JPS63218152A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPS63218152A
JPS63218152A JP62052379A JP5237987A JPS63218152A JP S63218152 A JPS63218152 A JP S63218152A JP 62052379 A JP62052379 A JP 62052379A JP 5237987 A JP5237987 A JP 5237987A JP S63218152 A JPS63218152 A JP S63218152A
Authority
JP
Japan
Prior art keywords
substrate
electrode
electrolytic
pores
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62052379A
Other languages
Japanese (ja)
Inventor
Atsushi Watanabe
淳 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP62052379A priority Critical patent/JPS63218152A/en
Publication of JPS63218152A publication Critical patent/JPS63218152A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase discharge capacity and improve energy density by forming an electrode substrate with primary graphites having many fine pores on the surface and by laminating an electrolytic polymerizate film composed of conductive organopolymer material on the surface of the substrate and the inner surface of pores over a broad area. CONSTITUTION:An active substance is provided by doping electrolytic ions in a conductive organopolymer material. As an electrode substrate 1 coated with this active substance, molded product of primary graphites with many fine pores 2 at least at opening on the surface. Laminating an electrolytic polymerizate film 3 composed of conductive organopolymer material on surface of the substrate 1 and inner surface of pores 2, a positive electrode 4 or both of a positive and a negative electrode of battery are formed. Hence good adhesion of the active substance with the substrate 1 is obtained and the increased thickness of the electrolytic polymerizate film 3 can increase the amount of active substance.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電気伝導性有機高分子材料に電解質イオンを
ドーピングしたものを電極活物質とする有機電解質電池
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an organic electrolyte battery in which an electrode active material is an electrically conductive organic polymer material doped with electrolyte ions.

(従来の技術) 有機半導体であるポリアセチレン、ポリピロール、ポリ
チオフェン、ポリアニリン等の高分子材料を電極とし、
これにドーピング可能なイオンを生成し得る化合物であ
るLiBF、、 NaBF、、 AgBF4゜KBF4
. NaAsF、 、 NaPF、 、 LiClO4
,AgCl0.等を有機溶媒で溶解したものを電解液と
して用いた有機電解質電池が知られている〔例えば応用
物理第52巻第11号(1983)第971〜974頁
〕。
(Conventional technology) Polymer materials such as organic semiconductors such as polyacetylene, polypyrrole, polythiophene, and polyaniline are used as electrodes,
LiBF, NaBF, AgBF4゜KBF4 are compounds that can generate ions that can be doped with this.
.. NaAsF, , NaPF, , LiClO4
, AgCl0. An organic electrolyte battery is known in which an electrolyte prepared by dissolving the above in an organic solvent is used as an electrolyte (see, for example, Applied Physics Vol. 52, No. 11 (1983), pp. 971-974).

しかしながら、電極の表面に前記高分子材料を合成する
にあたつ°て、該高分子材料の膜厚を厚くすることが困
難で、最高でも0.2■程度であり、放電容量が限られ
ている。放電容量を増大するには使用する高分子材料の
フィルムの枚数を増加する必要があるが、単純にフィル
ムを重ねたのみでは放電容量の増大効果は望めない。こ
れを解決することを目的としてバイポーラ型または積層
型とすると、余分な構成が必要となり、重量が増加し、
電池のエネルギ密度が低下することとなる。
However, when synthesizing the polymeric material on the surface of the electrode, it is difficult to increase the film thickness of the polymeric material, which is approximately 0.2cm thick at most, and the discharge capacity is limited. There is. In order to increase the discharge capacity, it is necessary to increase the number of polymer films used, but simply stacking the films does not have the effect of increasing the discharge capacity. If a bipolar or stacked type was used to solve this problem, it would require an extra configuration, increase weight, and
The energy density of the battery will decrease.

(発明が解決しようとする問題点) 本発明は、有機電解質電池の正極電極または正極および
負極の両方の電極を、導電性材料よりなる基板上に被着
せしめた電気導電性有機高分子材料の膜厚を可及的に厚
い電極とした有機電解質電池を提供するものであって、
放電容量を増加させ。
(Problems to be Solved by the Invention) The present invention provides an electrically conductive organic polymer material in which the positive electrode or both the positive and negative electrodes of an organic electrolyte battery are deposited on a substrate made of a conductive material. To provide an organic electrolyte battery with an electrode having a film thickness as thick as possible,
Increase discharge capacity.

