JPS63218157A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPS63218157A
JPS63218157A JP62050115A JP5011587A JPS63218157A JP S63218157 A JPS63218157 A JP S63218157A JP 62050115 A JP62050115 A JP 62050115A JP 5011587 A JP5011587 A JP 5011587A JP S63218157 A JPS63218157 A JP S63218157A
Authority
JP
Japan
Prior art keywords
insoluble
doped
infusible substrate
battery
electrolyte battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62050115A
Other languages
Japanese (ja)
Other versions
JP2534490B2 (en
Inventor
Shizukuni Yada
静邦 矢田
Yuji Inoue
裕二 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP62050115A priority Critical patent/JP2534490B2/en
Publication of JPS63218157A publication Critical patent/JPS63218157A/en
Application granted granted Critical
Publication of JP2534490B2 publication Critical patent/JP2534490B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain an organic electrolyte battery with high battery voltage and high capacity by using an organic semiconductor comprising an insoluble and infusible substrate having a specific polyacetylene type skeleton structure as an electrode active substance. CONSTITUTION:By previously doping electron doner type substances or cations into an insoluble and infusible substrate containing polyacetylene type skeleton structure, which is a heat-treated aromatic condensation polymer, obtained by condensation of aromatic hydrocarbon compounds having phenol hydroxide group and aldehydes, with the number ratio of H atom/C atom of 0.05-0.5 and the specific surface area (BET method) of 600 m<2>/g or more, positive electrode 1 and negative electrode 2 are obtained. An electrolytic solution 4 contains a non-proton type organic solvent and an electrolyte that enables ions, which are doped into these electrodes 1, 2 by electrolysis, to generate. By such arrangement that the previously doped insoluble and infusible substrate is used for the positive electrode 1 and negative electrode 2, a high capacity and a broad actuating potential range can be achieved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は有機電解質電池に関する。更に詳しくは半導体
の性質を有する不溶不融性基体にあらかじめカチオンを
ドープし、これを正極及び負極とし、そしてドーピング
されうるイオンを生成しうる化合物を非プロトン性有機
溶媒に溶解した溶液を電解液とする有機電解質電池に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to organic electrolyte batteries. More specifically, an insoluble and infusible substrate having semiconductor properties is doped with cations in advance, used as a positive electrode and a negative electrode, and an electrolytic solution is prepared by dissolving a compound capable of producing doped ions in an aprotic organic solvent. The present invention relates to an organic electrolyte battery.

[従来の技術] 近年、電子機器の小形化、薄形化あるいは軽量化は目覚
ましく、それに伴ない電源となる電池の小形化、薄形化
、軽量化の要望が大ぎい。小形で性能のよい電池として
現在は酸化銀電池が多用されており、又薄形化された乾
電池や、小形軽量な高性能電池として、リチ1クム電池
が開発され実用化されている。しかし、これらの電池は
一次電池であるため充放電を繰り返して長時間使用する
ことはできない。一方、高性能な二次電池としてニッケ
ルーカドミウム電池が実用化されているが、小形化、薄
形化、軽量化という点で未だ不満足である。
[Background Art] In recent years, electronic devices have become increasingly smaller, thinner, and lighter, and there is a strong demand for batteries that serve as power sources to be smaller, thinner, and lighter. Currently, silver oxide batteries are widely used as small, high-performance batteries, and lithium oxide batteries have been developed and put into practical use as thin dry batteries and small, lightweight, high-performance batteries. However, since these batteries are primary batteries, they cannot be used for long periods of time by being repeatedly charged and discharged. On the other hand, although nickel-cadmium batteries have been put into practical use as high-performance secondary batteries, they are still unsatisfactory in terms of miniaturization, thinness, and weight reduction.

又、大容量の二次電池として従来より鉛蓄電池が種々の
産業分野で用いられているが、この電池の最大の欠点は
重いことである。これは電極として過酸化鉛及び鉛を用
いているため宿命的なものである。近年、電気自動車用
電池として該電池の軽量化及び性能改善が試みられたが
実用するに至らなかった。しかし、蓄電池として大容量
で且つ軽量な二次電池に対する要望は強いものがある。
Furthermore, lead-acid batteries have conventionally been used as large-capacity secondary batteries in various industrial fields, but the biggest drawback of these batteries is that they are heavy. This is fateful since lead peroxide and lead are used as electrodes. In recent years, attempts have been made to reduce the weight and improve the performance of batteries for electric vehicles, but they have not been put to practical use. However, there is a strong demand for a large capacity and lightweight secondary battery as a storage battery.

以上のように現在実用化されている電池は夫々一長一短
があり、それぞれ用途に応じて使い分けされているが、
電池の小形化、薄形化、或は軽量化に対するニーズは大
きい。このようなニーズに答えようとする電池として、
近時、有機半導体である簿膜状ポリアセチレンに電子供
与物質又は電子受容性物質をドーピングしたものを電極
活物質として用いる電池が研究され、提案されている。
As mentioned above, each of the batteries currently in practical use has advantages and disadvantages, and each is used differently depending on its purpose.
There is a great need for smaller, thinner, and lighter batteries. As a battery that attempts to meet these needs,
BACKGROUND ART Recently, batteries have been researched and proposed in which film-like polyacetylene, which is an organic semiconductor, is doped with an electron-donating substance or an electron-accepting substance as an electrode active material.

該電池は二次電池として高性能で且つ薄形化、軽量化の
可能性を有しているが、大きな欠点がある。
Although this battery has high performance as a secondary battery and has the possibility of being made thinner and lighter, it has a major drawback.

それは有機半導体であるポリアセチレンが極めて不安定
な物質であり空気中の酸素により容易に酸化を受け、交
熱により変質することである。従って電池製造は不活性
ガス雰囲気で行なわなければならず、又ポリアセチレン
を電極に適した形状に製造することにも制約を受ける。
The reason is that polyacetylene, which is an organic semiconductor, is an extremely unstable substance that is easily oxidized by oxygen in the air and deteriorated by heat exchange. Therefore, battery manufacturing must be carried out in an inert gas atmosphere, and there are also restrictions on manufacturing polyacetylene into a shape suitable for electrodes.

また、本出願人の出願にかかる特開昭60−17016
3号の明細書には、炭素、水素、および酸素からなる芳
香族縮合ポリマー”の熱処理物であって、水素原子/炭
素原子の原子数比が0.05〜0.5であり且つBET
法による比表面積が600TIt/g以上であるポリア
セン系骨格構造を有する不溶不融性基体を正極及び/又
は負極とし、電解により該電極にドーピング可能なイオ
ンを生成し得る化合物の非プロトン性有機溶媒溶液を電
解液とすることを特徴とする有機電解質電池が提案され
ている。
In addition, Japanese Patent Application Laid-Open No. 60-17016 filed by the present applicant
The specification of No. 3 describes a heat-treated product of an aromatic condensation polymer consisting of carbon, hydrogen, and oxygen, in which the atomic ratio of hydrogen atoms/carbon atoms is 0.05 to 0.5, and the BET
An aprotic organic solvent of a compound capable of producing ions that can be doped into the electrode by electrolysis, using an insoluble and infusible substrate having a polyacene skeleton structure with a specific surface area of 600 TIt/g or more as a positive electrode and/or a negative electrode. An organic electrolyte battery characterized by using a solution as an electrolyte has been proposed.

該電池は高性能で薄形化、軽量化の可能性も有しており
、電極活物質の酸化安定性も高く、ざらにその成形も容
易であるなど将来有望な二次電池である。ところが該電
池の実用化を進めるにはいくつかの課題が残されていた
。これらの課題の中に、電池作動電圧が比較的低く、ま
た容量が比較的小さいという問題があった。
This battery has high performance, has the possibility of being made thinner and lighter, has a high oxidation stability of the electrode active material, and is easily molded, making it a promising secondary battery. However, several issues remain to be solved in order to put this battery into practical use. Among these problems were the relatively low battery operating voltage and relatively small capacity.

