに到達し
、これにより反射光の強度が測定される。なお、本実施
例における検出器は2個設けられているが、その数は2
個に限られず、1個であっても又は3個以上であっても
構わない。
The diffusely reflected light from the sample rice 24 is reflected on the inner wall of the integrating sphere 20, and finally reaches a pair of detectors 21a and 21b arranged at symmetrical positions with the measuring section 23 at the center. This measures the intensity of the reflected light. Note that although two detectors are provided in this embodiment, the number of detectors is 2.
The number is not limited to 1, or may be 1 or 3 or more.

ここで、光源17と反射鏡18との間に設けられ、光源
17から出た光がこれを透過することにより特定波長の
近赤外単色光となる狭帯域透過フィルター19の構成及
びこれに要求される物理的特性等を説明する。狭帯域透
過フィルター19は、それぞれが異なる主波長透過特性
を有する任意複数個のフィルター、例えば6個のフィル
ター19a〜19fからなり、これらを回転円盤に取り
付け、これを適当角度づつ回動させることにより、光源
17と反射鏡18とを結ぶ線状に所望のフィルター19
a〜19fが位置するように順次選択・交換できる構成
とする。なお、フィルターの透過特性で主波長とは、フ
ィルターの面に対して入射光軸が直角のときに透過する
近赤外線のうちの最大透過波長のことである。狭帯域透
過フィルター19の他の具体的構成例としては、光源1
7及び反射鏡18を内部に位置させ、複数個のフィルタ
ー19a〜1(Hを角柱状に構成し、これを電動機25
等の手段によって中心点Pを軸として回転可能とする構
成もある(第3図参照)。なお、狭帯1Ii1透過フイ
ルター19の入射光軸に対するその回転面の傾斜角度を
、電動機等の手段により微細に且つ連続的に調整できる
ようにしておけば、各フィルターが持つ透過特性の主波
長からシフトした異なる波長の近赤外単色光を連続的に
作り出すことができる。
Here, the configuration of the narrow band transmission filter 19, which is provided between the light source 17 and the reflecting mirror 18, and through which the light emitted from the light source 17 becomes near-infrared monochromatic light of a specific wavelength, and the requirements therefor. Explain the physical characteristics etc. The narrowband transmission filter 19 consists of any plurality of filters, each having a different dominant wavelength transmission characteristic, for example, six filters 19a to 19f, and is mounted on a rotating disk and rotated by an appropriate angle. , a desired filter 19 is arranged in a line connecting the light source 17 and the reflecting mirror 18.
The configuration allows selection and replacement in sequence so that a to 19f are located. Note that in the transmission characteristics of a filter, the dominant wavelength refers to the maximum transmission wavelength of near-infrared rays transmitted when the incident optical axis is perpendicular to the surface of the filter. As another specific example of the narrow band transmission filter 19, the light source 1
7 and a reflecting mirror 18 are located inside, and a plurality of filters 19a to 1 (H) are configured in a prismatic shape, and this is connected to the electric motor 25.
There is also a configuration that allows rotation around the center point P by means such as (see FIG. 3). In addition, if the inclination angle of the rotating surface of the narrow band 1Ii1 transmission filter 19 with respect to the incident optical axis can be finely and continuously adjusted by means such as an electric motor, it is possible to adjust the angle from the main wavelength of the transmission characteristic of each filter. It can continuously produce shifted near-infrared monochromatic light of different wavelengths.

次に、狭帯域透過フィルター19に要求される物理的特
性を第4図に基づき説明する。第4図は、異なる試料米
に対して波長が連続的に変化する近赤外線光を照射した
ときの、照射波長と吸光度との関係を示すグラフ〈吸光
度曲線)である。吸光度logio/Iは、基準照射光
量(全照射光m> roに対する試料米からの反射光f
f1lの比の逆数の常用対数である。実線で示す曲線A
は前掲第1表における日本晴、一点鎖線で示す曲線Bは
コシヒカリ、点線で示す曲線Cはイシカリの場合の吸光
度曲線をそれぞれ示す。同図から、近赤外線の1900
mm以下の短波長域は低吸光度域であって、アミロース
を始め蛋白質、水分など米を構成する各成分の含有量の
多少に対する吸光度差が微差であるが、波長1900n
mを境として高吸光度域となり、前記各成分の含有量の
多少が吸光度差として顕著に現れていることが容易に理
解できる。本発明はこの現象を解明し、それを利用して
異なる品質の米の品質差を測定するものであるため、測
定のために米に照射される近赤外単色光の波長としては
、波長領域1900〜2500nmのうち、各成分に対
して吸光度曲線上特異的なピークが見られる、例えば1
940m 、 2100mm、 2180rv、 22
30mm、 2280mm。
Next, the physical characteristics required of the narrowband transmission filter 19 will be explained based on FIG. 4. FIG. 4 is a graph (absorbance curve) showing the relationship between irradiation wavelength and absorbance when different rice samples are irradiated with near-infrared light whose wavelength changes continuously. The absorbance logio/I is the reflected light f from the sample rice with respect to the reference irradiation light amount (total irradiation light m>ro)
It is the common logarithm of the reciprocal of the ratio of f1l. Curve A shown as a solid line
In Table 1 above, Curve B shows the absorbance curve for Nipponbare, Curve B shown by a dashed line shows the absorbance curve for Koshihikari, and Curve C shown by a dotted line shows the absorbance curve for Ishikari. From the same figure, near-infrared 1900
The short wavelength region of 1,900 nm or less is a low absorbance region, and there is a slight difference in absorbance depending on the content of each component that makes up rice, such as amylose, protein, and water.
It can be easily understood that the absorbance becomes a high absorbance region with m as the boundary, and that the difference in the content of each of the above-mentioned components is noticeable as a difference in absorbance. The present invention elucidates this phenomenon and uses it to measure the quality difference between rice of different quality. Therefore, the wavelength of the near-infrared monochromatic light irradiated onto the rice for measurement is within the wavelength range. Among 1900 to 2500 nm, specific peaks can be seen on the absorbance curve for each component, for example 1
940m, 2100mm, 2180rv, 22
30mm, 2280mm.

2310nll1等の波長が適する。したがって、狭帯
域透過フィルター19が具える各フィルター19a〜1
9fは、異なる品質の米品質差すなわち、米を構成する
各成分の測定に適した前記各波長の近赤外単色光を作る
べく、前記各波長を主波長として持つことが要求される
A wavelength such as 2310nll1 is suitable. Therefore, each of the filters 19a to 1 included in the narrowband transmission filter 19
9f is required to have each of the above-mentioned wavelengths as a main wavelength in order to produce near-infrared monochromatic light of each of the above-mentioned wavelengths suitable for measuring differences in rice quality between different qualities, that is, each component constituting rice.

次に、第3図、第5図〜第7図を参照して精米装置11
.試料粉砕装置12並びに試料供給装置14等からなる
試料供給装置の詳細を説明する。
Next, referring to FIGS. 3 and 5 to 7, the rice polishing device 11
.. The details of the sample supply device including the sample crushing device 12, sample supply device 14, etc. will be explained.

まず、精米装置11の構成から説明する。供給ホッパー
10の下部開口部26には、手動又は電磁ソレノイド(
図示せず)により作動されるシャッター27が設けられ
る。下部開口部26には漏斗台28の上端が接続される
とともに漏斗台28の下端は精米装置11の供給部2つ
に接続される。供給部29の下方には回転軸30に軸着
されるネジロール31が設けられ、回転軸30にはネジ
ロール31に連続して撹拌ロール32が軸着される。そ
して、前記ネジロール31及び撹拌ロール32を内包す
る多孔壁の除糠精白筒33が円筒又は多角筒に形成され
て横設してあり、これにより、除糠精白筒33と撹拌ロ
ール32との間隙を主要部とする精白室34が形成され
る。除糠精白筒33の周囲は集糠室35となすとともに
、集糠室35の下部は集糠ホッパー36に形成し、集糠
ホッパーの下端は糠ダクト37に連絡され、糠ダクト3
7の終端は図外のサイクロンコレクター等に接続される
。符号84は回転軸3oを回転させる電動機である。
First, the configuration of the rice polishing device 11 will be explained. The lower opening 26 of the supply hopper 10 is equipped with a manual or electromagnetic solenoid (
A shutter 27 is provided which is actuated by a shutter (not shown). The upper end of the funnel stand 28 is connected to the lower opening 26, and the lower end of the funnel stand 28 is connected to two supply parts of the rice milling device 11. A screw roll 31 is provided below the supply section 29 and is connected to a rotating shaft 30, and a stirring roll 32 is connected to the rotating shaft 30 and is connected to the screw roll 31. A bran removing and polishing cylinder 33 having a porous wall and containing the screw roll 31 and stirring roll 32 is formed into a cylindrical or polygonal cylinder and is installed horizontally. A whitening room 34 having a main part is formed. The periphery of the rice bran polishing cylinder 33 is a rice bran collection chamber 35, and the lower part of the rice bran collection room 35 is formed into a rice bran collection hopper 36, and the lower end of the rice bran collection hopper is connected to a rice bran duct 37.
The terminal end of 7 is connected to a cyclone collector or the like (not shown). Reference numeral 84 is an electric motor that rotates the rotating shaft 3o.