エネルギ密度を向上させるとともに、集電効果を高め、
電池の内部抵抗を低下させ、電池の性能を向上させるこ
とを目的とするものである。
In addition to improving energy density, it also enhances the current collection effect,
The purpose is to lower the internal resistance of the battery and improve the performance of the battery.

(問題点を解決するための手段) 本発明は、活物質を被着すべき電極基板として、微細な
細孔を少くとも表面に開口せしめて多数形成した一次元
グラファイトにより成形したものを用い、該基板の表面
および前記細孔の内表面に電気伝導性有機高分子材料を
電解重合せしめた膜を被着せしめたものを電池の正極と
し、あるいは正極および負極の両方とすることにより、
活物質の基板への密着性を良好にし、電解重合膜の厚さ
を増大せしめて、活物質の量を増加せしめたものであっ
て、二次電池として好適なものである。
(Means for Solving the Problems) The present invention uses, as an electrode substrate on which an active material is to be adhered, one-dimensional graphite molded with a large number of fine pores opened at least on the surface. By using a film formed by electrolytically polymerizing an electrically conductive organic polymer material on the surface of the substrate and the inner surface of the pores as the positive electrode of the battery, or as both the positive electrode and the negative electrode,
The adhesiveness of the active material to the substrate is improved, the thickness of the electrolytically polymerized film is increased, and the amount of the active material is increased, making it suitable for use as a secondary battery.

本発明において一次元グラファイトとは、一般的には炭
素、水素、酸素から成る縮合ポリマー、具体的にはポリ
アセン、ポリアセナセン、ポリナフタレン等のように、
ベンゼン環が一方向のみにつながった高分子物質を、4
00〜900℃程度の温度で熱処理し、グラファイト構
造に類似の層状構造を発達させたものをいう。−次元グ
ラファイトは、ポリアセチレンとグラファイトの中間の
構造を有し、電気的性質が優れている。
In the present invention, one-dimensional graphite generally refers to condensation polymers consisting of carbon, hydrogen, and oxygen, specifically polyacene, polyacenacene, polynaphthalene, etc.
A polymer substance in which benzene rings are connected only in one direction is
It is heat treated at a temperature of about 00 to 900°C to develop a layered structure similar to a graphite structure. -dimensional graphite has a structure intermediate between that of polyacetylene and graphite, and has excellent electrical properties.

(発明の作用) 本発明によれば、電極基板は微細な細孔を少くとも表面
に多数形成した一次元グラファイトにより形成され、電
極伝導性有機高分子材料の電解重合膜は前記基板の表面
および細孔の内表面に広い面積で層着しているから、電
解質のイオンのドーピングおよびアンド−ピングが効率
よくかつ少い内部抵抗で行われる。
(Function of the Invention) According to the present invention, the electrode substrate is formed of one-dimensional graphite with a large number of fine pores formed at least on the surface, and the electropolymerized film of the electrode conductive organic polymer material is formed on the surface of the substrate and Since it is layered over a wide area on the inner surface of the pores, doping and undoping of electrolyte ions can be performed efficiently and with low internal resistance.

(実施例) 第1図は本発明による有機電解質電池の電極の小片を拡
大して示した斜面図であって、該電極の表面の一部(右
端部)は、細孔内を除く表面に被着せしめた電解重合膜
を除去して示した図である。
(Example) FIG. 1 is an enlarged perspective view of a small piece of an electrode of an organic electrolyte battery according to the present invention. FIG. 3 is a diagram showing the applied electropolymerized film removed.

