JPS63205063A - Manufacture of battery - Google Patents

Manufacture of battery

Info

Publication number
JPS63205063A
JPS63205063A JP62035733A JP3573387A JPS63205063A JP S63205063 A JPS63205063 A JP S63205063A JP 62035733 A JP62035733 A JP 62035733A JP 3573387 A JP3573387 A JP 3573387A JP S63205063 A JPS63205063 A JP S63205063A
Authority
JP
Japan
Prior art keywords
electrode
battery
negative electrode
electrolyte
conductive polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62035733A
Other languages
Japanese (ja)
Inventor
Hidetomo Ashitaka
芦高 秀知
Toru Takahashi
透 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP62035733A priority Critical patent/JPS63205063A/en
Publication of JPS63205063A publication Critical patent/JPS63205063A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To obtain a battery having good performance by coating the surface of an electrode for electrolytic polymerization with an electrolyte comprising liquid state curing type ion conductive monomer or resin and an inorganic salt, then curing. CONSTITUTION:An electrolyte comprising liquid state ion conductive monomer or resin and an inorganic salt is applied to the surface of a positive electrode, and cured to obtain a stack of positive electrode and ion conductive solid electrolyte. The stack is impregnated with monomer for electron conductive polymer, then stacked with a counter electrode (negative electrode), and electrolytic polymerization is made to the stack to form an electron conductive polymer film between the ion conductive solid electrolyte and the positive electrode. The counter electrode (negative electrode) is used as a negative electrode of a battery or the counter electrode is removed, then a new negative electrode and a negative current collector are stacked to form the battery. The battery obtained has good adhesion among the electrode, electron conductive polymer film, and ion conductive solid electrolyte, and has good electrical performance and simple production procedure.

Description

【発明の詳細な説明】 [技術分野] 本発明は、イオン伝導性高分子電解質中で電子伝導性高
分子モノマーを電解重合することを特徴とするイオン伝
導性高分子電解質を正極および電解質隔膜として用いた
電池の製造法に関する。
[Detailed Description of the Invention] [Technical Field] The present invention provides an ion-conducting polymer electrolyte characterized by electrolytically polymerizing an electron-conducting polymer monomer in an ion-conducting polymer electrolyte as a positive electrode and an electrolyte diaphragm. Regarding the manufacturing method of the battery used.

[従来技術およびその問題点] 従来より、電極として電子伝導性高分子を用いた電池が
知られている。この電池は、従来の二次電池に比較して
、軽量であるため、高エネルギー密度である利点を有し
ている。これに用いられる電子伝導性高分子材料として
ポリアセチレンがよく知られている。しかし、ポリアセ
チレンを電池の電極に用いた場合は、自己放電性が大き
く、また、充放電中に、ドーピングに伴い、酸化により
劣化するという欠点があった。
[Prior art and its problems] Batteries using electronically conductive polymers as electrodes have been known. This battery has the advantage of being lightweight and high energy density compared to conventional secondary batteries. Polyacetylene is well known as an electron conductive polymer material used for this purpose. However, when polyacetylene is used for battery electrodes, it has the disadvantage of high self-discharge properties and deterioration due to oxidation due to doping during charging and discharging.

そこで、最近、この欠点を除くため、電解重合法によっ
て得られた電子伝導性高分子、例えば、ポリピロール、
ポリチオフェン、ポリアニリン等や、あるいは、それら
の誘導体を電極に用いて、上記の欠点のない電池が提案
されている。
Recently, in order to eliminate this drawback, electronically conductive polymers obtained by electrolytic polymerization, such as polypyrrole,
Batteries free from the above drawbacks have been proposed using polythiophene, polyaniline, etc., or their derivatives as electrodes.

例えば、特開昭60−216470号では、電子伝導性
高分子材料を一方の電極として用いる一対の電極と非水
有機電解液とを有する電池であって、陽極に電子伝導性
高分子材料としてポリピロールを用い、負極にアルカリ
金属を用いることを特徴とする電池、および、電解質を
有機溶媒に溶かした電解液中にピロールを加え、得られ
た溶液に一対の導電性基板を浸漬し、電解重合により導
電性基板上にポリピロールを形成した後、得られたポリ
ピロールを陽極とし、アルカリ金属を負極とし、電解液
と接触させることを特徴とする電池の製造法について述
べられている。
For example, JP-A No. 60-216470 discloses a battery having a pair of electrodes using an electron conductive polymer material as one electrode and a non-aqueous organic electrolyte; pyrrole is added to an electrolytic solution in which an electrolyte is dissolved in an organic solvent, a pair of conductive substrates are immersed in the resulting solution, and the battery is characterized by using an alkali metal for the negative electrode. A method for manufacturing a battery is described, which is characterized in that after forming polypyrrole on a conductive substrate, the resulting polypyrrole is used as an anode, an alkali metal is used as a negative electrode, and the resulting polypyrrole is brought into contact with an electrolyte.