供給部29の反対側端部の排出口38には、抵抗板39
が排出口38に対して遠近可能に設けられる。すなわち
、一端を抵抗板39に連結したレバー40の他端を正逆
回転電動機41の軸に直結した螺軸42に螺着し、正逆
回転電動機41の回転によりレバー40が支点部を中心
に回動することによって抵抗板39を排出口38に対し
て遠近移動させる。抵抗板39には米粒白変検出器43
が装着してあり、これにより試料米の精白度を一定に精
米する。ここでいう精白度とは白変、白皮上昇(玄米に
対する白変の程度)、歩留り等であるが、本実施例では
白変について説明する。すなわち、白変とは照射光を1
00%吸収するときを0度とし、100%反射するとき
を100度ととし、その間を100等分した数値で表わ
す。つづいて、第5図に基づいて詳述すると、抵抗板3
9の一部を開口するとともに、この開口部44に透明板
45を埋設し、透明板45に向く発光体46と受光素子
47とが設けられる。この発光体46.受光素子47と
正逆回転電動機41とは制御装置4を介して連結され、
制御装置4の記憶装置4bには吸光度測定に適した基準
白皮があらかじめ設定しである。なお、米粒白変検出器
43は、本実施例においては抵抗板39に装着したが、
排出口38付近であれば他の部位でも構わない。
A resistance plate 39 is provided at the outlet 38 at the opposite end of the supply section 29.
are provided so as to be movable from and near the discharge port 38. That is, one end of the lever 40 is connected to the resistance plate 39, and the other end of the lever 40 is screwed onto a screw shaft 42 directly connected to the shaft of a forward-reverse rotating electric motor 41, and the lever 40 is rotated about the fulcrum by the rotation of the forward-reverse rotating electric motor 41. By rotating, the resistance plate 39 is moved toward and away from the discharge port 38. A rice grain whitening detector 43 is installed on the resistance plate 39.
is installed, which allows the sample rice to be polished to a constant level of polishing. The degree of polishing referred to here includes white discoloration, increase in white skin (degree of white discoloration relative to brown rice), yield, etc., and in this example, white discoloration will be explained. In other words, white discoloration is when the irradiation light is 1
The time of 00% absorption is defined as 0 degrees, the time of 100% reflection is defined as 100 degrees, and the distance between them is expressed as a numerical value divided into 100 equal parts. Continuing, to explain in detail based on FIG. 5, the resistance plate 3
9 is partially opened, a transparent plate 45 is buried in this opening 44, and a light emitter 46 and a light receiving element 47 facing the transparent plate 45 are provided. This light emitter 46. The light receiving element 47 and the forward/reverse rotary motor 41 are connected via the control device 4,
A reference white skin suitable for absorbance measurement is preset in the storage device 4b of the control device 4. Note that the rice grain whitening detector 43 is attached to the resistance plate 39 in this embodiment, but
Any other location may be used as long as it is near the discharge port 38.

排出口38には機外に通じる排出樋48が接続されると
ともに、排出樋48から分岐して粉砕装置12の供給部
上に臨む連絡樋49が形成され、排出fil!l 48
と連絡149との分岐部には電磁ソレノイド等(図示せ
ず)によって作動する切換弁50が設けられる。この切
換弁50は、常時は連絡樋49側を閉塞しており、米粒
白変検出器43が制御部4に設定した前記基準精白度を
検出したときのみ前記ソレノイドを作動して連絡樋49
を連通させるよう形成される。
A discharge gutter 48 leading to the outside of the machine is connected to the discharge port 38, and a communication gutter 49 is formed that branches from the discharge gutter 48 and faces above the supply section of the crushing device 12, and the discharge fil! l 48
A switching valve 50 operated by an electromagnetic solenoid or the like (not shown) is provided at a branch point between the communication terminal 149 and the communication terminal 149. This switching valve 50 normally closes the communication gutter 49 side, and operates the solenoid to close the communication gutter 49 only when the rice grain whitening detector 43 detects the reference whiteness level set in the control section 4.
formed so as to communicate with each other.

次に、試料粉砕装置12について詳述jる。Next, the sample crushing device 12 will be described in detail.

上部に供給部51を、下部に排出部52を開口したケー
シング53に回転軸54を回転自在に掛は渡し、回転軸
54には先端部に刃部を形成した粉砕翼55並びに撹拌
翼56とが植設しである。また、供給部51と排出部5
2とには供給品開閉M57と排出部開閉M58とが設け
られるとともに、各開閉蓋57.58にはそれぞれ各開
閉蓋57.58を閉める方向に付勢する引張りコイルば
ね59.60と、引張りコイルばね59.60に抗して
各開閉M57.58を開放させる電磁ソレノイド61.
62が設けられる。63は回転軸54に直結した可変速
電動機であり、可変速電動機63はロードセル秤64上
に設置され、これにより粉砕装置に全体の重量を計測す
る。そして、米粒白変検出器43が基準白皮を検出して
切換弁50が作動すると同時に電磁ソレノイド61が励
磁して供給品開閉M57を解放し、ケーシング53内に
一定重徂の試料光が投入されると切換弁50が切替わる
とともに供給部間閉蓋57が閉まり、可変速電動Ia6
3が高速回転してケーシング53内の試料光を微細に粉
砕した後、電磁ソレノイド62によって排出部開閉M5
8を開閉して前記試料光をホッパー65内に排出する、
という一連の動作は制御装置4の記憶装置4b  (R
OM>に記憶されており、前記各電磁ソレノイド及び電
動機を作動させる駆動回路(図示せず)は制御装置4に
接続される。なお、試料光を粉砕しないで測定する際は
、操作用ブツシュボタン7の[無粉砕jボタンを、ON
することにより、可変速電動機63は低速回転するので
、試料光が複数種の異なった米粒であっても十分撹拌作
用が施される。
A rotary shaft 54 is rotatably hung over a casing 53 which has a supply section 51 at the top and a discharge section 52 at the bottom, and the rotary shaft 54 has crushing blades 55 and stirring blades 56 each having a blade at the tip. is planted. In addition, the supply section 51 and the discharge section 5
2 is provided with a supply opening/closing M57 and a discharge section opening/closing M58, and each opening/closing lid 57.58 is provided with a tension coil spring 59.60 that biases each opening/closing lid 57.58 in the direction of closing, An electromagnetic solenoid 61. which opens each opening/closing M57.58 against a coil spring 59.60.
62 is provided. Reference numeral 63 denotes a variable speed electric motor directly connected to the rotating shaft 54, and the variable speed electric motor 63 is installed on a load cell scale 64, thereby measuring the total weight of the crushing device. Then, the rice grain whitening detector 43 detects the reference white skin, and the switching valve 50 is activated, and at the same time, the electromagnetic solenoid 61 is energized to release the supply opening/closing M57, and a sample light of a certain weight is injected into the casing 53. When the switching valve 50 is switched, the supply section closing lid 57 is closed, and the variable speed electric Ia6
3 rotates at high speed to finely crush the sample light inside the casing 53, and then the electromagnetic solenoid 62 opens and closes the discharge section M5.
8 to open and close the sample light to discharge the sample light into the hopper 65;
This series of operations is carried out in the storage device 4b (R
A drive circuit (not shown) for operating each of the electromagnetic solenoids and the electric motor is connected to the control device 4. In addition, when measuring the sample light without pulverizing it, turn on the [Non-pulverizing j button] of the operation button 7.
As a result, the variable speed electric motor 63 rotates at a low speed, so that even if the sample light is a plurality of different types of rice grains, a sufficient stirring action is performed.

次に、第7図を併せて参照しながら、前記粉砕装置12
で微細に粉砕された試料光(粉砕しないで撹拌だけの場
合もある)を、試料容器13に吸光度測定可能な状態で
充填し、そしてこの試料容器13を近赤外分光分析装置
3の測定部23の直下位置まで移動させる試料粉砕装置
14について説明する。
Next, referring also to FIG. 7, the crushing device 12
The sample light that has been finely ground (in some cases, it is only stirred without being ground) is filled into the sample container 13 in a state where the absorbance can be measured. The sample crushing device 14 that is moved to a position directly below the sample crushing device 23 will be explained.