図中、符号1は一次元グラファイトにより板状に形成し
た基板で、該基板1には少くともその表面に多数の細孔
2が形成され、該細孔2の内部空間は前記基板1の表面
に開口している。上記基板1は、例えば、ポリアセン系
高分子物質であるノボラック系フェノールホルムアルデ
ヒド樹脂の繊維を不織布状に重層し、これをレゾール系
樹脂の40vt%メタノール溶液に浸漬後、圧搾乾燥さ
せて板状に賦形し、これを非酸化雰囲気中で400〜9
00℃程度で熱処理を行うことにより製作する。この基
板1は比表面積が大で、かつ表面に多数の微細な細孔を
形成している。この基板1の全表面および前記細孔2の
内表面にはポリピロールの電解重合膜3を被着せしめて
、電極を構成し。
In the figure, reference numeral 1 denotes a plate-shaped substrate made of one-dimensional graphite, and a large number of pores 2 are formed at least on the surface of the substrate 1, and the internal spaces of the pores 2 are formed on the surface of the substrate 1. It is open to For example, the substrate 1 is made by layering fibers of novolac-based phenol formaldehyde resin, which is a polyacene-based polymer material, in the form of a non-woven fabric, immersing this in a 40vt% methanol solution of resol-based resin, and then compressing and drying it to form a plate. 400-9 in a non-oxidizing atmosphere.
Manufactured by heat treatment at approximately 00°C. This substrate 1 has a large specific surface area and has many fine pores formed on its surface. An electrolytic polymer film 3 of polypyrrole is coated on the entire surface of the substrate 1 and the inner surface of the pores 2 to constitute an electrode.

これを正極4とする。This will be referred to as the positive electrode 4.

電解重合膜3の基板1への被着は電解重合法により行わ
れる。即ち、電解質のイオンを生成し得る化合物として
LiCl0+を用い、これをピロールを溶解した炭酸プ
ロピレン中に混合した電解液の中に基板1を浸漬して吊
り下げ、該基板1を正極とし、アルミニウム電極を負極
として電解を行うと、基板1の表面および該基板1に形
成されて開口している細孔2の内表面の全面を覆うよう
に。
The electrolytically polymerized film 3 is deposited on the substrate 1 by an electrolytically polymerized method. That is, LiCl0+ is used as a compound that can generate electrolyte ions, and the substrate 1 is immersed and suspended in an electrolytic solution in which LiCl0+ is mixed in propylene carbonate in which pyrrole is dissolved.The substrate 1 is used as a positive electrode, and an aluminum electrode is used. When electrolysis is performed using the electrode as a negative electrode, the surface of the substrate 1 and the inner surface of the pores 2 formed in the substrate 1 are entirely covered.

CIO,″″イオンドープされたポリピロールの電解重
合膜3が被着した電極が得られる。この被着した電解重
合膜3は前記基板1の表面に被着した部分と該基板1の
細孔の内表面に被着した部分とが連続して一体に形成さ
れるから、細孔2内に被着した部分がアンカーとなって
基板1への密着性が良好であり、かつ−次元グラファイ
トからなる基板1との密着面積も大であるところから電
池の内部抵抗を低下させ、集電効果を高め、電池の性能
を向上させることができる。
An electrode is obtained on which an electrolytically polymerized film 3 of polypyrrole doped with CIO, "" ions is deposited. The deposited electropolymerized film 3 has a part deposited on the surface of the substrate 1 and a part deposited on the inner surface of the pores of the substrate 1, which are continuously formed integrally. The adhered part acts as an anchor and has good adhesion to the substrate 1, and also has a large adhesion area to the substrate 1 made of -dimensional graphite, which reduces the internal resistance of the battery and improves the current collection effect. and improve battery performance.