[発明が解決しようとする問題コ 本発明の目的は、ポリアセン系骨格構造を持つ不溶不融
性基体から成る有機半導体を電極活物質とする有機電解
質電池であって、電池電圧が高くまた容量の大きい有機
電解質電池を提供することにある。
[Problems to be Solved by the Invention] An object of the present invention is to provide an organic electrolyte battery using an organic semiconductor composed of an insoluble and infusible substrate having a polyacene skeleton structure as an electrode active material, which has a high battery voltage and a large capacity. Our goal is to provide large organic electrolyte batteries.

本発明のざらに他の目的は、小形化、薄形化あるいは軽
量化が可能でありそして製造も容易である経済的な二次
電池である有機電解質電池を提供することにある。゛ 本発明のざらに他の目的は、内部抵抗、自己放電ともに
小さく、しかも長期に亘って充電、放電が可能な二次電
池を提供することにある。
Another object of the present invention is to provide an organic electrolyte battery that is an economical secondary battery that can be made smaller, thinner, lighter, and easier to manufacture. Another object of the present invention is to provide a secondary battery that has low internal resistance and low self-discharge, and can be charged and discharged for a long period of time.

[問題点を解決するための手段および作用]上記の本発
明の目的は、 A)(a)フェノール性水酸基を有する芳香族炭化水素
化合物とアルデヒド類との縮合物である芳香族系縮合ポ
リマーの熱処理物であって、(b)水素原子/炭素原子
の原子比が0.5〜0.05であるポリアセン系骨格構
造を有しくc)BET法による比表面積が600TIi
/g以上である不溶不融性基体に (d)あらかじめ電子供与性物質又はカチオンをドーピ
ングした不溶不融性基体を正極及び負極とし、 B) 電解によって該電極にドーピングされうるイオン
を生成しうる電解質と非プロトン性有機溶媒を含む溶液
を電解液とすることを特徴とする有機電解質電池によっ
て達成される。
[Means and effects for solving the problems] The above object of the present invention is to: A) (a) produce an aromatic condensation polymer which is a condensation product of an aromatic hydrocarbon compound having a phenolic hydroxyl group and an aldehyde; A heat-treated product, (b) having a polyacene skeleton structure with an atomic ratio of hydrogen atoms/carbon atoms of 0.5 to 0.05, and c) having a specific surface area of 600 TIi by the BET method.
/g or more; (d) an insoluble infusible substrate doped with an electron-donating substance or a cation in advance as a positive electrode and a negative electrode, and B) capable of generating ions that can be doped into the electrode by electrolysis. This is achieved by an organic electrolyte battery characterized in that the electrolyte is a solution containing an electrolyte and an aprotic organic solvent.

本発明における芳香族系縮合ポリマーは、フェノール性
水酸基を有する芳香族炭化水素化合物とアルデヒド類と
の縮合物である。かかる芳香族炭化水素化合物としては
、例えばフェノール、クレゾール、キシレノールのごと
きいわゆるフェノール類が好適であるが、他に例えば下
記式〔ここで、Xおよびyはそれぞれ独立に、0.1又
は2である〕で表わされるメチレン−ビスフェノール類
、あるいはヒドロキシビフェニル類、ヒドロキシナフタ
レン類であることもできる。これらのうち、実用的には
フェノール類、特にフェノールが好適である。
The aromatic condensation polymer in the present invention is a condensate of an aromatic hydrocarbon compound having a phenolic hydroxyl group and an aldehyde. As such aromatic hydrocarbon compounds, for example, so-called phenols such as phenol, cresol, and xylenol are suitable; ], methylene-bisphenols, hydroxybiphenyls, and hydroxynaphthalenes can also be used. Among these, phenols, particularly phenol, are practically preferred.

本発明における芳香族系綜合ポリマーとしては上記のフ
ェノール性水酸基を有する芳香族炭化水素化合物の一部
をフェノール性水酸基を有ざない芳香族炭化水素化合物
例えばキシレン、トルエン等で置換した変性芳香族系ポ
リマー、例えばフェノールとキシレンとホルムアルデヒ
ドとの縮合物を用いることもできる。
The aromatic integrated polymer in the present invention is a modified aromatic polymer in which a part of the above-mentioned aromatic hydrocarbon compound having a phenolic hydroxyl group is replaced with an aromatic hydrocarbon compound not having a phenolic hydroxyl group, such as xylene, toluene, etc. It is also possible to use polymers, for example condensates of phenol, xylene and formaldehyde.

アルデヒドとしては、ホルムアルデヒド、アセトアルデ
ヒド、フルフラール等のアルデヒドを使用することがで
きるが、ホルムアルデヒドが好適である。フェノールホ
ルムアルデヒド縮合物としては、ノボラック型又はレゾ
ール型或はそれらの混合物のいずれであってもよい。
As the aldehyde, aldehydes such as formaldehyde, acetaldehyde, and furfural can be used, and formaldehyde is preferred. The phenol formaldehyde condensate may be a novolac type, a resol type, or a mixture thereof.

本発明における不溶不融性基体は、上記の如き芳香族系
縮合ポリマーの熱処理物であって例えば次のようにして
製造することができる。
The insoluble and infusible substrate in the present invention is a heat-treated product of the aromatic condensation polymer as described above, and can be produced, for example, as follows.

フェノール性水酸基を有する芳香族炭化水素化合物又は
これとフェノール性水酸基を有さない芳香族炭化水素化
合物との混合物およびアルデヒド類から初期縮合物を作
り、この初期縮合物と無機塩の水溶液を調整し、この水
溶液を適当な型に流し込み加熱して該型内で例えば板状
、フィルム状あるいは円筒状等の形態に硬化し、その後
この硬化体を非酸化性雰囲気中で350〜aoo ’c
の温度まで加熱し、次いで得られた熱処理体を洗浄して
該熱処理体に含有される無機塩を除去する。
An initial condensate is prepared from an aromatic hydrocarbon compound having a phenolic hydroxyl group or a mixture of this and an aromatic hydrocarbon compound not having a phenolic hydroxyl group, and aldehydes, and an aqueous solution of this initial condensate and an inorganic salt is prepared. This aqueous solution is poured into a suitable mold and heated to harden in the mold into a plate-like, film-like or cylindrical shape, for example, and then the cured product is heated to 350 to 350 cm in a non-oxidizing atmosphere.
The heat-treated body obtained is then washed to remove inorganic salts contained in the heat-treated body.

初期縮合物と共に用いる上記無機塩は後の工程で除去さ
れるものであり、本発明の不溶不融性基体に600尻/
g以上の比表面積を持たせるための助剤である。無機塩
として例えば塩化亜鉛、リン酸ナトリウム、水素化カリ
ウムあるいは硫化カリウム等を用いることができる。こ
れらのうち塩化亜鉛が特に好ましい。無機塩は、初tn
縮合物の例えば0.05〜10重量倍の量で用いること
ができる。
The above-mentioned inorganic salt used together with the initial condensate is to be removed in a later step, and is added to the insoluble and infusible substrate of the present invention by
It is an auxiliary agent for providing a specific surface area of 100 g or more. Examples of inorganic salts that can be used include zinc chloride, sodium phosphate, potassium hydride, and potassium sulfide. Among these, zinc chloride is particularly preferred. Inorganic salt is the first tn
It can be used in an amount of, for example, 0.05 to 10 times the weight of the condensate.