試料容器ゴ3は、試料容器移動ガイド66に固着した容
器ホルダー67に設けられた案内溝68に対して装脱自
在になっている。試料容器移動ガイド66の中空軸には
断面丸状の支持軸69を挿入し、該支持軸69の一方側
は回動用ハンドル70に装着し、また他方側は軸受台7
1が軸支する。試料容器移動ガイド66の外周囲部長さ
方向にはラック72が固設されており、このラック72
には、試料容器移動ガイド66に遊嵌されたモータ一台
73に装着された電動1174のビニオンギア75が噛
合する。モータ一台73は、伸縮ロッド76を備える電
磁石77によって支点台78に連結される。この支点台
78は、キャビネット2の底壁部に固設された受台79
に固着される。符号80は、試料容器13上の粉砕試料
(又は無粉砕試料)を圧縮充填するとともに、過量試料
を取り除き表面を平たん面とするための回転ローラー、
符号81は測定が終った試料を試料容器13内から噴風
により排除するとともに清掃を行うための噴射ノズル、
符号82は試料容器13の移動時、透明ガラス板83に
接してこれを清掃する清掃器である。なお透明ガラス板
83は、粉砕された試料光等が積分球20内部に侵入し
ないよう測定部23に張設されるものである。
The sample container go 3 can be freely inserted into and removed from a guide groove 68 provided in a container holder 67 fixed to a sample container movement guide 66. A support shaft 69 having a round cross section is inserted into the hollow shaft of the sample container movement guide 66, and one side of the support shaft 69 is attached to a rotating handle 70, and the other side is attached to a bearing stand 7.
1 is pivoted. A rack 72 is fixedly installed in the length direction of the outer circumference of the sample container moving guide 66.
A binion gear 75 of an electric motor 1174 attached to a motor 73 that is loosely fitted to the sample container moving guide 66 meshes with the sample container movement guide 66 . One motor 73 is connected to a fulcrum 78 by an electromagnet 77 with a telescoping rod 76 . This fulcrum 78 is connected to a pedestal 79 fixed to the bottom wall of the cabinet 2.
is fixed to. Reference numeral 80 denotes a rotating roller for compressing and filling the pulverized sample (or non-pulverized sample) on the sample container 13 and removing excess sample to make the surface flat;
Reference numeral 81 denotes an injection nozzle for removing the sample after measurement from inside the sample container 13 with a jet of air and cleaning it;
Reference numeral 82 denotes a cleaning device that comes into contact with the transparent glass plate 83 to clean it when the sample container 13 is moved. Note that the transparent glass plate 83 is stretched over the measuring section 23 so that the pulverized sample light and the like do not enter into the integrating sphere 20.

次に、上記実施例における具体的動作を説明する。まず
、操作用ブツシュボタン7の操作により光源17を点灯
さぜ、光源17から発せられた光に基づき測定部23に
到達する特定波長の近赤外単色光が安定するまで、近赤
外分光分析装置3の全体を予熱する。
Next, specific operations in the above embodiment will be explained. First, the light source 17 is turned on by operating the operating button 7, and based on the light emitted from the light source 17, near-infrared monochromatic light of a specific wavelength reaching the measuring section 23 is stabilized. Preheat the entire analyzer 3.

近赤外分光分析装置3の予熱するとともに、供給ホッパ
ー10内に試料光(玄米又は白米)を投入し、操作用ブ
ツシュボタン7の操作により電動機74を回転させ、試
料容器13を試料粉砕装置12の下方に設けたホッパー
65の直下所定位置に移動させる。試料容器13の所定
位置への移動が完了し、電動Ia74の作動が停止した
ら、シャッター27を手動又は電磁ソレノイド(図示せ
ず)によって開成し、供給ホッパー10内の試料光を下
部開口部26を介して放出する。
While preheating the near-infrared spectrometer 3, sample light (brown rice or white rice) is put into the supply hopper 10, and the electric motor 74 is rotated by operating the operating button 7, and the sample container 13 is transferred to the sample crushing device. 12 to a predetermined position directly below the hopper 65 provided below. When the movement of the sample container 13 to the predetermined position is completed and the operation of the electric Ia 74 is stopped, the shutter 27 is opened manually or by an electromagnetic solenoid (not shown), and the sample light in the supply hopper 10 is directed through the lower opening 26. released through.

シャッター27が開成されると、このシャッター27に
より作動する適宜なリミットスイッチ(図示せず)等に
よって電動機84が起動し、精米袋@11が駆動する。
When the shutter 27 is opened, the electric motor 84 is activated by a suitable limit switch (not shown) or the like operated by the shutter 27, and the rice polishing bag @11 is driven.

供給ホッパー10゜下部間口部26から漏斗台28を流
下して供給部29に至った試料光は、回転するネジロー
ル31によって精白至34側に移送され、続いて撹拌ロ
ール32によって圧縮・攪拌されながら排出口38側へ
流動される間に、粒々FJ擦及び粒子と除糠精白筒33
との間の摩擦によって米粒の表層部が剥(はく)離され
、精米が施される。剥離された米粒表層部は、除糠精白
筒33の多孔壁から集糠至35に漏出し、集糠ホッパー
36を介して機外に排出される。この際、抵抗板39に
よって精白空34内の圧力が適度な高圧に保持されて効
率よく精米が進行するのであるが、抵抗板39には、排
出口38から吐出される試料米の白変を監携する米粒白
瓜検出器43が装着されており、これにより、前記試料
米があらかじめ制御装置4の記憶装置4bに設定された
基準精白度以外の場合は、試料米は排出樋48からキャ
ビネット2外に排出される。
The sample light that flows down the funnel stand 28 from the lower opening 26 of the supply hopper 10 and reaches the supply part 29 is transferred to the polishing plate 34 side by the rotating screw roll 31, and is then compressed and stirred by the stirring roll 32. While being flowed to the discharge port 38 side, the grains are rubbed by the FJ and the particles and bran are removed from the polishing cylinder 33.
The surface layer of the rice grain is peeled off by the friction between the grains and the rice is polished. The peeled surface layer of the rice grains leaks from the porous wall of the rice bran removal cylinder 33 into the rice bran collector 35 and is discharged to the outside of the machine via the rice bran collector 36. At this time, the pressure in the milling space 34 is maintained at a moderately high pressure by the resistor plate 39, and the rice milling progresses efficiently. A supervising rice grain white melon detector 43 is installed, so that when the sample rice has a polishing level other than the standard polishing level set in advance in the storage device 4b of the control device 4, the sample rice is discharged from the discharge gutter 48 to the cabinet 2. It is discharged outside.

すなわち、米粒白瓜検出器43における発光体46から
の光が透明板45を経て試料米に照射され、試料米から
の反射光を受光素子47が受光し、この受光量を電気信
号に変換して、制御装置4において基準白皮と比較され
る。なお、制御装置4に取り込まれる、試料米からの受
光量は平滑化されて前記基準白皮と比較されるものとす
る。そして、米粒白瓜検出器43の検出値が基準白皮よ
りも小さいときは、制御装置4からの指令により駆動回
路(図示せず)を介して正逆回転電動機41を所定方向
に回転させ、レバー40を回動させて抵抗板39を排出
口38側へ徐々に近づける。抵抗板39が排出口38を
塞ぐ方向に移動すると、精白室34の内部抵抗が上昇し
、剥離される表層部がより深くなり白変が高くなる。
That is, the light from the light emitting body 46 in the rice grain melon detector 43 is irradiated onto the sample rice through the transparent plate 45, the light receiving element 47 receives the reflected light from the sample rice, and converts the amount of received light into an electrical signal. , is compared with a reference white skin in the control device 4. It is assumed that the amount of light received from the sample rice, which is taken into the control device 4, is smoothed and compared with the reference white bark. When the detected value of the rice grain white melon detector 43 is smaller than the reference white peel, the forward/reverse rotating electric motor 41 is rotated in a predetermined direction via a drive circuit (not shown) in response to a command from the control device 4, and the lever is rotated in a predetermined direction. 40 to gradually bring the resistance plate 39 closer to the discharge port 38 side. When the resistance plate 39 moves in the direction of closing the discharge port 38, the internal resistance of the whitening chamber 34 increases, the surface layer to be peeled off becomes deeper, and whitening becomes higher.