第2図は本発明をコイン型二次電池に実施した−実地例
の一部欠截斜面図である。本実施例においては、底抜が
円形状をなす深皿状のステンレス製の正極ケース5の内
部において、前記底抜の内径よりやや小なる外径を有す
る円盤状に形成された基板1に前記電解重合膜3を被着
せしめた正極4を前記底抜上に載置し、その上にポリプ
ロピレン不織布からなるセパレータ6を載置する。この
セパレータ6には電解液としてL I C104をin
+ol/d+m3濃度で溶解させた炭酸プロピレン溶液
を浸み込ませである。次に底板が円形状をなす深皿状の
ステンレス製の負極ケース7の前記底板内面にAIより
なる負極活物質8を密着させ、該負極活物質8がセパレ
ータ6に当接するように負極ケース7を正極ケース5内
に挿入し、負極ケース7の外周端縁に予め取りつけであ
るポリプロピレンよりなるガスケット9を負極ケース7
および正極ケース5との間に介在させ、正極ケース5の
自由端を内方にかしめて両ケース間を密封したものであ
る。負極ケース7の周縁部は、常法により図示したよう
に段部を形成すると、正極ケース5のかしめにあたつて
密封性が良好となる。
FIG. 2 is a partially cutaway perspective view of a practical example in which the present invention is implemented in a coin-type secondary battery. In this embodiment, inside a deep plate-shaped positive electrode case 5 made of stainless steel with a circular bottom hole, the substrate 1 is mounted on a disk-shaped substrate 1 having an outer diameter slightly smaller than the inner diameter of the bottom hole. A positive electrode 4 coated with an electrolytic polymer film 3 is placed on the bottom hole, and a separator 6 made of a polypropylene nonwoven fabric is placed thereon. L I C104 is injected into this separator 6 as an electrolyte.
A propylene carbonate solution dissolved at a concentration of +ol/d+m3 was soaked. Next, a negative electrode active material 8 made of AI is brought into close contact with the inner surface of the bottom plate of a stainless steel negative electrode case 7 having a circular bottom plate, and the negative electrode case 7 is held in such a manner that the negative electrode active material 8 comes into contact with the separator 6. is inserted into the positive electrode case 5, and a gasket 9 made of polypropylene, which is attached in advance to the outer peripheral edge of the negative electrode case 7, is inserted into the negative electrode case 7.
and a positive electrode case 5, and the free end of the positive electrode case 5 is caulked inward to seal the space between the two cases. If the peripheral edge of the negative electrode case 7 is formed with a stepped portion as shown in the figure by a conventional method, good sealing performance will be obtained when the positive electrode case 5 is caulked.

上記二次電池は、充電時において正極においては(1)
式に示す反応が、負極においては(2)式に示す反応が
起きる。なお(1)式中Pは正極活物質を示す。
The above secondary battery has (1) at the positive electrode during charging.
The reaction shown in the formula (2) occurs at the negative electrode. Note that in formula (1), P represents a positive electrode active material.

また放電時においてはこれと反対の反応が起きて電流が
正極と負極間に流れる。本発明において正極活物質Pは
一次元グラファイトと電気伝導性有機高分子系材料(上
記実施例ではポリピロール)であり、両者ともに上記反
応により充放電を行う。
During discharge, the opposite reaction occurs and current flows between the positive and negative electrodes. In the present invention, the positive electrode active material P is one-dimensional graphite and an electrically conductive organic polymer material (polypyrrole in the above embodiment), both of which are charged and discharged by the above reaction.

上記コイン型二次電池と、正極活物質として一次元グラ
ファイトを単独で使用した電池およびポリピロールを単
独で使用した電池とを同一寸法で作成し、これらの放充
電試験を行って電池特性を測定したところ、第3図に示
すように本発明の実施例は他の電池に比して放電容量が
増大し、体積あたりのエネルギ密度が上昇した。
The above coin-type secondary battery, a battery using one-dimensional graphite alone as the positive electrode active material, and a battery using polypyrrole alone were created with the same dimensions, and the battery characteristics were measured by conducting discharge and charging tests. However, as shown in FIG. 3, the example of the present invention had an increased discharge capacity and an increased energy density per volume compared to other batteries.

なお本発明の他の実施例として、負極活性物質8として
正極4と同一の電極を用いることができ。
In addition, as another embodiment of the present invention, the same electrode as the positive electrode 4 can be used as the negative electrode active material 8.

さらに他の実施例として正極および負極用電極として、
−次元グラファイトよりなる前記基板1に活物質として
ポリチオフェン、ポリアニリン、ポリアセチレン等の他
の電気伝導性有機高分子材料の電解重合膜を使用するこ
とができ、また電解質イオンを供給する化合物としてL
iPF5. LiAsF、 tLiBF4等公知のもの
が使用でき、溶剤としてもγ−ブチロラクトン、アセト
ニトリル、1・2−ジメトキシエタン、デトラヒドロフ
ラン、DME。
Furthermore, as another example, as a positive electrode and a negative electrode,
An electrolytic polymer film of other electrically conductive organic polymer materials such as polythiophene, polyaniline, polyacetylene, etc. can be used as an active material for the substrate 1 made of -dimensional graphite, and L can be used as a compound that supplies electrolyte ions.
iPF5. Known materials such as LiAsF and tLiBF4 can be used, and the solvents include γ-butyrolactone, acetonitrile, 1,2-dimethoxyethane, detrahydrofuran, and DME.