下限より少ない但では比表面積値が600Trt/9以
上とはならず、また上限より多い量では最終的に得られ
る成形体の機械的強度が低下する傾向が大きくなり、望
ましくない。
However, if the amount is less than the lower limit, the specific surface area value will not be 600 Trt/9 or more, and if the amount is more than the upper limit, the mechanical strength of the final molded product will tend to decrease, which is not desirable.

初期縮合物と無機塩の水溶液は、使用する無機塩の種類
によっても異なるが例えば無機塩の0.1〜1重湯倍の
水を用いて調整することができ、該水溶液は適当な型に
流し込み、例えば50〜200℃の温度で加熱すると硬
化する。
The aqueous solution of the initial condensate and inorganic salt varies depending on the type of inorganic salt used, but can be prepared using, for example, 0.1 to 1 times as much water as the inorganic salt, and the aqueous solution is poured into a suitable mold. For example, it hardens when heated at a temperature of 50 to 200°C.

上記した初期縮合物と無機塩の水溶液にフェノール系繊
維〔例えば日本カイノール社製のカイノール(商標)繊
維〕を混ぜ込んでもよい。あるいはフェノール系繊維か
らなる布、フェルト等に上記水溶液を充分に含浸させた
プレプリグを作り、成形硬化してもよい。
Phenolic fibers (for example, Kynol (trademark) fibers manufactured by Nippon Kynol Co., Ltd.) may be mixed into the aqueous solution of the above-mentioned initial condensate and inorganic salt. Alternatively, a prepreg may be prepared by sufficiently impregnating cloth, felt, etc. made of phenolic fiber with the above aqueous solution, and then molded and cured.

かくして1qられた硬化体は次いで非酸化性雰囲気中で
350〜800℃の温度、好ましくは350〜700℃
の温度、特に好ましくは400〜600℃の温度まで加
熱され、熱処理される。
The thus obtained 1q cured product is then heated in a non-oxidizing atmosphere at a temperature of 350 to 800°C, preferably 350 to 700°C.
, particularly preferably 400 to 600° C., for heat treatment.

熱処理の際の好ましい昇温速度は使用する芳香族系縮合
ポリマー又はその硬化処理の程度、あるいはその形状等
によって多少相違するが、一般に室温から300″C程
度の温度までは比較的大きな昇温速度とすることが可能
であり、例えば100℃/時間の速度とすることも可能
である。300 ’C以上の温度になると、該芳香族系
縮合ポリマーの熱分解が開始し、水蒸気、水素、メタン
、−酸化炭素の如きガスが発生し始めるため、充分に遅
い速度で昇温せしめるのが有利である。
The preferred rate of temperature increase during heat treatment varies somewhat depending on the aromatic condensation polymer used, the degree of its curing treatment, its shape, etc., but in general, a relatively high rate of temperature increase from room temperature to a temperature of about 300''C. For example, it is possible to set the rate at 100°C/hour.When the temperature reaches 300'C or higher, the aromatic condensation polymer starts to thermally decompose, producing water vapor, hydrogen, and methane. , - It is advantageous to raise the temperature at a sufficiently slow rate since gases such as carbon oxides begin to evolve.

芳香族系縮合ポリマーのかかる加熱、熱処理は非酸化性
雰囲気下において行なわれる。非酸化性雰囲気は、例え
ば窒素、アルゴン、ヘリウム、ネオン、二酸化炭素雰囲
気等、あるいは真空であり、窒素が好ましく用いられる
。かかる非酸化性雰囲気は静止していても流動していて
もさしつかえない。
Such heating and heat treatment of the aromatic condensation polymer is performed in a non-oxidizing atmosphere. The non-oxidizing atmosphere is, for example, nitrogen, argon, helium, neon, carbon dioxide atmosphere, etc., or vacuum, and nitrogen is preferably used. Such a non-oxidizing atmosphere may be stationary or flowing.

得られた熱処理体を水あるいは希塩酸等によって充分に
洗浄することによって、熱処理体中に含まれる無機塩を
除去することができ、その後これを乾燥する。このよう
にして水素原子/炭素原子の原子比(以下H/C比とい
う)が0.5〜0.05、好ましくは0.35〜0.1
のポリアセン系骨格構造を有し、かつBET法による比
表面積が600TIt/9以上である不溶不融性基体が
得られる。X線回折(Cu Kα)によれば、メイン 
ピークの位置は2θで表わして20.5〜23.5°の
間に存在し、また該メイン ピークの他に41〜46°
の間にブロードな他のピークが存在する。
The inorganic salts contained in the heat-treated body can be removed by sufficiently washing the heat-treated body with water or dilute hydrochloric acid, and then the body is dried. In this way, the atomic ratio of hydrogen atoms/carbon atoms (hereinafter referred to as H/C ratio) is 0.5 to 0.05, preferably 0.35 to 0.1.
An insoluble and infusible substrate having a polyacene skeleton structure and a specific surface area of 600 TIt/9 or more by the BET method can be obtained. According to X-ray diffraction (Cu Kα), the main
The peak position is expressed in 2θ between 20.5 and 23.5°, and in addition to the main peak, there are also peak positions between 41 and 46°.
There are other broad peaks in between.

すなわち、上記不溶不融性基体は、ボリアセン系のベン
ゼンの多環構造がボリアセン系分子間に均−且つ適度に
発達したものであると理解される。
That is, it is understood that the above-mentioned insoluble and infusible substrate is one in which the polycyclic structure of boriacene-based benzene is evenly and appropriately developed between the boriacene-based molecules.

H/C比が0.5を越える場合、あるいは0.05より
小さい場合には、該基体を後に示す方法に従って二次電
池の電極として用いたとき充放電の効率が低下して好ま
しくない。又、該ポリアセン系骨格構造を含有する不溶
不融性基体のBET法による比表面積値は、塩化亜鉛等
の無機塩を使用して製造しているため極めて大きな値と
なり、本発明では600m/g以上であるものが用いら
れる。
If the H/C ratio exceeds 0.5 or is smaller than 0.05, the efficiency of charging and discharging will decrease when the substrate is used as an electrode of a secondary battery according to the method shown later, which is not preferable. In addition, the specific surface area value of the insoluble and infusible substrate containing the polyacene skeleton structure by the BET method is extremely large because it is manufactured using an inorganic salt such as zinc chloride, and in the present invention, the specific surface area value is 600 m/g. The above is used.

600尻/g未満の場合には、該基体を電極とじた二次
電池の充電時における充電電圧を高くする必要が生じる
ためエネルギー密度等が低下し、又電解液の劣化をさそ
うため好ましくない。
If it is less than 600 butts/g, it is not preferable because it is necessary to increase the charging voltage when charging a secondary battery in which the substrate is connected to an electrode, resulting in a decrease in energy density, etc., and deterioration of the electrolyte solution.

また、本出願人の出願にかかる特開昭61−21806
0号公報に記載されるように、無機塩を初期縮合物の2
.5〜10倍量として水溶液の粘度を100.000〜
100センチポイズに調整し、加熱時に水分の蒸発を抑
止するようにして硬化された成形体を使用して、非酸化
性雰囲気下で熱処理すると平均孔径10μ以下の連通気
孔を有する多孔状の不溶不融性基体が得られる。該基体
を電極とすると電解液が該連通孔を通じて細部まで自由
に出入りし易いため、より好ましい。
In addition, Japanese Patent Application Laid-Open No. 61-21806 filed by the present applicant
As described in Publication No. 0, an inorganic salt is converted into an initial condensate of 2
.. The viscosity of the aqueous solution is 100.000-100.000 times the amount by 5-10 times.
When heat-treated in a non-oxidizing atmosphere using a molded body adjusted to 100 centipoise and cured to prevent moisture evaporation during heating, it becomes porous, insoluble, and infusible with continuous pores with an average pore diameter of 10 μ or less. A sexual substrate is obtained. It is more preferable to use the base as an electrode because the electrolyte can easily enter and exit through the communicating holes to the smallest detail.