こうして、白変が徐々に高くなって基準白皮に達すると
、正逆回転電動機41が停止するとともに図外の電磁ソ
レノイド等によって切換弁50が切換わり、排出口38
から吐出する精白米を連絡樋49側へ導く。切換弁50
が切換ねると同時に、電磁ソレノイド61が励磁して供
給品開閉蓋57を開放し、これにより、連絡樋49を流
下する精白米(試料米)はケーシング53内に投入され
る。ケーシング53内に試料米がある程度たまってロー
ドセル秤64が所定の重量を感知すると、切換弁50が
作動して連絡樋49を閉塞するとともに、電磁ソレノイ
ド61が脱磁して供給部開閉M57を閉成する。
In this way, when the whitening gradually increases and reaches the standard whitening, the forward/reverse rotating electric motor 41 is stopped and the switching valve 50 is switched by an electromagnetic solenoid (not shown), and the discharge port 38 is switched.
The polished rice discharged from the connecting gutter 49 is guided to the connecting gutter 49 side. Switching valve 50
At the same time as switching, the electromagnetic solenoid 61 is energized to open the supply opening/closing lid 57, whereby the polished rice (sample rice) flowing down the connecting gutter 49 is thrown into the casing 53. When a certain amount of sample rice accumulates in the casing 53 and the load cell scale 64 senses a predetermined weight, the switching valve 50 operates to close the communication gutter 49, and the electromagnetic solenoid 61 demagnetizes to close the supply section opening/closing M57. to be accomplished.

供給品開閉蓋57が閉じるとともに可変速電動機63が
高速で回転し、ケーシング53内の試料米は粉砕翼55
によって微細に粉砕される。
As the supply opening/closing lid 57 closes, the variable speed electric motor 63 rotates at high speed, and the sample rice in the casing 53 is crushed by the crushing blades 55.
finely ground by

試料米の粒子が吸光度の測定に要求される約50ミクロ
ンに粉砕されると、タイマー等(図示せず)によって可
変速電動機63が停止し、同時に電磁ソレノイド62に
よって排出部開閉蓋58が開いて粉末状の試料米をホッ
パー65内に放出する。このとき、ホッパー65外にこ
ぼれる試料米や、連絡樋49からケーシング53内に米
粒を投入する際にこぼれる試料米は、下方に設置した受
箱15内に落下する。なお、本実施例においては、試料
米を粉砕する場合について説明したが、無粉砕の場合は
可変速電動機63を低速に回転し、試料米を攪拌翼56
によって攪拌した後、ホッパー65内に放出する。これ
により、複数の米を混合して同時に測定するとき、試料
米が充分攪拌されて測定誤差が少なくなる。
When the sample rice particles are crushed to about 50 microns required for absorbance measurement, a timer or the like (not shown) stops the variable speed motor 63, and at the same time, the electromagnetic solenoid 62 opens the discharge section opening/closing lid 58. Powdered sample rice is discharged into the hopper 65. At this time, the sample rice that spills outside the hopper 65 and the sample rice that spills when rice grains are introduced into the casing 53 from the connecting gutter 49 fall into the receiving box 15 installed below. In this embodiment, the case where the sample rice is crushed has been described, but in the case of no crushing, the variable speed electric motor 63 is rotated at a low speed and the sample rice is passed through the stirring blade 56.
After stirring, the mixture is discharged into the hopper 65. As a result, when a plurality of rices are mixed and measured simultaneously, the sample rice is sufficiently stirred and measurement errors are reduced.

こうしてできた細粉試料米は、ホッパー65の直下に位
置している試料容器13に受は入れられ、その受容間を
超え容器13上に盛り上って過量となった試料米は、受
箱15に落下する。
The fine powder sample rice produced in this way is received in the sample container 13 located directly below the hopper 65, and the sample rice that exceeds the receiving space and rises up on the container 13, resulting in an excessive amount, is placed in the receiving container. Falling at 15.

次に、操作用ブツシュボタン7の操作により、又は自動
的に電動機74を再起動させ、試料米が収容された試料
容器13を、近赤外分光分析装置3の測定部23の直下
所定位置まで搬送する動作に移る。この搬送過程におい
ては、試料容器1に盛り上がった状態の試料米は、回転
ローラー80により圧縮状に充填されるとともに、過m
試料が受箱15に除去され試料米の表面が平たん面に整
形される。試料容器13が所定位置に配置されると、電
動機74は自動的にその作動を停止する。こうして測定
準備を完了する。
Next, by operating the operating button 7 or automatically restarting the electric motor 74, the sample container 13 containing the sample rice is moved to a predetermined position directly below the measurement section 23 of the near-infrared spectrometer 3. Move on to the operation of conveying the material up to the point. In this conveyance process, the sample rice in the sample container 1 in a heaped state is compressed and filled by the rotating roller 80, and the sample rice is
The sample is removed into the receiving box 15, and the surface of the sample rice is shaped into a flat surface. Once the sample container 13 is in place, the electric motor 74 automatically stops its operation. In this way, preparation for measurement is completed.

なお、本実施例では、供給ホッパー10から投入された
試料米が試料容器13内に充填され、さらに測定部23
まで試料米を搬送する試料米搬送装置14を設けた場合
について説明したが、測定部23の直下に試料容器装着
箱5を装脱自在に設け、該装着箱をキャビネット2から
引き出し、粉砕した試料を充填した試料容器を載置した
後、試料容器装着箱をキャビネット2内に挿入すること
によって試料米を供給するよう形成してもよいのはもち
論である。
In this embodiment, the sample rice put in from the supply hopper 10 is filled into the sample container 13, and the sample rice is further placed in the measuring section 23.
Although we have described the case where the sample rice transport device 14 is provided to transport the sample rice up to Of course, it is also possible to supply the sample rice by inserting the sample container mounting box into the cabinet 2 after placing the sample container filled with the sample container.

前記測定基準作業が完了したら、次に、最初に1940
nmを主波長として持つフィルター198が光源17と
反射鏡18とを結ぶ線状に来るように選択され(第2図
参照)、波長1940nmの近赤外単色光を試料米24
に対して照射したときの反射吸光度の測定作業に入る。
Once the metric work is completed, then the first 1940
A filter 198 having a main wavelength of nm is selected so as to be arranged in a line connecting the light source 17 and the reflecting mirror 18 (see Fig. 2), and near-infrared monochromatic light with a wavelength of 1940 nm is applied to the sample rice 24.
We will begin measuring the reflected absorbance when irradiating the target.

反射吸光度の測定作業は、試料米24に対して照射され
る全照射先日、すなわち基準照射光量の測定と、試料米
24に対して前記基準照射光量を照射した時に試料米2
4で実際に反射される反射光量の測定との2つの測定か
らなる。1つのフィルターについてこれら2つの測定の
どちらを先に実施しても構わないが、基準照射光量の測
定の方が先に実施されるものとして説明する。基準照射
光量の測定は、傾斜角度が可変に構成された反射鏡18
の傾斜角度を、これらの反射光が積分球20の内壁に直
接当たるような角度に、電動機等を用いた回動手段(図
示せず)により変えた状態で実施される。こうすること
により、積分球20の内壁に直接当てられた反射鏡18
からの光は、内壁を多方向に拡散反射しながら最終的に
は検出器218.21bに到達し、基準照射光量として
検出される。一方、試料米24からの反射光量の測定は
、反射[18の傾斜角度が第2図に示す元の位置に戻さ
れた後、前述した原理により行われる。なお、測定準備
完了後の最初のフィルターの選択、基準照射光量の測定
及び反射光量の測定までの各実行は、制御装置4の記憶
装置4の記憶装置4b内のROMに手順プログラムを記
憶させ、そのプログラムに従って自動的に行えるように
できることは言うまでもない。また、1つのフィルター
についての前述基準照射光量及び反射光量の各測定をそ
れぞれ複数回実施し、測定値としてそれらの平均を採れ
るようにすることも測定精度を上げるのに役立つ。検出
器21a、21bによって検出された基準照射光量及び
試料米24からの反射光量に基づく各測定値は、実測デ
ータとして制御装置4に連絡され、記憶装置4b内の書
き込み可能なメモリ(以下、RAMと言う)にいったん
記憶される。
The work of measuring the reflected absorbance consists of measuring the total irradiation amount of the sample rice 24, that is, the standard irradiation amount, and measuring the amount of the sample rice 24 when the sample rice 24 is irradiated with the standard irradiation amount.
It consists of two measurements: 4. Measurement of the amount of reflected light actually reflected. Although it does not matter which of these two measurements is performed first for one filter, the description will be made assuming that the measurement of the reference irradiation light amount is performed first. The reference irradiation light amount is measured using a reflecting mirror 18 whose inclination angle is variable.
The inclination angle of the integrating sphere 20 is changed by a rotating means (not shown) using an electric motor or the like so that the reflected light directly hits the inner wall of the integrating sphere 20. By doing this, the reflecting mirror 18 directly applied to the inner wall of the integrating sphere 20
The light is diffusely reflected on the inner wall in multiple directions and finally reaches the detector 218.21b, where it is detected as the reference irradiation light amount. On the other hand, the amount of reflected light from the sample rice 24 is measured according to the above-described principle after the inclination angle of the reflector [18] is returned to the original position shown in FIG. In addition, each execution from the initial filter selection to the measurement of the reference irradiation light amount and the reflected light amount measurement after completion of measurement preparation is performed by storing a procedure program in the ROM in the storage device 4b of the storage device 4 of the control device 4. Needless to say, it can be done automatically according to the program. Furthermore, it is also useful to measure the reference irradiation light amount and reflected light amount for one filter a plurality of times, and to take the average of the measurements as the measured value. Each measurement value based on the reference irradiation light amount and the reflected light amount from the sample rice 24 detected by the detectors 21a and 21b is communicated to the control device 4 as actual measurement data, and is stored in a writable memory (hereinafter referred to as RAM) in the storage device 4b. ) is once memorized.