しかしながら、液体電解質を用いているため。However, because it uses a liquid electrolyte.

長期の使用の間に電池外部への液もれ、電解質溶媒の揮
発などのため、長期信頼性の問題がある。
During long-term use, there are problems with long-term reliability due to liquid leakage to the outside of the battery and volatilization of the electrolyte solvent.

この問題を解決する方法として、液体電解質の代わりに
、固体電解質を用いる方法が提案されている。しかし、
この場合は、固体同士を積層するため、電極と固体電解
質との界面の接触が、ミクロ的にみれば不完全であり、
組み立てた電池の内部抵抗が高くなる。また、積層する
工程が煩雑であり、電子伝導性高分子に機械的な強度が
必要など1種々問題がある。
As a method to solve this problem, a method using a solid electrolyte instead of a liquid electrolyte has been proposed. but,
In this case, since the solids are stacked together, contact at the interface between the electrode and the solid electrolyte is incomplete from a microscopic perspective.
The internal resistance of the assembled battery increases. In addition, there are various problems such as the process of laminating is complicated and the electronic conductive polymer needs to have mechanical strength.

[問題を解決するための手段] 本発明者らは、この問題を解決するために、先に次の様
な提案をした。
[Means for Solving the Problem] In order to solve this problem, the present inventors previously proposed the following.

すなわち、イオン伝導性高分子電解質中に原料モノマー
を含浸させ、その両側に電極をはさみ、電解重合により
、イオン伝導性高分子電解質の表面に電子伝導性高分子
を形成させて得られた電子伝導性高分子とイオン伝導性
高分子電解質の複合フィルムのうち、電子伝導性高分子
を正極、および、イオン伝導性高分子電解質を電解質隔
膜として用いることを特徴とする電池の製造法である。
That is, an electron conductive polymer obtained by impregnating a raw material monomer into an ion conductive polymer electrolyte, sandwiching electrodes on both sides, and forming an electron conductive polymer on the surface of the ion conductive polymer electrolyte through electrolytic polymerization. This is a method for manufacturing a battery, which is characterized in that, of a composite film of a conductive polymer and an ion-conducting polymer electrolyte, an electron-conducting polymer is used as a positive electrode, and an ion-conducting polymer electrolyte is used as an electrolyte diaphragm.

上記方法によれば、形成した電子伝導性高分子は、イオ
ン伝導性高分子電解質フィルムと一体化しているため、
十分な機械的強度を有しており、電池セルを組み立てる
のに、取り扱いが非常に簡単になる。また、従来の別々
に形成された電子伝導体とイオン伝導性高分子電解質を
積層する場合に比べて、界面抵抗が小さく電池特性が向
上する利点を有している。また、電池の構成成分がすべ
て固体であり、液体電解質を用いるのに比べ液もれなど
の問題が無く、電池の封口が簡単であり。
According to the above method, the formed electron conductive polymer is integrated with the ion conductive polymer electrolyte film, so that
It has sufficient mechanical strength and is very easy to handle for assembling battery cells. Furthermore, compared to the conventional stacking of separately formed electron conductors and ion conductive polymer electrolytes, this method has the advantage of lower interfacial resistance and improved battery characteristics. In addition, all the constituent components of the battery are solid, so there are no problems such as leakage compared to using a liquid electrolyte, and the battery can be easily sealed.

長期保存性に優れている。Excellent long-term storage.