DMSO等公知のものを単独または混合して使用するこ
ともできる。
Known substances such as DMSO can also be used alone or in combination.

(発明の効果) 本発明は、電気伝導性有機高分子材料に電解質イオンを
ドーピングした電極活物質を備えた有機電解質電池であ
って、正極あるいは正極および負極の両方の電極を、多
数の微細な細孔を少くとも表面に開口せしめて形成した
一次元グラファイトよりなる基板の前記表面および前記
細孔の内表面に、前記電気伝導性有機高分子材料の電解
重合膜を被着せしめたものとしたから、前記細孔の内表
面に被着した電解重合膜の部分がアンカーとなって該部
分と一体の前記基板の表面に被着した電解重合膜の部分
の基板に対する密着性を良好とするため、−次元グラフ
ァイトが電解重合膜の良い集電体となって内部抵抗が低
下し、電解重合膜が基板を構成する一次元グラファイト
の細孔内にも被着するため同一体積の他の基板を用い□
る場合に比して活物質量が増大し、充電容量が増加する
ため放電容量が増大し、その結果体積あたりのエネルギ
密度を向上させる効果がある。また大容最(例えばI 
Ah)の電池を構成したい場合に活物質の量を増加する
必要があるが、電解重合膜のみを活物質とする場合では
厚さを0.2m程度とするのが限界でこれ以上厚みを増
すことは不可能であるが、本発明においては基板を構成
する一次元グラファイトも活物質として反応するため、
−次元グラファイトよりなる基板と電気伝導性有機高分
子材料の電解重合膜とを組合せることにより、10o+
+程度までの任意の厚さとすることができ、活物質の量
を増大させることができる。
(Effects of the Invention) The present invention provides an organic electrolyte battery comprising an electrode active material in which an electrically conductive organic polymer material is doped with electrolyte ions, in which the positive electrode or both the positive and negative electrodes are formed using a large number of fine particles. An electropolymerized film of the electrically conductive organic polymer material is coated on the surface and the inner surface of the pores of a substrate made of one-dimensional graphite with pores opened at least on the surface. In order to improve the adhesion of the part of the electropolymerized film adhered to the inner surface of the pore to the substrate by serving as an anchor and to improve the adhesion of the part of the electropolymerized film adhered to the surface of the substrate integrated with the part to the substrate. The -dimensional graphite becomes a good current collector for the electropolymerized membrane, reducing internal resistance, and the electrolytic polymerization membrane also adheres to the pores of the one-dimensional graphite that makes up the substrate, making it difficult to use other substrates of the same volume. Use□
Compared to the case where the active material is increased, the amount of active material is increased, and the charging capacity is increased, so the discharge capacity is increased, and as a result, there is an effect of improving the energy density per volume. Also, the maximum capacity (for example, I
If you want to configure the battery of Ah), it is necessary to increase the amount of active material, but if only the electrolytic polymer membrane is used as the active material, the maximum thickness is about 0.2 m, and the thickness must be increased further. However, in the present invention, since the one-dimensional graphite that constitutes the substrate also reacts as an active material,
By combining a substrate made of −dimensional graphite and an electrolytically polymerized film made of an electrically conductive organic polymer material,
The thickness can be any desired up to +, and the amount of active material can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における正極の構成を示す拡大斜面図、
第2図は本発明をコイン型二次電池に実施した一実施例
の一部欠截斜面図、第3図は本発明の電池特性を正極活
物質を異らせた電池の電池特性と比較した説明図である
。 なお図中の次の符号はそれぞれ次の部分をしめす。 1・・・・・・基板、       2・・・・・・細
孔。 3・・・・・・電解重合膜、    4・・・・・・正
極、5・・・・・・正極ケース、     6・・・・
・・セパレータ、7・・・・・・負極ケース、    
 8・・・・・・負極活物質、9・・・・・・ガスケッ
ト りHlあり崩エネルキ゛者V宴/u<−fl−’第3図 へ
FIG. 1 is an enlarged perspective view showing the configuration of the positive electrode in the present invention;
Figure 2 is a partially cutaway perspective view of an example in which the present invention is applied to a coin-type secondary battery, and Figure 3 compares the battery characteristics of the present invention with those of batteries using different positive electrode active materials. FIG. The following symbols in the figure indicate the following parts, respectively. 1... Substrate, 2... Pore. 3... Electropolymerized membrane, 4... Positive electrode, 5... Positive electrode case, 6...
...Separator, 7...Negative electrode case,
8...Negative electrode active material, 9...Gasket with Hl