照射波長1940nmにおける吸光度の測定が終了した
ら、次の照射波長、即ち本実施例の場合2100nmで
の吸光度の測定に移行する。ここでも、基準照射光mの
測定が、前述1940nmでのときと同じ方法及び手順
で実施される。各測定値は、前回と同様に、各成分の含
有率計算のための実測データとして制御装置4に連絡さ
れ、記憶装置4b内のRAMに一時記憶される。以下同
様に、残りの各照射波長での各吸光度測定、即ち、波長
2180nm、 2230nm、 2280nm、 2
310nmでの吸光度測定が順次行われ、各測定値は、
実測データとして制御装置4に連絡され、RAMに記憶
される。
When the measurement of the absorbance at the irradiation wavelength of 1940 nm is completed, the process moves to the measurement of the absorbance at the next irradiation wavelength, that is, 2100 nm in this example. Here too, the measurement of the reference illumination light m is carried out in the same manner and procedure as at 1940 nm previously described. As in the previous case, each measurement value is communicated to the control device 4 as actual measurement data for calculating the content of each component, and is temporarily stored in the RAM in the storage device 4b. Similarly, each absorbance measurement at each of the remaining irradiation wavelengths, i.e., wavelengths 2180 nm, 2230 nm, 2280 nm, 2
Absorbance measurements at 310 nm were performed sequentially, and each measurement value was
This is communicated to the control device 4 as actual measurement data and stored in the RAM.

なお、ある特定波長での吸光度測定が終わり、次の特定
波長での吸光度測定への移行に伴う狭帯域透過フィルタ
ー19の各フィルター19a〜19fの交換・選択動作
は、通常、制御装置4の記憶装置4b内のROMに予め
書き込まれている手順プログラムに従い自動的に行われ
るが、本実施例の場合でも、必ずしも上記6波長全てに
つい吸光度測定を行わなければならない訳ではなく、測
定の対象となる波長は、求める品質評価値に要求される
精度或いは測定に係る所要時間等を考慮して任意に選択
することができ、その選択は、操作用ブツシュボタン7
内の測定波長選択ボタンにより行うことができる。
Note that after the absorbance measurement at a specific wavelength is completed, the replacement and selection operations of each of the filters 19a to 19f of the narrowband transmission filter 19, which occur when the absorbance measurement is completed at the next specific wavelength, are normally performed in the memory of the control device 4. This is automatically carried out according to the procedure program written in advance in the ROM in the device 4b, but even in the case of this example, it is not necessarily necessary to perform absorbance measurement for all of the six wavelengths mentioned above, and the absorbance measurement is subject to measurement. The wavelength can be arbitrarily selected in consideration of the accuracy required for the desired quality evaluation value, the time required for measurement, etc., and the selection can be made by pressing the operating button 7.
This can be done using the measurement wavelength selection button within.

これまで説明した吸光度の測定は、単に狭帯域透過フィ
ルター19に設定された6個のフィルター19a〜19
fを順次交換することにより、各フィルター19a〜1
9[が持つ各主波長でのスポット的吸光度の測定方法で
あったが、フィルターの面に対する入射光の入射角度を
基準となる90°から変化させると、最大透過波長が主
波長から数+nmの範囲でシフトするという現象を利用
して、米の品質差が吸光度差に顕著に現れる波長領域1
900〜2500nmでの連続的な吸光度測定も可能で
ある。第1実施例の場合(第2図参照)、円盤状に構成
された狭帯域透過フィルター19への入射光軸の角度を
、制御装置4からの指令信号に基づき電動機等の適当な
調節手段(図示せず)により徐々に且つ連続的に変化さ
せることによりこれが可能である。
The absorbance measurement described so far is performed simply by using the six filters 19a to 19 set in the narrowband transmission filter 19.
By sequentially replacing f, each filter 19a to 1
9 [ was a method of measuring spot absorbance at each dominant wavelength, but when the angle of incidence of the incident light on the filter surface was changed from the standard 90°, the maximum transmission wavelength was several + nm away from the dominant wavelength. Utilizing the phenomenon of shift in the range, wavelength range 1 where differences in rice quality are noticeable in absorbance differences
Continuous absorbance measurements between 900 and 2500 nm are also possible. In the case of the first embodiment (see FIG. 2), the angle of the optical axis of incidence on the narrow band transmission filter 19 configured in the shape of a disk is controlled by an appropriate adjusting means (such as an electric motor) based on a command signal from the controller 4. This is possible by making gradual and continuous changes (not shown).

次に、制御装置4の演算装置4Cは、記憶装置4のRA
Mに記憶されている吸光度測定で得られる多数の実測デ
ータ、即ち各測定波長における基準照射光量及び反射光
量の測定値と、記憶装置4のROMに予め記憶されてい
る品質評価計算のための品質評価係数値とに基づき、米
の品質評価値を計算する。
Next, the arithmetic unit 4C of the control device 4 uses the RA of the storage device 4.
A large amount of actual measurement data obtained by absorbance measurement is stored in M, that is, measured values of the reference irradiation light amount and reflected light amount at each measurement wavelength, and the quality for quality evaluation calculations is stored in advance in the ROM of the storage device 4. A quality evaluation value of rice is calculated based on the evaluation coefficient value.

なお、記憶装置4のROMに予め書き込まれているこの
品質評価係数値は、多数の試料米に対して官能試験法に
よる食味値を基準に、検出器からの吸光度測定値を信号
処理し、多重回帰分析法により求められた定数である。
Note that this quality evaluation coefficient value, which is written in advance in the ROM of the storage device 4, is obtained by signal processing the absorbance measurement value from the detector based on the taste value obtained by the sensory test method for a large number of rice samples, and multiplexing the value. This is a constant determined by regression analysis.

ここで多重回帰分析の一例を示す。例えば6個のフィル
ターF + = 1940nm、 F 2 =2tOO
nm。
Here, an example of multiple regression analysis is shown. For example, 6 filters F + = 1940 nm, F 2 = 2tOO
nm.

F 3 =2180nm、 F 4−2230nm、 
F s =2280nm。
F3=2180nm, F4-2230nm,
F s =2280 nm.

1” 9 = 231Onlllを使用した時に次の線
型関係が成立するものとする。
It is assumed that the following linear relationship holds when 1''9=231Onllll is used.

Ta  =F[l  +FI  舎 X+a  + F
2  φ X  2 a  +F3 −X3a  +F
4  ・X4a  +Fs  11Xsa  +Fs 
 −X6a  +CHaは試料aを官能試験法により測
定した食味値。
Ta = F[l + FI building X+a + F
2 φ X 2 a +F3 -X3a +F
4 ・X4a +Fs 11Xsa +Fs
-X6a +CHa is the taste value measured by the sensory test method for sample a.

FO〜F6はこの多重回帰分析で求める係数値。FO to F6 are coefficient values obtained by this multiple regression analysis.

X1a−XeaはF1〜F8のフィルターの番号にそれ
ぞれ対応し、試料aを近赤外線分光分析装置で測定した
吸光度(IoaIo/I)。
X1a-Xea corresponds to the filter numbers F1 to F8, respectively, and is the absorbance (IoaIo/I) of sample a measured with a near-infrared spectrometer.

Cは誤差項であり、ここではC= Oとする。C is an error term, and here C=O.