しかし、この方法にも問題点がある。すなわち、電解重
合をするために、モノマーを含浸したイオン伝導性フィ
ルムを電解重合の電極に積層する必要があるが、その場
合に固体同士の積層のために、界面の接触が不均一な状
態になることがあった。その状態で電解重合を行うと、
゛電子伝導性高分子の析出が不均一になり、電池性能に
悪影響を与える問題がある。
However, this method also has problems. In other words, in order to carry out electrolytic polymerization, it is necessary to laminate an ion-conductive film impregnated with a monomer to the electrode for electrolytic polymerization, but in this case, due to the stacking of solids, contact at the interface becomes uneven. Something happened. When electrolytic polymerization is performed in this state,
``There is a problem that the deposition of the electron conductive polymer becomes non-uniform, which adversely affects the battery performance.

従って、本発明の目的は、」;記の電池の問題点を改良
し、優れた特性を有する電池を提供することである。
Therefore, an object of the present invention is to improve the problems of the battery described above and to provide a battery having excellent characteristics.

本発明は、下記の1〜4の工程からなることを特徴とす
る電池の製造方法である。
The present invention is a battery manufacturing method characterized by comprising the following steps 1 to 4.

第1工程 正電極の表面に液状のイオン伝導性モノマーあるいは樹
脂と無機イオン塩とからなる電解質を塗布し硬化させて
、正電極とイオン伝導性固体電解質との積層体を得る。
First step: An electrolyte consisting of a liquid ion-conductive monomer or resin and an inorganic ion salt is applied to the surface of the positive electrode and cured to obtain a laminate of the positive electrode and the ion-conductive solid electrolyte.

第2工程 第1工程で得た積層体に電子伝導性高分子膜ツマ−を含
浸させた後、対向電極(負極)を積層する。
Second Step After the laminate obtained in the first step is impregnated with an electron conductive polymer membrane, a counter electrode (negative electrode) is laminated thereon.

第3工程 第2工程で得た積層体を電解重合し、イオン伝導性固体
電解質と正電極との間に電子伝導性高分子膜を形成させ
る。
Third Step The laminate obtained in the second step is electrolytically polymerized to form an electron conductive polymer membrane between the ion conductive solid electrolyte and the positive electrode.

第4工程 第3工程で得た複合体の対向電極(負極)を、そのまま
負極とするか、または、これを取除いて、そのあとに、
負極と負極集電体を重ねて電池とする。
Fourth step: Either use the counter electrode (negative electrode) of the composite obtained in the third step as a negative electrode, or remove it and then,
The negative electrode and negative electrode current collector are stacked to form a battery.

本発明は、電解重合の電極表面に、液状の硬化性イオン
伝導性七ツヤ−あるいは樹脂と及び無機イオン塩からな
る電解質を塗布したのちに、硬化させるため、電極と電
解質との界面接触が良好であるため、界面の不均一性の
問題点が無く、特性が優れた電池を製造できる長所を有
している。
In the present invention, an electrolyte consisting of a liquid curable ion-conducting polish or resin and an inorganic ionic salt is applied to the surface of an electrolytically polymerized electrode and then cured, so that the interfacial contact between the electrode and the electrolyte is good. Therefore, it has the advantage of being able to manufacture batteries with excellent characteristics without the problem of non-uniformity at the interface.

本発明の電解重合法により形成した電子伝導性高分子は
、イオン伝導性高分子電解質層と正電極層の間に生成す
ることに特徴を有している。すなわち、電解重合が終わ
った後、負電極をはがすと、イオン伝導性高分子電解質
層、電子伝導性高分子層、および正電極層からなる複合
材が得られる。本発明によって得られた電子伝導性高分
子は、イオン伝導性高分子電解質層および正?[i極層
と一体化して得られるため、十分な機械的強度を有して
おり、電池セルを組み立てるのに、取り扱いが非常に簡
単になる。
The electron conductive polymer formed by the electrolytic polymerization method of the present invention is characterized in that it is produced between the ion conductive polymer electrolyte layer and the positive electrode layer. That is, when the negative electrode is peeled off after electrolytic polymerization is completed, a composite material consisting of an ion-conducting polymer electrolyte layer, an electron-conducting polymer layer, and a positive electrode layer is obtained. The electron conductive polymer obtained by the present invention has an ion conductive polymer electrolyte layer and a positive ion conductive polymer electrolyte layer. [Since it is obtained by being integrated with the i-electrode layer, it has sufficient mechanical strength and is extremely easy to handle when assembling battery cells.