上記不溶不融性基体の電気伝導度は通常10−11〜1
01Ω−1,、−1であるが、電解質イオンをドーピン
グすることによって電気伝導度は10−2〜102Ω−
1cm−1まで増大する。本発明では後述するように、
上記不溶不融性基体にカチオン又は電子供与性物質をド
ーピングした、大きな伝導度を持った不溶不融性基体を
電極材として使用するのであるから、これを集電性を兼
ねた電極材とすることもできる。
The electrical conductivity of the above-mentioned insoluble and infusible substrate is usually 10-11 to 1.
01Ω-1,,-1, but by doping with electrolyte ions, the electrical conductivity increases from 10-2 to 102Ω-
Increases to 1 cm-1. In the present invention, as described later,
Since the above-mentioned insoluble and infusible substrate is doped with a cation or electron-donating substance and has high conductivity, it is used as an electrode material that also has current collecting properties. You can also do that.

また、本発明の不溶不融性基体は、例えばフィルム、板
等々の種々の形態に作ることができるため、小形電池、
薄形電池あるいは軽量電池の電極材として適している。
Furthermore, since the insoluble and infusible substrate of the present invention can be made into various forms such as films and plates, it can be used for small batteries,
Suitable as an electrode material for thin or lightweight batteries.

本発明で用いられる上記多孔性不溶不融性基体は600
Trt/g以上の大きい比表面積を有しているのにもか
かわらず酸化安定性に優れており、現実に空気中に長時
間放置しても電気伝導度等の物性には変化がない。また
、耐熱性、対薬品性に優れているため、電極材として用
いたときに電極の劣化の問題が生じない。
The porous insoluble and infusible substrate used in the present invention has a
Although it has a large specific surface area of Trt/g or more, it has excellent oxidation stability, and its physical properties such as electrical conductivity do not change even if it is left in the air for a long time. Furthermore, since it has excellent heat resistance and chemical resistance, there is no problem of electrode deterioration when used as an electrode material.

本発明の有機電解質電池は、上記の不溶不融性基体にあ
らかじめ電子供与性物質又はカチオンをドーピングした
不溶不融性基体を正極及び負極とし、電解によって該電
極にドーピングされうるイオンを生成しうる化合物を非
プロトン性有機溶媒に溶解させた溶液を電解液とするこ
とを特徴としている。
In the organic electrolyte battery of the present invention, the insoluble and infusible substrate described above is doped with an electron-donating substance or a cation in advance, and the insoluble and infusible substrate is used as a positive electrode and a negative electrode, and ions that can be doped into the electrode can be generated by electrolysis. It is characterized in that the electrolyte is a solution in which a compound is dissolved in an aprotic organic solvent.

あらかじめドーピングされる電子供与性物質としてはL
i1Na、Kが好ましく、カチオンとしてはLl 、N
a 、K 、(CH3)4N 1(C2H5)4N+、
(03H5>4 N+を用いることができる。これらの
電子供与性物質又はカチオンを本発明の不溶不融性基体
に対して、0.5〜3.0重量%ドーピングすることに
よって電極の絶対電位を下げることができる。理由は定
かでないが、不溶不融性基体の電極絶対電位を下げるこ
とにより、電池の作動電圧+1]が広がるとともに、放
電容量が大きくなる。例えば、あらかじめドーピングを
施さない不溶不融性基体を正極及び負極とし、電解液を
最も標準的なLiCρ04/プロピレンカーボネイト(
1モル/、Q6’1度)とした有機電解質電池と比較し
てあらかじめドーピングを施した本発明の不溶不融性基
体を正極及び負極とした本発明の有機電解質電池は1.
5〜2倍の放電容量を持ち、作動電圧中が1.2〜1.
7倍に広がる。
The electron donating substance to be doped in advance is L.
i1Na, K are preferred, and the cations include Ll, N
a, K, (CH3)4N 1(C2H5)4N+,
(03H5>4 N+ can be used. By doping 0.5 to 3.0% by weight of these electron-donating substances or cations to the insoluble and infusible substrate of the present invention, the absolute potential of the electrode can be changed. Although the reason is unclear, by lowering the absolute electrode potential of the insoluble and infusible substrate, the operating voltage +1 of the battery increases and the discharge capacity increases. The fusible substrates were used as positive and negative electrodes, and the electrolyte was the most standard LiCρ04/propylene carbonate (
The organic electrolyte battery of the present invention in which the insoluble and infusible substrate of the present invention, which has been doped in advance, is used as the positive electrode and negative electrode is compared with the organic electrolyte battery in which the insoluble substrate of the present invention is doped in advance.
It has a discharge capacity of 5 to 2 times, and the operating voltage is 1.2 to 1.
Expands seven times.

即ち、本発明の、ドーピングをあらかじめ施した不溶不
融性基体を正極及び負極に用いた有機電解質電池は、従
来の有機型1質電池より大きい容量を有し、かつ広い作
動電位中を持つ。
That is, the organic electrolyte battery of the present invention, which uses a pre-doped insoluble and infusible substrate as a positive electrode and a negative electrode, has a larger capacity than a conventional organic monolithic battery and has a wide range of operating potential.

不溶不融性基体に電子供与性物質又はカチオンをドーピ
ングする方法としては、公知の電解法、気相法、液相法
、イオン注入法のいずれかを用いることができる。例え
ば電解法でカチオンをドーピングする場合は、カチオン
を含む電解液中に不溶不融性基体を作用電極として浸し
、同一電解液中の対極との間で、電流を流すか、又は電
圧を印加する。また、気相法を用いる場合は、例えば前
述の電子供与性物質の蒸気に、不溶不融性基体を晒す。
As a method for doping the insoluble and infusible substrate with an electron donating substance or cation, any of the known electrolytic methods, gas phase methods, liquid phase methods, and ion implantation methods can be used. For example, when doping cations by electrolytic method, an insoluble and infusible substrate is immersed as a working electrode in an electrolytic solution containing cations, and a current is passed or a voltage is applied between it and a counter electrode in the same electrolytic solution. . Furthermore, when using a gas phase method, the insoluble and infusible substrate is exposed to, for example, the vapor of the above-mentioned electron donating substance.

また液相法を用いる場合は、例えば前述の電子供与性物
質の液体を不溶不融性基体に含浸ざヒるか、又は、前述
の電子供与性物質を含む鏡体と不溶不融性基体とを反応
させても良い。この反応に用いる鏡体としては、例えば
アルカリ金属のナフタレン錯体、アルコキシドなどが挙
げられるが、これらに限らない。
In addition, when using a liquid phase method, for example, an insoluble and infusible substrate is impregnated with the liquid of the above-mentioned electron donating substance, or a mirror body containing the above-mentioned electron donating substance and an insoluble infusible substrate are impregnated. You may also react. Examples of mirrors used in this reaction include, but are not limited to, alkali metal naphthalene complexes and alkoxides.

不溶不融性基体にあらかじめ電子供与性物質又はカチオ
ンをドーピングするドーピング量は0.5〜3重量%が
好ましい。ドーピング量が3%以上の場合は電極電位が
低すぎ、一方、0.5%以下の場合は電極電位が高すぎ
て、容量増大、作動電位中の拡大の効果が顕著でない。
The amount by which the insoluble and infusible substrate is doped with the electron donating substance or cation in advance is preferably 0.5 to 3% by weight. When the doping amount is 3% or more, the electrode potential is too low, while when it is 0.5% or less, the electrode potential is too high, and the effect of increasing the capacity and widening the operating potential is not significant.