試aaの場合(4図実線と仮定すれば)はX+a = 
0.61 、 Xza = 0.60 、 X3a =
0.56 、 X4a = 0.53 、 Xsa =
 0,65 Xs= 0.67であり、前記多重回帰式
は八a =FO+ 0.61 F1+o、eo F2+
0.56 F 3 + 0.53 F 4 + 0.6
5 F s + 0.67F6 となる。同様にして、
n個の試料までの多重回帰式に吸光度を代入して次に示
す品質評価係数値を得ることができる。
In the case of trial aa (assuming the solid line in Figure 4), X+a =
0.61, Xza = 0.60, X3a =
0.56, X4a = 0.53, Xsa =
0.65 Xs = 0.67, and the multiple regression equation is
0.56 F3 + 0.53 F4 + 0.6
5 F s + 0.67F6. Similarly,
By substituting the absorbance into a multiple regression equation for up to n samples, the following quality evaluation coefficient values can be obtained.

T=  144.7+ 234.6X + +6371
X 2−1122X 3  +  303.7X 4 
− 536.4X 5−4969X e  ・”(1)
品質評価係数値と同じ手法で、米を構成する主要成分で
あるアミロース、蛋白質、水分、脂肪等の含有率も必要
に応じ求めることができる。
T= 144.7+ 234.6X + +6371
X 2-1122X 3 + 303.7X 4
-536.4X 5-4969X e・”(1)
Using the same method as the quality evaluation coefficient value, the content of amylose, protein, water, fat, etc., which are the main components of rice, can also be determined as necessary.

例えば、 アミロースの成分換算係数値は多数の試料を化学定量分
析法、たとえばヨウ素呈色比色法やヨウ素電流滴定法を
用いて測定された含有量を基準とし、受光素子からの任
意の検出値を信号処理した値とを多重回帰分析法を利用
して求める。
For example, the component conversion coefficient value of amylose is based on the content measured using a chemical quantitative analysis method, such as the iodine colorimetric method or the iodine amperometric titration method, on a large number of samples. The value obtained by signal processing is calculated using multiple regression analysis method.

ここでその−例を示す。例えば5個のフィルターF +
 =2100nm、 F 2 =2180nm、 F 
3 =2230nm、 F 4 =2280nm、 F
 5=2310nmを使用した時に次の線型関係が成立
するものとする。
Here is an example. For example, 5 filters F +
=2100nm, F2 =2180nm, F
3 = 2230 nm, F 4 = 2280 nm, F
It is assumed that the following linear relationship holds when 5=2310 nm is used.

なお、アミロース測定にあたっては水分の含有率の変化
が吸光度差として顕著に表われる1940nmの波長は
除外しである。
In addition, when measuring amylose, the wavelength of 1940 nm, where a change in water content is noticeable as a difference in absorbance, is excluded.

Aa =FO+FI ・X+a +F2 争X2a +
F3 ・X:+a +F4 ・X4a +Fs ・Xs
a+C Aaは試料aの化学定量分析法により測定したアミロー
スの含有量パーセント。
Aa =FO+FI ・X+a +F2 Conflict X2a +
F3 ・X: +a +F4 ・X4a +Fs ・Xs
a+C Aa is the percentage content of amylose measured by chemical quantitative analysis of sample a.

FD−F5はこの多重回帰分析で求める係数値。FD-F5 is the coefficient value obtained by this multiple regression analysis.

X+a−XsaはF+ 〜Fsのフィルターの番号にそ
れぞれ対応し、試料aを近赤外線分光分析装置で測定し
た吸光度(logIo/I)。
X+a-Xsa corresponds to the filter numbers F+ to Fs, respectively, and is the absorbance (logIo/I) of sample a measured with a near-infrared spectrometer.

Cは誤差項であり、ここではC= Oとする。C is an error term, and here C=O.

試料aの場合(9図実線と仮定すれば)はX+a = 
0.60 、 X2a = 0.56 、 X3a =
0.53 、 X4a = 0.65 、 Xsa =
 0,67 T:あり、前記多重回帰式は Aa =Fo + 0.60 F ! + 0.56 
F2 +0.53 F3 十0.65 F4 + 0.
67 F5  となる。
In the case of sample a (assuming the solid line in Figure 9), X+a =
0.60, X2a = 0.56, X3a =
0.53, X4a = 0.65, Xsa =
0.67 T: Yes, the multiple regression equation is Aa = Fo + 0.60 F! +0.56
F2 +0.53 F3 10.65 F4 + 0.
It becomes 67 F5.

同様にしてn個の試料までの多重回帰式に吸光度を代入
して次に示すアミロースの含有率を得るための成分換算
係数値を得ることができる。
Similarly, by substituting the absorbance into the multiple regression equation for up to n samples, the component conversion coefficient value for obtaining the amylose content shown below can be obtained.

A = 33.3+2380X + −2300X 2
−640X 3 +1405X 4−880X 5 ・
−”−(2)上記計算式(1)において、F+”F6は
、記憶装置4bのROMに予め記憶されているが、又は
試料の測定に際し、入力装置9を介して制御装置4に入
力される品質評価値計算のための品質評価係数値である
、日本産の米を平均的日本人が品質評価するに当たって
は、前記(1)式が適するが、この品質評価係数値は、
その米を食する地域や国の違い等により標準的な嗜好も
相違する場合があるので、異なる数値の方が適する場合
もある。
A = 33.3 + 2380X + -2300X 2
-640X 3 +1405X 4-880X 5 ・
-"-(2) In the above calculation formula (1), F+"F6 is stored in advance in the ROM of the storage device 4b, or is input to the control device 4 via the input device 9 when measuring the sample. Equation (1) above is suitable for the average Japanese person to evaluate the quality of rice produced in Japan, which is the quality evaluation coefficient value for calculating the quality evaluation value.
Standard preferences may differ depending on the region or country where the rice is eaten, so different values may be more appropriate.

上記第(1)式及び第(2)式に従って計算された品質
評価値下及び、米の主要成分であるアミロース、蛋白質
、水分等の各成分の各含有率は、演算装置4Cでの計算
終了と同時に、表示装置6に可視表示されると共に、自
動的に又は操作用ブツシュボタン7への指令に基づきプ
リンター8から各計算値のハードコピーが繰り出される
The quality evaluation value calculated according to the above formulas (1) and (2) and the content of each component such as amylose, protein, and water, which are the main components of rice, are calculated after completion of calculation by the calculation device 4C. At the same time, the calculated values are visually displayed on the display device 6, and a hard copy of each calculated value is fed out from the printer 8 automatically or based on a command to the operating button 7.

なお、アミロースの含有率については、アミロースの含
有率自体よりも、澱粉質を共に構成するアミロペクチン
との含有比率の方が重要であるので含有率ではなく含有
比率で表示される方、 が好ましい。
Regarding the amylose content, the content ratio with amylopectin, which together constitutes starch, is more important than the amylose content itself, so it is preferable to display the content ratio rather than the content ratio.

試料米の吸光度測定が全て終了すると、電動機74が起
動し、測定が終わった試料米の排出処理のために、試料
容器13をホッパー65の下方所定位置に移動させる。
When all the absorbance measurements of the sample rice are completed, the electric motor 74 is started and the sample container 13 is moved to a predetermined position below the hopper 65 in order to discharge the sample rice for which the measurement has been completed.

その際、清掃器82が透明ガラス板83に接触し、面上
をM8することにより付着物を除去する。次に、電磁石
77を作動させることにより、試料容器移動ガイド66
を90°回動させ、試料容器13内の試料米を下方に位
置する受は箱15に向けて排出する。同時に、噴射ノズ
ル81を作動させ、これから出る高圧空気により試料容
器13内を次の測定に備えて清掃する。また、必要に応
じて、精米装置11及び粉砕装置12にも噴射ノズルを
設ける場合もある。なお、電動!174の作動・ によ
って試料容器13が自動的に往復移動する場合を説明し
てぎたが、その移動は、回動用ハンドル70を押すこと
及び引くことによる手動操作でも行え、また、試料容器
13からの試料米の排出は、この回動用ハンドル70を
適宜回動して行える。また、試料供給H置を用いず、外
部で準備した試料を単独に近赤外分光分析装置3の測定
部23に配置させるには、回動用ハンドル7oを押すこ
とによりいったん試料容器13を測定部23下部に移動
させた後、この試料容器13を外部供給部16から引ぎ
出し、試料米をこれに充填してから容器ホルダー70の
案内溝68に挿入して行う。
At this time, the cleaner 82 comes into contact with the transparent glass plate 83 and removes the deposits by making an M8 motion on the surface. Next, by activating the electromagnet 77, the sample container moving guide 66
is rotated 90°, and the sample rice in the sample container 13 is discharged toward the box 15 located below. At the same time, the injection nozzle 81 is operated, and the high pressure air released from the injection nozzle cleans the inside of the sample container 13 in preparation for the next measurement. Further, the rice polishing device 11 and the crushing device 12 may also be provided with injection nozzles as necessary. In addition, it is electric! The case where the sample container 13 is automatically reciprocated by the operation of the sample container 174 has been described above, but the movement can also be performed manually by pushing and pulling the rotation handle 70. The sample rice can be discharged by appropriately rotating the rotating handle 70. In addition, in order to place a sample prepared externally in the measurement section 23 of the near-infrared spectrometer 3 without using the sample supply H position, the sample container 13 can be placed in the measurement section by pressing the rotation handle 7o. 23, the sample container 13 is pulled out from the external supply section 16, filled with sample rice, and then inserted into the guide groove 68 of the container holder 70.