また、従来の別々に形成された電子伝導性高分子とイオ
ン伝導性高分子電解質を積層する場合に比べて、界面抵
抗が小さく電池特性が白土する利点を有している。また
、電池の構成成分がすべて固体であり、液体電解質を用
いるのに比べ液もれなどの問題が無く、電池の封口が簡
単であり、長期保存性に優れている。
Furthermore, compared to the conventional stacking of separately formed electron conductive polymers and ion conductive polymer electrolytes, this method has the advantage of lower interfacial resistance and better battery characteristics. In addition, all of the constituent components of the battery are solid, so there are no problems such as leakage compared to using a liquid electrolyte, the battery can be easily sealed, and it has excellent long-term storage stability.

本発明に用いられる、液状の硬化性イオン伝導性モノマ
ーあるいは樹脂としては、ポリエチレングリコールメタ
クリレート、ポリエチレングリコールアクリレート、ポ
リエチレンオキシド付加グリセリン、液状のエポキシ樹
脂、あるいは、ポリエチレンオキシドを側鎖に有するポ
リシロキサンなどがあり、これらに、無機イオン塩を添
加し、必要ならば、触媒や架橋剤を加えて、電解重合の
電極表面に塗布し、加熱や活性光線の照射により硬化さ
せ、イオン伝導性高分子電解質フィルムを得ることがで
きる。
The liquid curable ion-conductive monomer or resin used in the present invention includes polyethylene glycol methacrylate, polyethylene glycol acrylate, polyethylene oxide-added glycerin, liquid epoxy resin, or polysiloxane having polyethylene oxide in its side chain. An ion-conductive polymer electrolyte film is produced by adding inorganic ionic salts, and if necessary, adding catalysts and cross-linking agents, and applying them to the electrode surface for electrolytic polymerization, and curing them by heating or irradiation with actinic rays. can be obtained.

上記の系に、イオン伝導性を増大させるために、硬化後
の機械的強度を損なわない範囲で、プロピレンカーボネ
ート、アセトニトリルなどの有機溶媒、あるいは、低分
子量ポリエチレングリコール、ポリプロピレングリコー
ルなどのポリアルキレングリコールをくわえてもよい。
In order to increase ionic conductivity, an organic solvent such as propylene carbonate or acetonitrile, or a polyalkylene glycol such as low molecular weight polyethylene glycol or polypropylene glycol is added to the above system to the extent that the mechanical strength after curing is not impaired. You can also hold it in your mouth.

また、無機イオン塩としては、LiBF4゜LiCuO
4、LiBr、BuN4CJlj04 。
In addition, as an inorganic ionic salt, LiBF4゜LiCuO
4, LiBr, BuN4CJlj04.

B uN4 BF4  、N acfL04 、NaB
F4 。
B uN4 BF4 , NacfL04 , NaB
F4.

KClO4などを挙げることができる。Examples include KClO4.

」ユ記無機イオン塩の含有量としては、有機高分子に対
して、0.01〜50wt%、好ましくは0.1〜30
wt%の範囲が好ましい、上記無機イオン塩の含有量が
多すぎると過剰の無機イオン塩が解離固溶化せずに単に
混在するのみとなり。
The content of the inorganic ionic salt is 0.01 to 50 wt%, preferably 0.1 to 30 wt%, based on the organic polymer.
If the content of the above-mentioned inorganic ionic salt is preferably within the range of wt%, the excess inorganic ionic salt will simply be mixed together without being dissociated into a solid solution.

イオン伝導性は低下する。また、含有量が少なすぎても
、電荷キャリアーである解離イオンの数が少なくなり、
イオン伝導性は低下する。イオン伝導性の低下は、電解
重合および電池特性に悪影響をあたえる。
Ionic conductivity decreases. Also, if the content is too low, the number of dissociated ions, which are charge carriers, will decrease,
Ionic conductivity decreases. A decrease in ionic conductivity adversely affects electrolytic polymerization and battery characteristics.

本発明における、電子伝導性高分子モノマーとしては、
ピロール、N−アリールピロール。
In the present invention, the electronically conductive polymer monomer includes:
Pyrrole, N-arylpyrrole.

N−アルキルピロールなどのピロール系化合物、チオフ
ェン、3−フルキルチオフェンなどのチオフェン化合物
、あるいは、アニリンなどを挙げることができる。これ
らの七ツマ−は、単独でも、混合しても用いることがで
きる。
Examples include pyrrole compounds such as N-alkylpyrrole, thiophene compounds such as thiophene and 3-furkylthiophene, and aniline. These 7 months can be used alone or in combination.

七ツマ−の配合量は、イオン伝導性高分子電解質に対し
て、0.01〜50wt%が好ましい。
It is preferable that the amount of nanatsumer to be blended is 0.01 to 50 wt% based on the ion conductive polymer electrolyte.

上記モノマーの配合量が、上記の範囲よりも小さい場合
は、ポリマー電池に適した表面積の大きな電解重合膜の
形成が困難であり、上記範囲よりも大きい場合は、イオ
ン伝導性高分子電解質の機械的性質が低下して実用上好
ましくない、上記のイオン伝導性高分子電解質のフィル
ムに、電子伝導性高分子層ツマ−を含浸させる方法とし
ては特に制限はないが、例えば、フィルムに直接滴下し
吸収させる方法、フィルムに気相で吸収させる方法など
がある。
If the blending amount of the above monomer is smaller than the above range, it will be difficult to form an electrolytic polymer membrane with a large surface area suitable for polymer batteries, and if it is larger than the above range, it will be difficult to form an electrolytic polymer membrane with a large surface area suitable for polymer batteries. There are no particular restrictions on the method of impregnating the above-mentioned ion-conducting polymer electrolyte film with the electron-conducting polymer layer, which is undesirable for practical use due to deterioration of the electronic properties. There are methods such as absorption, and absorption into a film in the gas phase.

上記のモノマーを含浸させたイオン伝導性高分子電解質
を用いて、七ツマ−を電解重合させる方法としては、イ
オン伝導性高分子電解質のフィルムを正負電極にはさみ
、該正負電極に直流電流を通電して、上記の該七ツマ−
を電解重合させて。
As a method for electrolytically polymerizing 7-mer using an ion-conductive polymer electrolyte impregnated with the above monomer, a film of the ion-conducting polymer electrolyte is sandwiched between positive and negative electrodes, and a DC current is applied to the positive and negative electrodes. Then, the above-mentioned seven
is electrolytically polymerized.

正電極に接した高分子電解質フィルム面に、上記モノマ
ーの重合体膜を形成させる。
A polymer film of the above monomer is formed on the surface of the polymer electrolyte film in contact with the positive electrode.

上記正電極としては、電解重合により酸化溶解、あるい
は不働態化を起こさない導電体であり、例えば、白金、
金、ニッケル、カーボン複合材、ITOガラスなどが挙
げられる。また、負電極も上記と同様に電解重合中に酸
化溶解、不働態化を起こさない導電体であり、白金、ア
ルミニュウム、鉄、銅、ニッケル、カーボン複合体、リ
チウム箔、ITOガラスなどが挙げられる。
The positive electrode is a conductor that does not undergo oxidative dissolution or passivation through electrolytic polymerization, such as platinum,
Examples include gold, nickel, carbon composites, and ITO glass. Similarly to the above, the negative electrode is also a conductor that does not undergo oxidative dissolution or passivation during electrolytic polymerization, such as platinum, aluminum, iron, copper, nickel, carbon composites, lithium foil, and ITO glass. .

本発明のイオン伝導性高分子電解質層、電子伝導性高分
子層、および正電極層からなる複合材を用いて、電池そ
組み立てるには、それぞれを、電解質隔膜、正極、およ
び正極集電体とし、さらに、負極及び負極集電体を積層
する方法、あるいは、電解重合で用いた正負電極をその
まま正負の集電体として口゛い゛ごも良い。
In order to assemble a battery using the composite material of the present invention consisting of an ion-conductive polymer electrolyte layer, an electron-conductive polymer layer, and a positive electrode layer, each of them is used as an electrolyte diaphragm, a positive electrode, and a positive electrode current collector. Furthermore, it is also possible to use a method of laminating a negative electrode and a negative electrode current collector, or to use the positive and negative electrodes used in electrolytic polymerization as positive and negative current collectors.