また本発明に用いる電解液を構成する溶媒としては、非
プロトン性有機溶媒が用いられる。非プロトン性有機溶
媒としては、例えばエチレンカーボネイト、プロピレン
カーボネイト、γ−ブチロラクトン、ジメチルホルムア
ミド、ジメチルアセトアミド、ジメチルスルホキシド、
アセトニトリル、ジメトキシエタン、テトラヒドロフラ
ン、ジオキソラン、塩化メチレン、スルホラン又はこれ
ら非プロトン性有機溶媒の二種以上の混合液のいずれを
使用しても良い。
Further, as a solvent constituting the electrolytic solution used in the present invention, an aprotic organic solvent is used. Examples of aprotic organic solvents include ethylene carbonate, propylene carbonate, γ-butyrolactone, dimethylformamide, dimethylacetamide, dimethylsulfoxide,
Any of acetonitrile, dimethoxyethane, tetrahydrofuran, dioxolane, methylene chloride, sulfolane, or a mixture of two or more of these aprotic organic solvents may be used.

また、上記の混合又は単一の溶媒に溶解させる電解質は
、電解により本発明のドーピングを施した不溶不融性基
体にドーピングされうるイオンを生成しうる電解質のい
ずれでも良い。このような電解質は、例えばLt  L
 Na I、NH41、Li C,ll 04 、Li
 AS F6 、L+ BF4、KP  F6  、 
Na  P  F6  、  (C2F15 ) 4N
C,C04、(rl−C4Hg ) 4 NGρ04、
(C2ト(5) 4 N B F4 、(n−CI−1
)  NBF4. (n  C4t−1g ) 4 NAS F6、(n 
 C4Hg )4 PF6又はLiHF2である。
Further, the electrolyte to be dissolved in the above-mentioned mixed or single solvent may be any electrolyte that can generate ions that can be doped into the doped insoluble and infusible substrate of the present invention by electrolysis. Such an electrolyte is, for example, Lt L
NaI, NH41, LiC,ll04, Li
AS F6, L+ BF4, KP F6,
Na PF6, (C2F15) 4N
C, C04, (rl-C4Hg) 4 NGρ04,
(C2 (5) 4 N B F4 , (n-CI-1
) NBF4. (n C4t-1g) 4 NAS F6, (n
C4Hg)4PF6 or LiHF2.

上記の電解質及び溶媒は充分に脱水された状態で混合さ
れ、電解液とするのであるが、電解液中の前期電解質の
濃度は電解液による内部抵抗を小さくするため少くとも
0.1モル/ρ以上とするのが望ましく、通常0.2〜
1.5モル/、12とするのがより好ましい。
The above electrolyte and solvent are mixed in a sufficiently dehydrated state to form an electrolyte solution, and the concentration of the first electrolyte in the electrolyte solution is at least 0.1 mol/ρ in order to reduce the internal resistance caused by the electrolyte solution. It is desirable to set it to above, and usually 0.2 to
More preferably, the amount is 1.5 mol/.12.

本発明の電池の充放電は、電極として用いられるあらか
じめドーピングを施した不溶不融性基体への上記した電
解質イオンの電気化学的ドーピングと電気化学的アンド
−ピングによる。即ち、エネルギーが不溶不融性基体の
ドーピングにより蓄えられ、アンド−ピングにより電気
エネルギーとして外部に取り出される。
Charging and discharging of the battery of the present invention is performed by electrochemical doping and electrochemical undoping of the above-mentioned electrolyte ions onto a previously doped insoluble and infusible substrate used as an electrode. That is, energy is stored by doping the insoluble and infusible substrate, and is taken out as electrical energy by undoping.

電池内に配置されるあらかじめドーピングを施した不溶
不融性基体からなる電極の形状、大きさは、目的とする
電池の種類により任意に選ぶことができるが、電池反応
は電極表面上の電気化学的反応であるため電極は可能な
限り表面積を大きくすることが有利である。又、該基体
より電池外部に電流を取り出すための集電体としては不
溶不融性基体自体を用いることもできるが、電解液に対
し耐食性のある導電性物質、例えば炭素、白金、ニッケ
ル、ステンレス等を用いることもできる。
The shape and size of the electrode, which is made of a pre-doped insoluble and infusible substrate placed inside the battery, can be arbitrarily selected depending on the type of battery intended, but the battery reaction is based on the electrochemical reaction on the electrode surface. Since this is a kinetic reaction, it is advantageous for the electrode to have as large a surface area as possible. In addition, the insoluble and infusible substrate itself can be used as a current collector for extracting current from the substrate to the outside of the battery, but conductive materials that are resistant to corrosion by the electrolytic solution, such as carbon, platinum, nickel, and stainless steel, may also be used. etc. can also be used.

次に図により本発明の実施態様を説明する。第1図は本
発明に係る電池の基本構造図である。第1図において、
1は正極であり、フィルム状あるいは板状等のあらかじ
めドーピングを施した不溶不融性基体である。2は負極
であり、同様にフィルム状あるいは板状等の、あらかじ
めドーピングを施した不溶不融性基体である。電池の組
み立て直後の該電池の起電圧は、不溶不融性基体にあら
かじめドーピングされたドーパン1〜の岳によって異る
が、0〜1Vである。外部電源により電圧を印加して、
充電を行うことにより、該電池は高い起電力を有するよ
うになる。3.3′は各電極から外部に電流を取り出し
たり、充電するために電流を供給するための集電体であ
り、外部端子7゜7′に接続されている。4は電解液で
あり、5は正負両極の接触を阻止すること及び電解液を
保持することを目的として配置されたセパレーターであ
る。該セパレーターは耐久性のある連通気孔を有する電
子伝導性のない多孔体であり、通常、ガラス繊維、ポリ
エチレン或は、ポリプロピレン等からなるイ5、不織布
、或は多孔体が用いられる。
Next, embodiments of the present invention will be explained with reference to the drawings. FIG. 1 is a basic structural diagram of a battery according to the present invention. In Figure 1,
Reference numeral 1 denotes a positive electrode, which is a film-like or plate-like insoluble and infusible substrate which has been doped in advance. Reference numeral 2 denotes a negative electrode, which is likewise a film-like or plate-like insoluble and infusible substrate which has been doped in advance. Immediately after the battery is assembled, the electromotive voltage of the battery is 0 to 1 V, although it varies depending on the amount of dopant 1 to 1 with which the insoluble and infusible substrate is doped in advance. By applying voltage from an external power supply,
By charging, the battery has a high electromotive force. Reference numeral 3.3' denotes a current collector for extracting current from each electrode to the outside or supplying current for charging, and is connected to external terminals 7 and 7'. 4 is an electrolytic solution, and 5 is a separator arranged for the purpose of preventing contact between the positive and negative electrodes and retaining the electrolytic solution. The separator is a durable porous body with no electronic conductivity and has continuous pores, and is usually made of glass fiber, polyethylene, polypropylene, or the like, a nonwoven fabric, or a porous body.

セパレーターの厚さは電池の内部抵抗を小さくするため
薄い方が好ましいが、電解液の保持量、流通性、強度等
を勘案して決定される。正極、負極及びセパレーターは
電池ケース6内に実用上問題が生じないように固定され
る。電池の形状、大きさ等は目的とする電池の形状、性
能により適宜法められる。例えば薄形電池を製造する場
合には、電極はフィルム状が適し、大容量電池を製造す
るには、フィルム状或は板状等の正負両極を交互に多数
枚積図することにより達成できる。
The thickness of the separator is preferably thin in order to reduce the internal resistance of the battery, but it is determined by taking into account the amount of electrolyte retained, flowability, strength, etc. The positive electrode, negative electrode, and separator are fixed in the battery case 6 so as not to cause any practical problems. The shape, size, etc. of the battery are determined as appropriate depending on the shape and performance of the intended battery. For example, when producing a thin battery, a film-shaped electrode is suitable, and when producing a large-capacity battery, this can be achieved by alternately stacking a large number of film-shaped or plate-shaped positive and negative electrodes.

充電又は放電は一定電流下でも一定電圧下でも、また電
流及び電圧の変化する条件下のいずれで行ってもよいが
、充電時に不溶不融性基体にドーピングされるドーピン
グ剤の量は、該基体の炭素原子1個に対するドーピング
されたイオン数の百分率で表わして0.5〜20%が好
ましい。
Charging or discharging may be performed under a constant current, a constant voltage, or under conditions where the current and voltage vary, but the amount of doping agent doped into the insoluble and infusible substrate during charging depends on the The number of doped ions expressed as a percentage per carbon atom is preferably 0.5 to 20%.

あらかじめドーピングを施した不溶不融性基体を電極と
して用いる本発明の電池は充放電を繰り返し行える2次
電池であり、その起電圧は該電池への充電間によって異
るが、1.0〜3.5Vである。
The battery of the present invention, which uses an insoluble and infusible substrate doped in advance as an electrode, is a secondary battery that can be repeatedly charged and discharged, and its electromotive voltage varies depending on the charging period of the battery, but is 1.0 to 3. .5V.

本発明の電池を構成する不溶不融性基体及び電解液の比
重が小さいため、重量当りの容量が大きい。
Since the specific gravity of the insoluble and infusible substrate and electrolyte that constitute the battery of the present invention is small, the capacity per weight is large.

又、パワー密度については、電池の構成により差はある
が鉛蓄電池よりはるかに大きなパワー密度を有している
。更に本発明におけるあらかじめドーピングを施した不
溶不融性基体を電極として使用すると、内部抵抗の小さ
く、繰り返し充放電の可能な、長期にわたって電池性能
の低下しない2次電池を製造することができる。
Furthermore, although there are differences in power density depending on the structure of the battery, it has a much higher power density than a lead-acid battery. Further, when the insoluble and infusible substrate which has been doped in advance according to the present invention is used as an electrode, it is possible to produce a secondary battery that has a low internal resistance, can be repeatedly charged and discharged, and does not deteriorate in battery performance over a long period of time.

本発明の2次電池は、従来公知の有機半導体に比較して
耐酸化性、耐熱性、成形性及び機械的強度に優れたポリ
アセン系骨+8構造を含有する多孔性不溶不融性基体に
カチオン又は電子供与性物質をあらかじめドーピングし
た電極を用いており、また小形化、薄形化、軽量化が可
能で、且つ高容量、高起電圧でしかも高出力な2次電池
である。
The secondary battery of the present invention has a porous insoluble and infusible substrate containing a polyacene bone+8 structure that has superior oxidation resistance, heat resistance, moldability, and mechanical strength compared to conventionally known organic semiconductors. Alternatively, the secondary battery uses an electrode doped with an electron-donating substance in advance, and can be made smaller, thinner, and lighter, and has a high capacity, high electromotive force, and high output.

以下、実施例によって本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 (1)  水溶性レゾール(約60%濃度)/塩化亜鉛
/水を重量比で10/25/4の割合で混合した水溶液
をフィルムアプリケーターでガラス板上に成膜した。次
に成膜した水溶液上にガラス板を被せ水分が蒸発しない
様にした後、約100℃の温度で1時間加熱して硬化さ
せた。
Example 1 (1) An aqueous solution containing water-soluble resol (approximately 60% concentration)/zinc chloride/water mixed in a weight ratio of 10/25/4 was formed into a film on a glass plate using a film applicator. Next, a glass plate was placed over the formed aqueous solution to prevent moisture from evaporating, and then heated at a temperature of about 100° C. for 1 hour to cure it.

該フェノール樹脂フィルムをシリコニット電気炉中に入
れ窒素気流下で40℃/時間の速度で昇温して、500
℃まで熱処理を行った。次に該熱処理物を希塩酸で洗っ
た後、水洗し、その後乾燥することによってフィルム状
の多孔性を得た。該フィルムの厚みは約200μ雇であ
り、見掛は密度は0.35g/cfflであり、機械的
強度に優れたフィルムであった。次に該フィルムの電気
伝導度を至温で直流4端子法で測定したところ10’ 
(Ω・cmVlであった。また元素分析を行ったところ
、水素原子/炭素原子の原子比は0.27であった。X
線回折からのピークの形状はポリアセン系骨格構造に基
、囚するパターンであり、2θで20〜22°付近にブ
ロードなメインピークが存在し、また41〜46°付近
に小さなピークが確認された。またBET法による比表
面積値の測定を行ったところ2100′rIi/9と極
めて大きな値であった。
The phenolic resin film was placed in a siliconite electric furnace and heated at a rate of 40°C/hour under a nitrogen stream to 500°C.
Heat treatment was performed to ℃. Next, the heat-treated product was washed with dilute hydrochloric acid, water, and then dried to obtain a porous film. The thickness of the film was approximately 200 μm, the apparent density was 0.35 g/cffl, and the film had excellent mechanical strength. Next, the electrical conductivity of the film was measured at the lowest temperature using the DC 4-terminal method, and the result was 10'.
(Ω・cmVl. Also, when elemental analysis was performed, the atomic ratio of hydrogen atoms/carbon atoms was 0.27.X
The shape of the peaks from line diffraction is a pattern based on the polyacene skeleton structure, with a broad main peak around 20-22° at 2θ, and a small peak around 41-46°. . Further, when the specific surface area value was measured by the BET method, it was found to be an extremely large value of 2100'rIi/9.

次に該フィルム状不溶不融性基体の気孔状態を観察する
ためにフィルム断面の電子顕微鏡写真を取ったところ、
平均10μm以下の微細な連通気孔を有する多孔体であ
ると判った。
Next, in order to observe the pore state of the film-like insoluble and infusible substrate, an electron micrograph of a cross section of the film was taken.
It was found that it was a porous body having fine interconnected pores with an average diameter of 10 μm or less.

(2)  次に充分に脱水したプロピレンカーボネイト
にLiC,1104を1モル/Ωの濃度で溶解させた溶
液を電解液とし、充分に乾燥した上記の不溶不融性基体
を作用極、リチウムを対極として不溶不融性基体にl−
i  カチオンの電解ドーピングを行った。ドーピング
量は多孔性フィルム基体の炭素原子1個当りにドーピン
グされるイオンの数で表わすこととし、ドーピングされ
たイオンの数は回路を流れた電流値より求めた。電解ド
ーピングを始める前において、不溶不融性基体のLi対
極に対する電圧は2.95Vであった。次に外部電源に
より、不溶不融性基体のLi対極に対する電圧を2.3
■に設定したところ、不溶不融性基体よりリチウム極へ
電流が流れ出した。約1時間後、回路に流れる電流が数
10マイクロアンペアまで低下したので電解ドーピング
を止め、不溶不融性基体のリチウム対極に対する電位を
測定したところ約2.3vであった。この時までに回路
を流れた電流量より計算して、不溶不融性基体に電解ド
ーピングされたリチウムカチオンは約1.2%であった
(2) Next, a solution prepared by dissolving LiC, 1104 at a concentration of 1 mol/Ω in sufficiently dehydrated propylene carbonate is used as the electrolyte, the sufficiently dried insoluble and infusible substrate is used as the working electrode, and lithium is used as the counter electrode. l- to the insoluble and infusible substrate as
i Electrolytic doping of cations was performed. The doping amount was expressed as the number of ions doped per carbon atom of the porous film substrate, and the number of doped ions was determined from the value of the current flowing through the circuit. Before starting electrolytic doping, the voltage of the insoluble and infusible substrate to the Li counter electrode was 2.95V. Next, using an external power supply, the voltage to the Li counter electrode of the insoluble and infusible substrate was set to 2.3
When the setting was set to (2), a current began to flow from the insoluble and infusible substrate to the lithium electrode. After about one hour, the current flowing through the circuit decreased to several tens of microamperes, so electrolytic doping was stopped, and the potential of the insoluble and infusible substrate relative to the lithium counter electrode was measured and found to be about 2.3V. Calculating from the amount of current flowing through the circuit up to this point, the amount of lithium cations electrolytically doped into the insoluble and infusible substrate was about 1.2%.

次に、上記のリチウムドーピングを施した不溶不融性基
体を正極及び負極とし、充分に脱水したプロピレンカー
ボネイトにL i C4! 04を1モル/ρの濃度で
溶解させた溶液を電解液として、第1図の様に電池を組
んだ。集電体としてはステンレスメツシュを用い、セパ
レーターとしてはガラス繊維からなるフェルトを用いた
Next, the insoluble and infusible substrate doped with lithium was used as a positive electrode and a negative electrode, and L i C4! was added to sufficiently dehydrated propylene carbonate. A battery was assembled as shown in FIG. 1 using a solution containing 04 dissolved at a concentration of 1 mol/ρ as an electrolyte. A stainless steel mesh was used as the current collector, and felt made of glass fiber was used as the separator.

電池を組んだ直後の電圧はOVであった。次に外部電源
により2.5Vの電圧を印加して、約1時間、充電した
。電池の起電圧は当然のことながら2.5vであった。
The voltage immediately after the battery was assembled was OV. Next, a voltage of 2.5V was applied from an external power source to charge the battery for about 1 hour. Naturally, the electromotive voltage of the battery was 2.5V.

次に1時間当りのアンド−ピング量が3%となる速度で
放電したところ、約1時間で電池の電圧はOVに戻った
Next, when the battery was discharged at a rate such that the amount of and-ping per hour was 3%, the voltage of the battery returned to OV in about 1 hour.

次に、該電池に再び外部電源により、1時間当りの充電
量が1%となる電流で充電を行ったところ、約3.5%
の充電で電池の電圧が3Vとなった。次に充電時と同じ
電流で放電を行ったところ電池電圧がOvになるまでに
約3時間20分装した。
Next, when the battery was charged again using an external power supply with a current that gave a charge amount of 1% per hour, the battery was charged at approximately 3.5%.
After charging, the battery voltage became 3V. Next, when discharging was performed using the same current as during charging, it took about 3 hours and 20 minutes until the battery voltage reached Ov.

充電に要した時間と放電に要した時間とより電荷効率を
計算すると約95%であった。この事より、電池電圧3
.0Vは作動電位中白にある事が判明した。
The charge efficiency was calculated from the time required for charging and the time required for discharging and was approximately 95%. From this, battery voltage 3
.. It turns out that 0V is in the white range of operating potentials.

比較例1 あらかじめドーピングを施さない不溶不融性基体を正極
及び負極とし、他は全〈実施例1と同様にして電池を組
んだ。電池を組んだ直後の電圧はOvであった。次に外
部電源により2.5■の電圧を印加して約1時間充電し
、1時間当りの放電量が3%となる速度で放電したとこ
ろ、約1時間で電池の電圧はOVに戻った。
Comparative Example 1 A battery was assembled in the same manner as in Example 1 except that an insoluble and infusible substrate that had not been doped in advance was used as a positive electrode and a negative electrode. The voltage immediately after the battery was assembled was Ov. Next, we applied a voltage of 2.5μ using an external power source, charged the battery for about 1 hour, and discharged it at a rate of 3% discharge per hour.The battery voltage returned to OV in about 1 hour. .

次に、該電池に外部電源により、1時間当りの充電量が
1%となる電流で充電を行ったところ、約3.5%の充
電で電池の電圧が3Vとなった。次に充電時と同一の電
流で放電を行ったところ、3.0%の放電量であり、電
荷効率は85%であった。
Next, the battery was charged by an external power source with a current that would give a charge amount of 1% per hour, and the voltage of the battery became 3V at about 3.5% charge. Next, when discharging was performed using the same current as during charging, the amount of discharge was 3.0%, and the charge efficiency was 85%.

実施例2および3 実施例1(1)で得られた不溶不融性基体に、電解法に
よりリチウムカチオンを第1表に示した所定量までドー
ピングを行った。次にこれらのあらかじめドーピングを
施した不溶不融性基体を正極及び負極として電池を組み
、実施例1と同様にして3vまでの充放電における電荷
効率を測定した。
Examples 2 and 3 The insoluble and infusible substrate obtained in Example 1 (1) was doped with lithium cations to a predetermined amount shown in Table 1 by an electrolytic method. Next, a battery was assembled using these pre-doped insoluble and infusible substrates as a positive electrode and a negative electrode, and the charge efficiency in charging and discharging up to 3V was measured in the same manner as in Example 1.

これらの結果を第1表に示す。These results are shown in Table 1.

第1表Table 1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る電池の基本構成図であり、1は正
極、2は負極、3.3′は集電体、4は電解液、5はセ
パレーター、6は電池ケース、7゜7′は外部端子を表
わす。
FIG. 1 is a basic configuration diagram of a battery according to the present invention, where 1 is a positive electrode, 2 is a negative electrode, 3.3' is a current collector, 4 is an electrolytic solution, 5 is a separator, 6 is a battery case, and 7°7 ' represents an external terminal.

Claims (1)

【特許請求の範囲】 1、フェノール性水酸基を有する芳香族炭化水素化合物
とアルデヒド類との縮合物である芳香族系縮合ポリマー
の熱処理物であつて水素原子/炭素原子の原子数比が0
.05〜0.5であり、かつBET法による比表面積が
600m^2/g以上であるポリアセン系骨格構造を含
有する不溶不融性基体にあらかじめ電子供与性物質又は
カチオンをドーピングした不溶不融性基体を正極及び負
極とし、電解によって該電極にドーピングされうるイオ
ンを生成しうる電解質と非プロトン性有機溶媒を含む溶
液を電解液とすることを特徴とする有機電解質電池。 2、芳香族系縮合ポリマーがフェノールとホルムアルデ
ヒドとの縮合物である特許請求の範囲第1項記載の有機
電解質電池。 3、水素原子/炭素原子の原子比が0.1〜0.35で
ある特許請求の範囲第1項記載の有機電解質電池。 4、不溶不融性基体が平均孔径10μ以下の多数の連通
孔を持つ特許請求の範囲第1項記載の有機電解質電池。 5、不溶不融性基体にあらかじめ、電子供与性物質又は
カチオンをドープ量単位(不溶不融性基体の炭素原子1
個あたりにドーピングされたイオン数の百分率)で表わ
して0.5〜3%ドーピングした不溶不融性基体を正極
及び負極とした、特許請求の範囲第1項に記載の有機電
解質電池。 6、不溶不融性基体にあらかじめドープされた電子供与
性物質が、Li、Na、Kから選ばれ、カチオンがLi
^+、Na^+、K^+、 (CH_3)_4N^+、(C_2H_5_)4N^+
、(C_3H_5)_4N^+から選ばれる特許請求の
範囲第1項に記載の有機電解質電池。 7、電解法によってあらかじめカチオンをドーピングし
た不溶不融性基体を正極及び負極とした特許請求の範囲
第1項に記載の有機電解質電池。 8、ドーピングされうるイオンを生成しうる化合物がL
iI、NaI、NH_4I、LiClO_4LiASF
_6、LiBF_4、KPF_6、NaPF_6、(C
_2H_5)_4NClO_4、(n−C_4H_9)
_4NClO_4、 (C_2H_5)_4NBF_4、(n−C_4H_9
)_4NBF_4、(n−C_4H_9)_4NASF
_6、(n−C_4H_9)_4PF_6又はLiHF
_2である特許請求の範囲第1項に記載の有機電解質電
池。 9、非プロトン性有機溶媒がエチレンカーボネート、プ
ロピレンカーボネイト、γ−ブチロラクトン、ジメチル
ホルムアミド、ジメチルアセトアミド、ジメチルスルホ
キシド、アセトニトリル、ジメトキシエタン、テトラヒ
ドロフランン、ジオキソラン、塩化メチレン、スルホラ
ン又はこれらの非プロトン性有機溶媒の混合液である特
許請求の範囲第1項に記載の有機電解質電池。
[Scope of Claims] 1. A heat-treated product of an aromatic condensation polymer that is a condensation product of an aromatic hydrocarbon compound having a phenolic hydroxyl group and an aldehyde, the atomic ratio of hydrogen atoms to carbon atoms being 0.
.. 05 to 0.5 and a specific surface area of 600 m^2/g or more by the BET method.An insoluble and infusible substrate is doped with an electron-donating substance or a cation in advance. An organic electrolyte battery characterized in that a substrate is used as a positive electrode and a negative electrode, and an electrolytic solution is a solution containing an electrolyte and an aprotic organic solvent that can generate ions that can be doped into the electrodes by electrolysis. 2. The organic electrolyte battery according to claim 1, wherein the aromatic condensation polymer is a condensate of phenol and formaldehyde. 3. The organic electrolyte battery according to claim 1, wherein the atomic ratio of hydrogen atoms/carbon atoms is 0.1 to 0.35. 4. The organic electrolyte battery according to claim 1, wherein the insoluble and infusible substrate has a large number of communicating pores with an average pore diameter of 10 μm or less. 5. The insoluble and infusible substrate is doped with an electron-donating substance or cation in units of quantity (1 carbon atom of the insoluble and infusible substrate).
2. The organic electrolyte battery according to claim 1, wherein the positive electrode and the negative electrode are insoluble and infusible substrates doped with 0.5 to 3% (expressed as a percentage of the number of ions doped per cell). 6. The electron-donating substance pre-doped into the insoluble and infusible substrate is selected from Li, Na, and K, and the cation is Li.
^+, Na^+, K^+, (CH_3)_4N^+, (C_2H_5_)4N^+
, (C_3H_5)_4N^+. 7. The organic electrolyte battery according to claim 1, wherein the positive and negative electrodes are insoluble and infusible substrates doped with cations in advance by an electrolytic method. 8. A compound that can generate ions that can be doped is L
iI, NaI, NH_4I, LiClO_4LiASF
_6, LiBF_4, KPF_6, NaPF_6, (C
_2H_5)_4NClO_4, (n-C_4H_9)
_4NClO_4, (C_2H_5)_4NBF_4, (n-C_4H_9
)_4NBF_4, (n-C_4H_9)_4NASF
_6, (n-C_4H_9)_4PF_6 or LiHF
The organic electrolyte battery according to claim 1, which is _2. 9. The aprotic organic solvent is ethylene carbonate, propylene carbonate, γ-butyrolactone, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, acetonitrile, dimethoxyethane, tetrahydrofuran, dioxolane, methylene chloride, sulfolane, or any of these aprotic organic solvents. The organic electrolyte battery according to claim 1, which is a mixed solution.
JP62050115A 1987-03-06 1987-03-06 Organic electrolyte battery Expired - Lifetime JP2534490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62050115A JP2534490B2 (en) 1987-03-06 1987-03-06 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62050115A JP2534490B2 (en) 1987-03-06 1987-03-06 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPS63218157A true JPS63218157A (en) 1988-09-12
JP2534490B2 JP2534490B2 (en) 1996-09-18

Family

ID=12850111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62050115A Expired - Lifetime JP2534490B2 (en) 1987-03-06 1987-03-06 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JP2534490B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0528986A (en) * 1991-07-19 1993-02-05 Kanebo Ltd Organic electrolyte battery
JP2011009202A (en) * 2009-05-25 2011-01-13 Sumitomo Chemical Co Ltd Method of manufacturing sodium secondary battery, and sodium secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58209864A (en) * 1982-05-31 1983-12-06 Kanebo Ltd Organic electrolyte battery
JPS6017016A (en) * 1983-07-07 1985-01-28 Toshiba Corp Heat treatment of turbine rotor
JPS60170163A (en) * 1984-02-10 1985-09-03 Kanebo Ltd Organic electrolyte cell
JPS61218060A (en) * 1985-03-25 1986-09-27 Kanebo Ltd Organic electrolyte battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58209864A (en) * 1982-05-31 1983-12-06 Kanebo Ltd Organic electrolyte battery
JPS6017016A (en) * 1983-07-07 1985-01-28 Toshiba Corp Heat treatment of turbine rotor
JPS60170163A (en) * 1984-02-10 1985-09-03 Kanebo Ltd Organic electrolyte cell
JPS61218060A (en) * 1985-03-25 1986-09-27 Kanebo Ltd Organic electrolyte battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0528986A (en) * 1991-07-19 1993-02-05 Kanebo Ltd Organic electrolyte battery
JP2011009202A (en) * 2009-05-25 2011-01-13 Sumitomo Chemical Co Ltd Method of manufacturing sodium secondary battery, and sodium secondary battery

Also Published As

Publication number Publication date
JP2534490B2 (en) 1996-09-18

Similar Documents

Publication Publication Date Title
JPH046072B2 (en)
JPH0324024B2 (en)
JPS61218060A (en) Organic electrolyte battery
JP2574730B2 (en) Organic electrolyte battery
JP2534490B2 (en) Organic electrolyte battery
JP2524184B2 (en) Organic electrolyte battery containing composite electrodes
JP2588404B2 (en) Organic electrolyte battery
JP2519454B2 (en) Organic electrolyte battery using nitrogen-containing substrate as electrode
JPS61225761A (en) Organic electrolyte battery
JPH0624160B2 (en) Organic electrolyte battery
JPH0624159B2 (en) Organic electrolyte battery
JP2522662B2 (en) Organic electrolyte battery with polythiophene as positive electrode
JP2519180B2 (en) Organic electrolyte battery
JPS63301460A (en) Manufacture of electrode for battery
JPS6231959A (en) Organic electrolyte battery
JPS6177275A (en) Organic electrolyte battery
JPH0624157B2 (en) Organic electrolyte battery
JPS63218158A (en) Organic electrolyte battery
JPS63298982A (en) Organic electrolyte battery using tetrahydrofuran
JP2646461B2 (en) Organic electrolyte battery
JPS63298966A (en) Organic electrolyte battery using polypyrrole as positive electrode
JP2614724B2 (en) Organic electrolyte battery with metal sulfide composite as positive electrode
JPS63298967A (en) Organic electrolyte battery using polyaniline as positive electrode
JPS63301465A (en) Organic electrolyte battery with composite matter of aniline as positive electrode
JP2616774B2 (en) Organic electrolyte battery using metal oxide composite as positive electrode

Legal Events

Date Code Title Description
S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S804 Written request for registration of cancellation of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314805

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term