上述の品質評価装置では、試料米に特定波長の近赤外単
色光を照射したときの吸光度の測定を、試料米からの反
射光の強度を測定することにより行う反射式の近赤外分
光分析装置を用いたが、第3図に示すように、試料容器
13の底面を透明ガラス板13aで形成するとともに、
測定部23の下方に検出器21cを配設して試料米を透
過してきた透過光の強度を測定することにより行う透過
式の近赤外分光分析装置を用いることもでき、さらには
、反射光及び透過光の両方に基づき吸光度の測定を行う
、より精!な近赤外分光分析装置を用いることもできる
The above-mentioned quality evaluation device uses reflection-type near-infrared spectroscopy, which measures the absorbance when the sample rice is irradiated with near-infrared monochromatic light of a specific wavelength and measures the intensity of the reflected light from the sample rice. As shown in FIG. 3, the bottom surface of the sample container 13 was formed with a transparent glass plate 13a, and
It is also possible to use a transmission-type near-infrared spectrometer that measures the intensity of transmitted light that has passed through the sample rice by disposing a detector 21c below the measuring section 23. More precise measurement of absorbance based on both light and transmitted light! A near-infrared spectrometer can also be used.

上記説明では、澱粉質を構成するアミロースとアミロペ
クチンのうち、アミロースの分析に基づき述べたが、ア
ミロースに代えてアミロペクチンの含有比率を測定し、
アミロペクチンの成分換算係数値を第(2)式に設定す
ることもできる。
The above explanation was based on the analysis of amylose among amylose and amylopectin that constitute starch, but instead of amylose, the content ratio of amylopectin was measured,
The component conversion coefficient value of amylopectin can also be set in equation (2).

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明による米の品質評価装置に
よれば、個人差のある味覚に基づく官能試験、あるいは
時間がかがり、熟練を要する化学定量分析等の方法によ
ることなく、誰でもが容易に且つ短時間で正確な米の品
質評価値を得ることができ、種々の米の品質を比較する
に際し、その品質評lilIigjiの正確度を確保す
ることができる。
As described in detail above, the rice quality evaluation apparatus according to the present invention allows anyone to evaluate the quality of rice without using sensory tests based on individual taste differences or chemical quantitative analysis, which is time-consuming and requires skill. Accurate rice quality evaluation values can be obtained easily and in a short period of time, and the accuracy of the quality evaluation can be ensured when comparing the quality of various types of rice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に使用する装置及び作業方法の一実施例
を示す正面図、第2図は第1図の近赤外分光分析装置の
要部概略断面図、第3図は同要部断面図、第4図は銘柄
の異なる米に対する近赤外線照射波長と吸光度との関係
を示すグラフ(吸光度曲線)、第5図は第1図の精米装
置の一部拡大断面図、第6図は同粉砕装置の側面図、第
7図は同試料搬送装置の要部斜視図である。 図中、1・・・米の品質評価装置、2・・・キャビネッ
ト、・・・近赤外分光分析装置、4・・・制御装置、4
a・・・入出力信号処理装置、4b・・・記憶装置(R
OM、RAM) 、4c ・・・演算装置、5・・・試
料容器装着箱、6・・・表示装置、7・・・操作用ブツ
シュボタン、8・・・プリンター、9・・・入力装置、
10・・・供給ホッパー、11・・・精米装置、12・
・・試料粉砕装置、13・・・試料容器、14・・・試
料粉砕装置、15・・・受箱、16・・・外部供給部、
17・・・光源、18・・・反射鏡、19・・・狭帯域
透過フィルター、20−・・積分球、21a、’21b
、21C・・・検出器、22・・・採光窓、23・・・
測定部、24・・・試料米、25・・・電動機、26・
・・下部開口部、27・・・シャッター、28・・・漏
斗台、29・・・供給部、30・・・回転軸、31・・
・ネジロール、32・・・撹拌ロール、33・・・除糠
精白筒、34・・・精白室、35・・・集糠掌、36・
・・集糠ポツパー、37・・・糠ダクト、38排出口、
3つ・・・抵抗板、40・・・レバー、41・・・正逆
回転電動機、42・・・螺軸、43・・・米粒白変検出
器、44・・・開口部、45・・・透明板、46・・・
発光体、47・・・受光素子、48・・・排出樋、49
・・・連絡樋、50・・・切換弁、51・・・供給部、
52・・・排出部、53・・・ケーシング、54・・・
回転軸、55・・・粉砕翼、56・・・撹拌N、57・
・・供給品開閉蓋、58・・・排出部開閉蓋、59.6
0・・・引張りコイルばね、61.62・・・電磁ソレ
ノイド、63・・・可変速電動機、64・・・ロードセ
ル秤、65・・・ホッパー、66・・・試料容器移動ガ
イド、67・・・容器ホルダー、68・・・案内溝、6
9・・・支持軸、70・・・回動用ハンドル、71・・
・軸受台、72・・・ラック、73・・・モータ一台、
74・・・電動機、75・・・ビニオンギア、76・・
・伸縮ロンド、77・・・電磁石、78・・・支点台、
79・・・受台、80・・・回転ローラー、81・・・
噴射ノズル、82・・・清掃器、83・・・透明ガラス
板、84・・・電動機。
Fig. 1 is a front view showing an embodiment of the apparatus and working method used in the present invention, Fig. 2 is a schematic sectional view of the main part of the near-infrared spectrometer shown in Fig. 1, and Fig. 3 is the main part of the same. Figure 4 is a graph (absorbance curve) showing the relationship between near-infrared irradiation wavelength and absorbance for different brands of rice, Figure 5 is a partially enlarged cross-sectional view of the rice milling equipment in Figure 1, and Figure 6 is A side view of the crushing device, and FIG. 7 is a perspective view of a main part of the sample conveying device. In the figure, 1...Rice quality evaluation device, 2...Cabinet,...Near infrared spectroscopy analyzer, 4...Control device, 4
a...I/O signal processing device, 4b...Storage device (R
OM, RAM), 4c...Arithmetic unit, 5...Sample container mounting box, 6...Display device, 7...Operation button, 8...Printer, 9...Input device ,
10... Supply hopper, 11... Rice milling device, 12.
... Sample crushing device, 13... Sample container, 14... Sample crushing device, 15... Receiving box, 16... External supply unit,
17... Light source, 18... Reflecting mirror, 19... Narrow band transmission filter, 20-... Integrating sphere, 21a, '21b
, 21C...detector, 22...lighting window, 23...
Measuring unit, 24... Sample rice, 25... Electric motor, 26.
... Lower opening, 27 ... Shutter, 28 ... Funnel stand, 29 ... Supply section, 30 ... Rotating shaft, 31 ...
・Screw roll, 32... Stirring roll, 33... Bran removal polishing cylinder, 34... Refining room, 35... Bran collecting palm, 36.
・・Branch collection potsupah, 37・・Branch duct, 38 discharge port,
3... Resistance plate, 40... Lever, 41... Forward/reverse rotating electric motor, 42... Screw shaft, 43... Rice grain white discoloration detector, 44... Opening, 45...・Transparent plate, 46...
Light emitter, 47... Light receiving element, 48... Discharge gutter, 49
...Connection gutter, 50...Switching valve, 51...Supply section,
52... Discharge part, 53... Casing, 54...
Rotating shaft, 55... Grinding blade, 56... Stirring N, 57.
... Supply opening/closing lid, 58... Discharge section opening/closing lid, 59.6
0... Tension coil spring, 61. 62... Electromagnetic solenoid, 63... Variable speed electric motor, 64... Load cell scale, 65... Hopper, 66... Sample container movement guide, 67...・Container holder, 68...Guide groove, 6
9... Support shaft, 70... Rotating handle, 71...
・Bearing stand, 72...Rack, 73...One motor,
74...Electric motor, 75...Binion gear, 76...
・Telescopic Rondo, 77... Electromagnet, 78... Fulcrum stand,
79... pedestal, 80... rotating roller, 81...
Spray nozzle, 82... Cleaner, 83... Transparent glass plate, 84... Electric motor.