[本発明の実施例、 (実施例) メトキシポリエチレングリコールモノアクリレート(新
中村化学製、AM−90G)0.75g、ポリエチレン
グリコールジメタクリレート(新中村化学製、9G)0
.25g、ポリエチレングリコール(純正化学製、PE
G#200)0.75g、過塩素酸リチウム0.08g
、およびベンゾイルパーオキサイド0.01gを混合し
、均一溶液とする。この均一溶液とした液状組成物をI
TOガラス上に薄く流延し、これを、窒素雰囲気下70
℃で14時間加熱硬化して、厚さ300 JLmのイオ
ン伝導性高分子電解質の硬化フィルム層とITOガラス
正電極層からなる複合材を得た。更に、イオン伝導性高
分子電解質層に、20wt%のピロールモノマーを直接
滴下し吸収させた。このモノマー含浸イオン伝導性高分
子電解賀層の上に、さらに別のITOガラスを対向負電
極として積層して挟み、定電流電解(電流密度50ルA
/cm”)により、30分間、室温で重合させた。重合
後、負電極のITOガラスをはがすと、イオン伝導性高
分子電解質層、ポリピロール、正電極側のITOガラス
からなる複合材が得られた。これに、負極活物質として
リチウム箔、外装板兼集電体としてステンレス箔を積層
し、電池を形成した。得られた電池について、204A
/cm’の定電流を20分間通電した後。
[Example of the present invention, (Example) 0.75 g of methoxypolyethylene glycol monoacrylate (manufactured by Shin Nakamura Chemical, AM-90G), 0.75 g of polyethylene glycol dimethacrylate (manufactured by Shin Nakamura Chemical, 9G)
.. 25g, polyethylene glycol (Junsei Kagaku, PE
G#200) 0.75g, lithium perchlorate 0.08g
, and 0.01 g of benzoyl peroxide are mixed to form a homogeneous solution. The liquid composition made into a homogeneous solution was
A thin layer was cast onto TO glass, and this was heated for 70 minutes under a nitrogen atmosphere.
C. for 14 hours to obtain a composite material comprising a cured film layer of ion conductive polymer electrolyte and an ITO glass positive electrode layer having a thickness of 300 JLm. Furthermore, 20 wt % of pyrrole monomer was directly dropped into the ion-conductive polymer electrolyte layer and absorbed. On top of this monomer-impregnated ion-conductive polymer electrolytic layer, another ITO glass was laminated and sandwiched as a counter negative electrode, and constant current electrolysis (current density 50 lA) was performed.
/cm") for 30 minutes at room temperature. After polymerization, the ITO glass on the negative electrode was peeled off to obtain a composite material consisting of the ion-conducting polymer electrolyte layer, polypyrrole, and ITO glass on the positive electrode side. A battery was formed by laminating lithium foil as a negative electrode active material and stainless steel foil as an exterior plate and current collector.
After applying a constant current of /cm' for 20 minutes.

20ルA / c m’の一定電流で、放電電圧がlv
に達するまでを1サイクルとする充放電試験を行い、そ
の寿命性能を調べた9本発明の電池は、クーロン効率1
00%で約350回の充放電を繰り返すことができた。
At a constant current of 20 l A/cm', the discharge voltage is lv
A charge/discharge test was conducted in which one cycle was until the battery reached 9, and its life performance was investigated.
It was possible to repeat charging and discharging approximately 350 times at 00%.

[発明の効果] 本発明の製造方法で得られる電池は、電極、電子伝導性
高分子膜、イオン伝導性固体電解質間の密着性がよく、
電気特性がよい、また製造方法が簡略化される利点があ
る。
[Effects of the Invention] The battery obtained by the manufacturing method of the present invention has good adhesion between the electrode, the electron conductive polymer membrane, and the ion conductive solid electrolyte, and
It has the advantage of good electrical properties and a simplified manufacturing method.

Claims (1)

【特許請求の範囲】 下記の1〜4の工程からなることを特徴とする電池の製
造方法 第1工程 正電極の表面に液状のイオン伝導性モノマーあるいは樹
脂と無機イオン塩とからなる電解質を塗布し硬化させて
、正電極とイオン伝導性固体電解質との積層体を得る。 第2工程 第1工程で得た積層体に電子伝導性高分子モノマーを含
浸させた後、対向電極(負極)を積層する。 第3工程 第2工程で得た積層体を電解重合し、イオン伝導性固体
電解質と正電極との間に電子伝導性高分子膜を形成させ
る。 第4工程 第3工程で得た複合体の対向電極(負極)を、そのまま
負極とするか、または、これを取除いて、そのあとに、
負極と負極集電体を重ねて電池とする。
[Claims] A method for producing a battery characterized by comprising the following steps 1 to 4: 1st step: Applying an electrolyte consisting of a liquid ion-conductive monomer or resin and an inorganic ionic salt to the surface of the positive electrode. This is then cured to obtain a laminate of the positive electrode and the ion conductive solid electrolyte. Second Step After the laminate obtained in the first step is impregnated with an electronically conductive polymer monomer, a counter electrode (negative electrode) is laminated thereon. Third Step The laminate obtained in the second step is electrolytically polymerized to form an electron conductive polymer membrane between the ion conductive solid electrolyte and the positive electrode. Fourth step: Either use the counter electrode (negative electrode) of the composite obtained in the third step as a negative electrode, or remove it and then,
The negative electrode and negative electrode current collector are stacked to form a battery.
JP62035733A 1987-02-20 1987-02-20 Manufacture of battery Pending JPS63205063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62035733A JPS63205063A (en) 1987-02-20 1987-02-20 Manufacture of battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62035733A JPS63205063A (en) 1987-02-20 1987-02-20 Manufacture of battery

Publications (1)

Publication Number Publication Date
JPS63205063A true JPS63205063A (en) 1988-08-24

Family

ID=12450030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62035733A Pending JPS63205063A (en) 1987-02-20 1987-02-20 Manufacture of battery

Country Status (1)

Country Link
JP (1) JPS63205063A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01241767A (en) * 1988-03-23 1989-09-26 Asahi Chem Ind Co Ltd Solid electrolyte secondary cell
JPH02215060A (en) * 1989-02-14 1990-08-28 Tech Res & Dev Inst Of Japan Def Agency Secondary battery formed exclusively with polymer solid
WO1993020594A1 (en) * 1992-04-06 1993-10-14 Yuasa Corporation Cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599865A (en) * 1982-07-08 1984-01-19 Yuasa Battery Co Ltd Manufacture of cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599865A (en) * 1982-07-08 1984-01-19 Yuasa Battery Co Ltd Manufacture of cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01241767A (en) * 1988-03-23 1989-09-26 Asahi Chem Ind Co Ltd Solid electrolyte secondary cell
JPH02215060A (en) * 1989-02-14 1990-08-28 Tech Res & Dev Inst Of Japan Def Agency Secondary battery formed exclusively with polymer solid
WO1993020594A1 (en) * 1992-04-06 1993-10-14 Yuasa Corporation Cell

Similar Documents

Publication Publication Date Title
US5340368A (en) Method for in situ preparation of an electrode composition
US6306509B2 (en) Ion conductive laminate and production method and use thereof
CN110176591B (en) Aqueous zinc ion secondary battery and preparation method of anode based on organic electrode material
JP5174376B2 (en) Non-aqueous lithium ion secondary battery
EP0616381A1 (en) Lithium-based polymer electrolyte electrochemical cell
US20050019667A1 (en) Solid polymer electrolyte and method of preparation
JPH09309173A (en) Ion conductive laminated matter, its manufacture, and use thereof
JPWO2004088671A1 (en) Composite polyelectrolyte composition
CN114292484B (en) Interpenetrating network structure layer, in-situ preparation method and application thereof
CN110611120A (en) Single-ion conductor polymer all-solid-state electrolyte and lithium secondary battery comprising same
Novák et al. Cycling behaviour of the polypyrrole—polyethylene oxide composite electrode
JPS63205063A (en) Manufacture of battery
JPS618854A (en) Cell and its manufacturing method
JPS63181273A (en) Manufacture of cell
CA2248866A1 (en) Ion conductive laminate and production method and use thereof
JP3578185B2 (en) Thin lithium battery and method of manufacturing the same
JP3346661B2 (en) Polymer electrode, method for producing the same, and lithium secondary battery
JPH1036657A (en) Polymerizable monomer, solid polyelectrolyte comprising the same, and its use
JP4054925B2 (en) Lithium battery
JPS62296376A (en) Manufacture of polymer solid electrolyte battery
JP3171238B2 (en) Polymer composite electrolyte membrane and secondary battery using the same
JPH1197026A (en) Electrode for li cell
JP4156495B2 (en) Gel electrolyte, its production method and its use
Jeon et al. A Rechargeable Battery Using Electrochemically-Doped Poly (3-vinylperylene) as an Electrode Material.
JPH10162832A (en) Thin lithium battery, and manufacture thereof