Claims (2)

【特許請求の範囲】[Claims] (1)電気伝導性有機高分子材料に電解質イオンをドー
ピングした電極活物質を備えた有機電解質電池において
、 正極または正極および負極の両方を、多数の微細な細孔
を少くとも表面に開口せしめて形成した一次元グラファ
イトよりなる基板の前記表面および前記細孔の内表面に
、前記電気伝導性有機高分子材料の電解重合膜を被着せ
しめた電極としたことを特徴とする有機電解質電池。
(1) In an organic electrolyte battery equipped with an electrode active material in which an electrically conductive organic polymer material is doped with electrolyte ions, the positive electrode or both the positive electrode and the negative electrode are provided with numerous fine pores opened at least on the surface. An organic electrolyte battery characterized in that an electrode is formed by depositing an electrolytic polymer film of the electrically conductive organic polymer material on the surface of the substrate made of one-dimensional graphite and the inner surface of the pores.
(2)前記電極は、ポリピロール、ポリチオフェン、ポ
リアニリン、ポリアセチレン等の電気伝導性有機高分子
材料の一種を、電解重合法により前記基板に膜状に被着
せしめたものであることを特徴とする特許請求の範囲第
1項に記載の有機電解質電池。
(2) A patent characterized in that the electrode is made by depositing a type of electrically conductive organic polymer material such as polypyrrole, polythiophene, polyaniline, polyacetylene, etc. on the substrate in the form of a film using an electrolytic polymerization method. An organic electrolyte battery according to claim 1.
JP62052379A 1987-03-07 1987-03-07 Organic electrolyte battery Pending JPS63218152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62052379A JPS63218152A (en) 1987-03-07 1987-03-07 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62052379A JPS63218152A (en) 1987-03-07 1987-03-07 Organic electrolyte battery

Publications (1)

Publication Number Publication Date
JPS63218152A true JPS63218152A (en) 1988-09-12

Family

ID=12913167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62052379A Pending JPS63218152A (en) 1987-03-07 1987-03-07 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPS63218152A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2661280A1 (en) * 1990-04-20 1991-10-25 Conservatoire Nal Arts Metiers Improved electrode based on a conductive polymer and process for its preparation, and secondary electrochemical generator endowed with at least one such electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2661280A1 (en) * 1990-04-20 1991-10-25 Conservatoire Nal Arts Metiers Improved electrode based on a conductive polymer and process for its preparation, and secondary electrochemical generator endowed with at least one such electrode

Similar Documents

Publication Publication Date Title
KR20230079176A (en) Anode plate of sodium ion battery, electrochemical device and electronic device
JPH046072B2 (en)
WO2005078831A1 (en) Electric storage device
JP2000150319A (en) Manufacture of electric double layer capacitor and using method therefor
CN116646593A (en) All-solid-state polymer electrolyte and preparation method and application thereof
US20230006209A1 (en) Anode plate, and battery and electronic apparatus using such electrode plate
CN113097465B (en) Composite material with ternary cathode material coated by electron/ion conducting polymer and preparation method thereof
JPS63218152A (en) Organic electrolyte battery
JPS63168964A (en) Thin-type cell and cassette cell using thin-type cell
JPH04237948A (en) Nonaqueous battery electrode and battery
JPH0782839B2 (en) Secondary battery negative electrode
JP2665479B2 (en) Rechargeable battery
JP2534490B2 (en) Organic electrolyte battery
JPS62119860A (en) Secondary cell
JPH11185815A (en) Battery and manufacture of battery
JPH09102301A (en) Organic electrolyte battery
JP3403894B2 (en) Organic electrolyte battery
JPS62268057A (en) Secondary battery
JPS63205063A (en) Manufacture of battery
Fujii et al. New type polymer electrode using soluble polyaniline
CN117954713A (en) Positive plate, and preparation method, system and application thereof
JPS618855A (en) Cell and its manufacture
JPH0624160B2 (en) Organic electrolyte battery
JPH0624159B2 (en) Organic electrolyte battery
JPH04539Y2 (en)