Claims (8)

【特許請求の範囲】[Claims] (1)、光源と、該光源が発する光のうち1900nm
〜2500nmの波長域において、異なる品質の試料米
に対して近赤外線光を照射したとき、米の品質差が吸光
度差として顕著に現われる波長のみを透過する狭帯域透
過フィルターと、前記測定部に配置する試料米からの光
量を検出する検出器とを備えた近赤外分光分析装置と、 既知の米の官能試験による品質評価と吸光度とで演算さ
れ設定された品質評価値計算のための品質評価係数値を
記憶する記憶装置と、この記憶装置に記憶された前記品
質評価係数値と前記検出器からの検出信号とに基づき、
試料米の品質評価値とを演算する演算装置とを備えた制
御装置と、 この制御装置に接続され、前記演算装置が演算した試料
米の品質評価値を可視表示又は印字表示する表示装置と
、 前記試料米が充填され、前記近赤外分光分析装置の前記
測定部に配置される試料容器と、からなる米の品質評価
装置。
(1) A light source and 1900 nm of the light emitted by the light source
In the wavelength range of ~2500 nm, when sample rice of different quality is irradiated with near-infrared light, a narrow band transmission filter that transmits only the wavelength at which the difference in rice quality becomes noticeable as a difference in absorbance is placed in the measurement section. A near-infrared spectrometer equipped with a detector that detects the amount of light from sample rice, and a quality evaluation for calculating the quality evaluation value calculated and set based on the absorbance and quality evaluation based on known rice sensory tests. Based on a storage device that stores coefficient values, the quality evaluation coefficient value stored in this storage device, and the detection signal from the detector,
a control device equipped with a calculation device that calculates the quality evaluation value of the sample rice; a display device connected to the control device that visually or print-displays the quality evaluation value of the sample rice calculated by the calculation device; A rice quality evaluation device comprising: a sample container filled with the sample rice and placed in the measurement section of the near-infrared spectrometer.
(2)、前記記憶装置に米を構成する主要成分に対応し
て既知の米の成分含有率と吸光度とで演算され設定され
た被測定成分の含有率計算のための成分換算係数値を設
定し、記憶された前記成分換算係数値と検出器からの検
出信号に基づき、試料米の被測定成分の含有率を演算し
、表示する特許請求の範囲第(1)項記載の米の品質評
価装置。
(2) Set a component conversion coefficient value for calculating the content of the component to be measured, which is calculated and set based on the known rice component content and absorbance, corresponding to the main components constituting rice, in the storage device. The rice quality evaluation according to claim (1), wherein the content of the component to be measured in the sample rice is calculated and displayed based on the stored component conversion coefficient value and the detection signal from the detector. Device.
(3)、上記検出器が検出する光量は試料米からの反射
光量である特許請求の範囲第(1)項または第(2)項
記載の米の品質評価装置。
(3) The rice quality evaluation device according to claim (1) or (2), wherein the amount of light detected by the detector is the amount of light reflected from the rice sample.
(4)、上記検出器が検出する光量は試料米からの透過
光である特許請求の範囲第(1)項または第(2)項記
載の米の品質評価装置。
(4) The rice quality evaluation device according to claim (1) or (2), wherein the amount of light detected by the detector is transmitted light from the sample rice.
(5)、上記検出器が検出する光量は試料米からの反射
光量と透過光量との組み合せである特許請求の範囲第(
1)項または第(2)項記載の米の品質評価装置。
(5) The amount of light detected by the detector is a combination of the amount of reflected light and the amount of transmitted light from the sample rice (
The rice quality evaluation device according to item 1) or item (2).
(6)、上記試料容器を上記近赤外分光分析装置の測定
部に移動・配置させるための試料供給装置を設けてなる
特許請求の範囲第(1)項〜第(5)項のいずれかに記
載の米の品質評価装置。
(6) Any one of claims (1) to (5), further comprising a sample supply device for moving and placing the sample container in the measurement section of the near-infrared spectrometer. The rice quality evaluation device described in .
(7)、上記精米装置の下方には試料米を微砕粒に粉砕
する粉砕装置を設けてなる特許請求の範囲第(1)項〜
第(6)項のいずれかに記載の米の品質評価装置。
(7) Claims (1) to 12 are provided below the rice milling device, including a crushing device for crushing the sample rice into fine particles.
The rice quality evaluation device according to any of paragraph (6).
(8)、前記試料米の精白度合を前記既知の米の精白度
合とほぼ同一に精米したものである特許請求の範囲第(
1)項〜第(7)項のいずれかに記載の米の品質評価装
置。
(8) Claim No.
The rice quality evaluation device according to any one of items 1) to (7).
JP5261487A 1987-03-06 1987-03-06 Method and apparatus for evaluating rice taste Expired - Fee Related JPH07104278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5261487A JPH07104278B2 (en) 1987-03-06 1987-03-06 Method and apparatus for evaluating rice taste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5261487A JPH07104278B2 (en) 1987-03-06 1987-03-06 Method and apparatus for evaluating rice taste

Publications (2)

Publication Number Publication Date
JPS63218844A true JPS63218844A (en) 1988-09-12
JPH07104278B2 JPH07104278B2 (en) 1995-11-13

Family

ID=12919674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5261487A Expired - Fee Related JPH07104278B2 (en) 1987-03-06 1987-03-06 Method and apparatus for evaluating rice taste

Country Status (1)

Country Link
JP (1) JPH07104278B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5235549A (en) * 1975-09-12 1977-03-18 Seiko Epson Corp Liquid crystal display electronic desk computer
US4404642A (en) * 1981-05-15 1983-09-13 Trebor Industries, Inc. Apparatus for near infrared quantitative analysis with temperature variation correction
US4466076A (en) * 1981-05-15 1984-08-14 Trebor Industries, Inc. Apparatus for near infrared quantitative analysis with temperature variation correction
JPS61501943A (en) * 1984-04-19 1986-09-04 ゲブリュ−ダ−・ビュ−ラ−・ア−ゲ− Infrared measuring device and method for continuously quantifying individual components of grain powder or other milled grains for food use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5235549A (en) * 1975-09-12 1977-03-18 Seiko Epson Corp Liquid crystal display electronic desk computer
US4404642A (en) * 1981-05-15 1983-09-13 Trebor Industries, Inc. Apparatus for near infrared quantitative analysis with temperature variation correction
US4466076A (en) * 1981-05-15 1984-08-14 Trebor Industries, Inc. Apparatus for near infrared quantitative analysis with temperature variation correction
JPS61501943A (en) * 1984-04-19 1986-09-04 ゲブリュ−ダ−・ビュ−ラ−・ア−ゲ− Infrared measuring device and method for continuously quantifying individual components of grain powder or other milled grains for food use

Also Published As

Publication number Publication date
JPH07104278B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
JPS6311841A (en) Device for evaluation of rice quality
US5034609A (en) Method for evaluating quality of raw coffee beans
KR920004535B1 (en) Measuring apparatus for amylose and/or amylopection content in rice
JPS63218844A (en) Apparatus for evaluating quality of rice
JPS63210750A (en) Method and apparatus for evaluating quality of rice
JP2892084B2 (en) Rice quality evaluation method and rice quality evaluation device
JPS63304141A (en) Method and device for evaluating quality of rice
JPS63217254A (en) Method for measuring taste of rice
JP2745020B2 (en) Coffee bean quality evaluation device
JPH07104276B2 (en) Rice component content rate measuring device
JPH06288907A (en) Evaluation of quality of unhulled rice
JPH05232017A (en) Rice taste evaluating device
JPS6367547A (en) Taste measuring instrument for rice
JPH07140134A (en) Apparatus for measuring content of component of rice
JPS62291546A (en) Method and apparatus for measuring taste of rice
JPH07104279B2 (en) Evaluation method of rice taste
JPH07104275B2 (en) Method and apparatus for measuring the taste of rice
JP2904796B2 (en) Method and apparatus for mixing coffee beans based on taste management
JPS63246640A (en) Method and apparatus for measuring content of amylose or amylopectin of rice
JPS63221234A (en) Method for evaluating quality of rice
JPS63167243A (en) Method for measuring component content of rice
JPH07104274B2 (en) Method and apparatus for measuring the taste of rice
JPS62299743A (en) Measuring instrument for taste of rice
JPS63313039A (en) Method and instrument for measuring content of amylose or amylopectin of rice
JPH07104280B2 (en) Evaluation method of rice taste

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees