JPS63181273A - Manufacture of cell - Google Patents

Manufacture of cell

Info

Publication number
JPS63181273A
JPS63181273A JP62012272A JP1227287A JPS63181273A JP S63181273 A JPS63181273 A JP S63181273A JP 62012272 A JP62012272 A JP 62012272A JP 1227287 A JP1227287 A JP 1227287A JP S63181273 A JPS63181273 A JP S63181273A
Authority
JP
Japan
Prior art keywords
conductive polymer
electrolyte
ion
film
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62012272A
Other languages
Japanese (ja)
Inventor
Hidetomo Ashitaka
芦高 秀知
Toru Takahashi
透 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP62012272A priority Critical patent/JPS63181273A/en
Publication of JPS63181273A publication Critical patent/JPS63181273A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To reduce the interface resistance and improve the cell characteristic by using an electron conductive polymer and an ion conductive polymer electrolyte obtained by electrolysis polymerization in the ion conductive polymer electrolyte as a positive electrode and an electrolysis diaphragm respectively. CONSTITUTION:ITO glasses are put on both sides of a monomer-impregnated ion conductive polymer electrolysis film as an electrode and polymerized by constant-current electrolysis. Thereby, out of an electron conductive polymer obtained by forming the electron conductive polymer on the surface of an ion conductive polymer electrolysis film and a composite film of the ion conductive polymer electrolysis film, the electron conductive polymer is used as a positive electrode, and the ion conductive polymer electrolysis film is used as an electrolyte diaphragm. Accordingly, a cell having the excellent performance can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、イオン伝導性高分子電解質中で電解重合して
得られた電子伝導性高分子とイオン伝導性高分子電解質
を正極および電解質隔膜として用いた電池の製造法に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to the use of an electron conductive polymer obtained by electrolytic polymerization in an ion conductive polymer electrolyte and an ion conductive polymer electrolyte as a positive electrode and an electrolyte diaphragm. This paper relates to a method for manufacturing a battery used as a battery.

[従来技術およびその問題点] 従来より、電極として電子伝導性高分子を用いた電池が
知られている。この電池は、従来の二次電池に比較して
、軽量であるため、高エネルギー密度である利点を有し
ている。これに用いられる電子伝導性高分子材料として
ポリアセチレンがよく知られている。
[Prior art and its problems] Batteries using electronically conductive polymers as electrodes have been known. This battery has the advantage of being lightweight and high energy density compared to conventional secondary batteries. Polyacetylene is well known as an electron conductive polymer material used for this purpose.

しかし、ポリアセチレンを電池の電極に用いた場合は、
自己放電性が大きく、また、充放電中に、ドーピングに
伴い、酸化により劣化するという欠点があった。
However, when polyacetylene is used for battery electrodes,
It has a drawback that it has a large self-discharge property, and also deteriorates due to oxidation due to doping during charging and discharging.

そこで、最近、この欠点を除くため、電解重合法によっ
て得られた電子伝導性高分子1例えば、ポリピロール、
ポリチオフェン、ポリアニリン等やあるいはそれらの誘
導体を電極に用いて、上記の欠点のない電池が提案され
ている0例えば、特開昭60−216470号では、電
子伝導性高分子材料を一方の電極として用いる一対の電
極と非本有機電解液とを有する電池であって、陽極に電
子伝導性高分子材料としてポリピロールを用い、負極に
アルカリ金属を用いることを特徴とする特池、および、
電解質を有機溶媒に溶かした電解液中にピロールを加え
、得られた溶液に一対の導電性基板を浸漬し、電解重合
により導電性基板上にポリピロールを形成した後、得ら
れたポリピロールを陽極とし、アルカリ金属を負極とし
、電解液と接触させることを特徴とする電池の製造法、
について述べられている。
Recently, in order to eliminate this drawback, electronic conductive polymers 1 obtained by electrolytic polymerization, such as polypyrrole,
Batteries free from the above-mentioned drawbacks have been proposed using polythiophene, polyaniline, etc. or their derivatives as electrodes. A battery having a pair of electrodes and a non-organic electrolyte, characterized in that the anode uses polypyrrole as an electron-conductive polymer material and the anode uses an alkali metal, and
Pyrrole is added to an electrolytic solution in which an electrolyte is dissolved in an organic solvent, a pair of conductive substrates is immersed in the resulting solution, polypyrrole is formed on the conductive substrate by electrolytic polymerization, and the resulting polypyrrole is used as an anode. , a method for producing a battery characterized by using an alkali metal as a negative electrode and bringing it into contact with an electrolyte;
is mentioned.

しかしながら、液体電解質を用いているため、長期の使
用の間に電池外部への液もれ、電解質溶媒の揮発などの
ため、長期信頼性の問題がある。
However, since a liquid electrolyte is used, there are problems with long-term reliability due to liquid leakage to the outside of the battery and volatilization of the electrolyte solvent during long-term use.

この問題を解決する方法として、液体電解質の代わりに
、固体電解質を用いる方法が提案されている。しかし、
この場合は、固体同士を積層するため、電極と固体電解
質との界面の接触が、ミクロ的にみれば不完全であり、
組み立てた電池の内部抵抗が高くなる。また、m層する
工程が煩雑であり、電子伝導性高分子に機械的な強度が
必要など1種々問題がある。
As a method to solve this problem, a method using a solid electrolyte instead of a liquid electrolyte has been proposed. but,
In this case, since the solids are stacked together, contact at the interface between the electrode and the solid electrolyte is incomplete from a microscopic perspective.
The internal resistance of the assembled battery increases. Further, there are various problems such as the step of forming m layers is complicated and the electronic conductive polymer needs to have mechanical strength.

本発明の目的は、従来からの、電極として電子伝導性高
分子を用いた電池の欠点を改良し、優れた特性を有する
電池を提供するものである。
An object of the present invention is to improve the drawbacks of conventional batteries using electronically conductive polymers as electrodes and to provide a battery with excellent characteristics.

[問題点を解決するための手段] 本発明は、イオン伝導性高分子電解質中に原料モノマー
を含浸させ、その両側に電極をはさみ、電解重合により
イオン伝導性高分子電解質の表面に電子伝導性高分子を
形成させて得られた、電子伝導性高分子とイオン伝導性
高分子電解質の複合フィルムのうち、電子伝導性高分子
を正極、およびイオン伝導性高分子電解質を電解質隔膜
として用いることを特徴とする電池の製造法を提供する
ことにより、前記目的を達成したものである。
[Means for Solving the Problems] The present invention involves impregnating raw material monomers into an ion-conducting polymer electrolyte, sandwiching electrodes on both sides of the material, and applying electrolytic polymerization to the surface of the ion-conducting polymer electrolyte. Among the composite films of an electron conductive polymer and an ion conductive polymer electrolyte obtained by forming a polymer, it is possible to use the electron conductive polymer as a positive electrode and the ion conductive polymer electrolyte as an electrolyte diaphragm. The above object has been achieved by providing a method for manufacturing a battery with characteristics.

本発明の電解重合法により形成した電子伝導性高分子は
、正電極側ではなく、イオン伝導性高分子電解質側に成
長することに、特徴を有している。すなわち、電解重合
が終わった後、上記の正電極とイオン伝導性高分子電解
質フィルムをはがすと、電子伝導性高分子とイオン伝導
性高分子電解質の複合膜が得られる。
The electron conductive polymer formed by the electrolytic polymerization method of the present invention is characterized in that it grows not on the positive electrode side but on the ion conductive polymer electrolyte side. That is, when the positive electrode and the ion-conducting polymer electrolyte film are peeled off after the electrolytic polymerization is completed, a composite membrane of the electron-conducting polymer and the ion-conducting polymer electrolyte is obtained.

本発明によって得られた電子伝導性高分子は、イオン伝
導性高分子電解質フィルムと一体化しているため、十分
な機械的強度を有しており、電池セルを組み立てるのに
、取り扱いが非常に簡単になる。また、従来の別々に形
成された電子伝導体とイオン伝導性高分子電解質を積層
する場合に比べて、界面抵抗が小さく電池特性が向上す
る利点を有している。
Since the electronically conductive polymer obtained by the present invention is integrated with an ionically conductive polymer electrolyte film, it has sufficient mechanical strength and is extremely easy to handle when assembling battery cells. become. Furthermore, compared to the conventional stacking of separately formed electron conductors and ion conductive polymer electrolytes, this method has the advantage of lower interfacial resistance and improved battery characteristics.

また、電池の構成成分がすべて固体であり、液体電解質
を用いるに比べ液もれなどの問題が無く、電池の封口が
簡単であり、長期保存性に優れている。
In addition, all of the constituent components of the battery are solid, so there are no problems such as leakage compared to using a liquid electrolyte, the battery can be easily sealed, and it has excellent long-term storage stability.

本発明において、イオン伝導性高分子電解質は、無機イ
オン塩と、その無機イオン塩を解離固溶化できる有機高
分子とから形成される。
In the present invention, the ion conductive polymer electrolyte is formed from an inorganic ionic salt and an organic polymer capable of dissociating and converting the inorganic ionic salt into a solid solution.

本発明において、無機イオン塩としては、LiBF4 
、LiClO4、LiBr。
In the present invention, as the inorganic ionic salt, LiBF4
, LiClO4, LiBr.

BuNa ClO4、BuN4 BF4 。BuNa ClO4, BuN4 BF4.

NaCJ104 、NaBF4 、KCJLO4などを
挙げることができる。
Examples include NaCJ104, NaBF4, KCJLO4, and the like.

また、ここで用いられる有機高分子としては、ポリエチ
レンオキシド、ポリプロピレンオキシド、ポリエチレン
スルフィド、ポリ−β−プロピオラクトン、ポリエチレ
ンサクシネートなどの高分子、あるいは、ポリエチレン
グリコールメタクリレートを重合した高分子、ポリエチ
レンオキシド付加グリセリンをジイソシアネートで架橋
して得られる高分子、ポリエチレンオキシドを側鎖に有
するポリシロキサン及びその架橋高分子、ポリ(ジクロ
ロフォスフアゼン)と2−(2−メトキシエトキシ)エ
タノールのナトリウム塩との反応で得られる高分子、な
どが挙げられる。また、1;記の有機高分子にイオン伝
導性を増大させるために、機械的強度を損なわない範囲
で、プロピレンカーボネート、アセトニトリルなどの有
機溶媒、あるいは低分子量ポリエチレングリコールを含
有させてもよい。
In addition, the organic polymers used here include polymers such as polyethylene oxide, polypropylene oxide, polyethylene sulfide, poly-β-propiolactone, and polyethylene succinate, or polymers obtained by polymerizing polyethylene glycol methacrylate, and polyethylene oxide. Polymers obtained by crosslinking added glycerin with diisocyanate, polysiloxanes having polyethylene oxide in their side chains, and crosslinked polymers thereof, poly(dichlorophosphazene) and sodium salt of 2-(2-methoxyethoxy)ethanol. Examples include polymers obtained by reaction. Further, in order to increase the ionic conductivity of the organic polymer described in 1., organic solvents such as propylene carbonate and acetonitrile, or low molecular weight polyethylene glycol may be contained within a range that does not impair mechanical strength.

上記無機イオン塩の含有量としては、有機高分子に対し
て、0.01〜50wt%、好ましくは0.1〜30w
t%の範囲が好ましい、上記無機イオン填の含有量が多
すぎると過剰の無機イオン塩が解離固溶化せず単に混在
するのみとなり、イオン伝導性は低下する。また、含有
量が少なすぎても、電荷キャリアーである解離イオンの
数が少なくなり、イオン伝導性は低下する。イオン伝導
性の低下は、電解重合および電池特性に悪影響をあたえ
る。
The content of the inorganic ionic salt is 0.01 to 50 wt%, preferably 0.1 to 30 wt%, based on the organic polymer.
If the content of the inorganic ion filler, which is preferably in the range of t%, is too large, the excess inorganic ion salt will not be dissociated into a solid solution but will simply be mixed together, resulting in a decrease in ionic conductivity. Furthermore, if the content is too low, the number of dissociated ions that are charge carriers will decrease, resulting in a decrease in ionic conductivity. A decrease in ionic conductivity adversely affects electrolytic polymerization and battery characteristics.

イオン伝導性高分子電解質のフィルムの作成法としては
、上記の有機高分子と無機イオン塩との良溶媒で均一溶
液とし、均質な厚さになる様に塗布した後に溶媒を蒸発
除去してフィルムを作成する方法、また、有機高分子と
無機イオン塩の液状組成物を塗布した後に加熱あるいは
活性光線の照射などにより架橋硬化してフィルムを作成
する方法などがある。
The method for making an ion-conductive polymer electrolyte film is to make a homogeneous solution of the above organic polymer and inorganic ionic salt in a good solvent, apply it to a uniform thickness, and then evaporate the solvent to form a film. There is also a method in which a liquid composition of an organic polymer and an inorganic ionic salt is applied and then cross-linked and cured by heating or irradiation with actinic rays to form a film.

本発明における、原料モノマーとしては、ピロール、N
−7リールピロール、N−アルキルピロールなどのピロ
ール系化合物、チオフェン、3〜アルキルチオフエンな
どのチオフェン化合物、あるいは、アニリンなどを挙げ
ることができる。
In the present invention, raw material monomers include pyrrole, N
Examples include pyrrole compounds such as -7lylpyrrole and N-alkylpyrrole, thiophene compounds such as thiophene and 3-alkylthiophene, and aniline.

これらのモノマーは、単独でも、混合しても用いること
ができる。
These monomers can be used alone or in combination.

原料モノマーの含浸量は、イオン伝導性高分子電解質に
対して、0.01〜50wt%、好ましくは2〜40w
t%である。上記モノマーの含浸量が、上記の範囲より
も小さい場合は、ポリマー電池に適した表面積の大きな
電解重合膜の形成が困難であり、上記範囲よりも大きい
場合は、イオン伝導性高分子電解質の機械的性質が低下
して実用上好ましくない。
The amount of raw material monomer impregnated is 0.01 to 50 wt%, preferably 2 to 40 wt%, based on the ion conductive polymer electrolyte.
t%. If the amount of the monomer impregnated is smaller than the above range, it will be difficult to form an electrolytic polymer membrane with a large surface area suitable for polymer batteries, and if it is larger than the above range, it will be difficult to form an electrolytic polymer membrane with a large surface area suitable for polymer batteries. This is not preferred in practice as the physical properties deteriorate.

上記のイオン伝導性高分子電解質のフィルムに、原料上
ツマ−を含浸させる方法としては、得に制限はないが、
例えば、フィルムに直接滴下し吸収させる方法、フィル
ムに気相で吸収させる方法などがある。
There are no particular restrictions on the method of impregnating the film of the above-mentioned ion-conductive polymer electrolyte with the raw material, but
For example, there are a method of directly dropping it onto a film and absorbing it, and a method of letting the film absorb it in a gas phase.

上記のモノマーを含浸させたイオン伝導性高分子電解質
を用いて、モノマーを電解重合させる方法としては、イ
オン伝導性高分子電解質のフィルムを正負電極にはさみ
、該正負電極に直流電流を通電して、上記の該七ツマ−
を電解重合させて。
A method for electrolytically polymerizing monomers using an ion-conducting polymer electrolyte impregnated with the above monomer is to sandwich a film of the ion-conducting polymer electrolyte between positive and negative electrodes and passing a direct current through the positive and negative electrodes. , the above-mentioned seven
is electrolytically polymerized.

正電極に接した高分子電解質フィルム面に、上記七ツマ
−の重合体膜を形成させる。
The above seven-layer polymer film is formed on the surface of the polymer electrolyte film in contact with the positive electrode.

上記正電極としては、電解重合により酸化溶解、あるい
は不働態化を起こさない導電体であり、例えば、白金、
金、ニッケル、カーボン複合材。
The positive electrode is a conductor that does not undergo oxidative dissolution or passivation through electrolytic polymerization, such as platinum,
Gold, nickel and carbon composite.

ITOガラスなどが挙げられる。また、負電極も上記と
同様に電解重合中に酸化溶解、不働態化を起こさない導
電体であり、白金、アルミニュウム。
Examples include ITO glass. Similarly to the above, the negative electrode is also a conductor that does not undergo oxidative dissolution or passivation during electrolytic polymerization, such as platinum or aluminum.

鉄、銅、ニッケル、カーボン複合体、リチウム箔。Iron, copper, nickel, carbon composite, lithium foil.

ITOガラスなどが挙げられる。Examples include ITO glass.

本発明の電子伝導性高分子とイオン伝導性高分□子電解
質の複合膜を用いて、電池を組み立てるには、それぞれ
を、正極および電解質隔膜とし、さらに、正極集電体と
負極及び負極集電体を8I層する方法、あるいは、電解
重合で用いた正負電極をそのまま正負の集電体として用
いても良い。
In order to assemble a battery using the composite membrane of an electron conductive polymer and an ion conductive polymer electrolyte of the present invention, each is used as a positive electrode and an electrolyte diaphragm, and further, a positive electrode current collector, a negative electrode, and a negative electrode collector are used. Alternatively, the positive and negative electrodes used in electrolytic polymerization may be used as positive and negative current collectors.

[本発明の効果] 本発明の製造法によれば、電子伝導性高分子とイオン伝
導性高分子電解質とが一体化したものが得られ、この両
者を積層したものに比べて界面抵抗が少なく電池特性の
よい電池が得られる。また、機械的性質がよく、電池セ
ルの組み立てが簡単等の効果がある。
[Effects of the present invention] According to the manufacturing method of the present invention, a product in which an electronically conductive polymer and an ionically conductive polymer electrolyte are integrated can be obtained, and the interfacial resistance is lower than that of a laminated product of both. A battery with good battery characteristics can be obtained. In addition, it has good mechanical properties and has advantages such as easy assembly of battery cells.

[本発明の実施例] (実施例) メトキシポリエチレングリコールモノアクリレート (
新中村化学■製、AM−90G)0.75g、ポリエチ
レングリコールジメタクリレート(新中村化学■製、9
G)0.25g。
[Example of the present invention] (Example) Methoxypolyethylene glycol monoacrylate (
Shin Nakamura Chemical ■, AM-90G) 0.75 g, polyethylene glycol dimethacrylate (Shin Nakamura Chemical ■, manufactured 9
G) 0.25g.

ポリエチレングリコール(純正化学■製PEG#200
)0.75g、過塩素酸リチウム0.08g、およびベ
ンゾイルパーオキサイド0.Olgを混合し、均一溶液
とした。
Polyethylene glycol (PEG #200 manufactured by Gensei Kagaku ■)
) 0.75 g, lithium perchlorate 0.08 g, and benzoyl peroxide 0. Olg was mixed to form a homogeneous solution.

この均一溶液とした液状組成物をアルミシャーレに薄く
流延し、これを、窒素雰囲気下70℃で14時間加熱硬
化して、厚さ300 ILmのイオン伝導性高分子電解
質の硬化フィルムを得た。
This homogeneous solution of the liquid composition was thinly cast into an aluminum petri dish, and heated and cured at 70°C for 14 hours in a nitrogen atmosphere to obtain a cured film of ion conductive polymer electrolyte with a thickness of 300 ILm. .

このフィルムに、20wt%のピロールモノマーを直接
滴下し吸収させた。この七ツマー含浸イオン伝導性高分
子電解質フィルムの両側を、ITOガラスを電極として
挟み、定電流電解(電流密度50ILA/cm″)によ
り、30分間、室温で重合させた0重合後、電極をはが
すと、ポリピロールとイオン伝導性高分子電解質の複合
膜が得られた。
20 wt % of pyrrole monomer was directly dropped onto this film and absorbed. ITO glass was sandwiched between both sides of the 7-mer-impregnated ion-conductive polymer electrolyte film as electrodes, and polymerization was performed at room temperature for 30 minutes by constant current electrolysis (current density 50 ILA/cm''). After polymerization, the electrodes were peeled off. A composite membrane of polypyrrole and ion-conducting polymer electrolyte was obtained.

これに、負極活物質としてリチウム箔、外装板兼集電体
としてステンレス箔をvL層し、電池を形成した。
This was covered with a VL layer of lithium foil as a negative electrode active material and stainless steel foil as an exterior plate and current collector to form a battery.

得られた電池について、20pA/cm’の定電流を2
0分間通電した後、20pA/crn’の一定電流で、
放電電圧がIVに達するまでを1サイクルとする充放電
試験を行ない、その寿命性箋を調べた0本発明の電池は
、クーロン効率100%で300回以上の充放電を繰り
返すことができた。
For the obtained battery, a constant current of 20 pA/cm' was applied to 2
After applying current for 0 minutes, at a constant current of 20 pA/crn',
A charging/discharging test was conducted in which one cycle was defined as the time until the discharge voltage reached IV, and the life characteristics of the battery were examined.The battery of the present invention was able to be repeatedly charged and discharged more than 300 times with a coulombic efficiency of 100%.

Claims (1)

【特許請求の範囲】[Claims] イオン伝導性高分子電解質中に原料モノマーを含浸させ
、その両側に電極をはさみ、電解重合によりイオン伝導
性高分子電解質の表面に電子伝導性高分子を形成させて
得られた、電子伝導性高分子とイオン伝導性高分子電解
質の複合フィルムのうち、電子伝導性高分子を正極、お
よびイオン伝導性高分子電解質を電解質隔膜として用い
ることを特徴とする電池の製造法。
An electronically conductive polymer obtained by impregnating a raw material monomer into an ionically conductive polymer electrolyte, sandwiching electrodes on both sides, and forming an electronically conductive polymer on the surface of the ionically conductive polymer electrolyte through electrolytic polymerization. A method for manufacturing a battery, comprising using an electron-conductive polymer as a positive electrode and an ion-conductive polymer electrolyte as an electrolyte diaphragm in a composite film of molecules and an ion-conductive polymer electrolyte.
JP62012272A 1987-01-23 1987-01-23 Manufacture of cell Pending JPS63181273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62012272A JPS63181273A (en) 1987-01-23 1987-01-23 Manufacture of cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62012272A JPS63181273A (en) 1987-01-23 1987-01-23 Manufacture of cell

Publications (1)

Publication Number Publication Date
JPS63181273A true JPS63181273A (en) 1988-07-26

Family

ID=11800729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62012272A Pending JPS63181273A (en) 1987-01-23 1987-01-23 Manufacture of cell

Country Status (1)

Country Link
JP (1) JPS63181273A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63257634A (en) * 1987-04-15 1988-10-25 株式会社リコー Continuous manufacture of laminated and/or composite body film
JPH0240867A (en) * 1988-07-29 1990-02-09 Nippon Oil Co Ltd Entirely solid secondary battery
KR100424256B1 (en) * 2001-10-20 2004-03-22 삼성에스디아이 주식회사 Process for preparing an polymer electolyte by electrochemical polymerization and lithium battery employing such process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296376A (en) * 1986-06-16 1987-12-23 Yuasa Battery Co Ltd Manufacture of polymer solid electrolyte battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296376A (en) * 1986-06-16 1987-12-23 Yuasa Battery Co Ltd Manufacture of polymer solid electrolyte battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63257634A (en) * 1987-04-15 1988-10-25 株式会社リコー Continuous manufacture of laminated and/or composite body film
JPH0240867A (en) * 1988-07-29 1990-02-09 Nippon Oil Co Ltd Entirely solid secondary battery
KR100424256B1 (en) * 2001-10-20 2004-03-22 삼성에스디아이 주식회사 Process for preparing an polymer electolyte by electrochemical polymerization and lithium battery employing such process

Similar Documents

Publication Publication Date Title
Killian et al. Polypyrrole composite electrodes in an all‐polymer battery system
US5340368A (en) Method for in situ preparation of an electrode composition
US6306509B2 (en) Ion conductive laminate and production method and use thereof
Osaka et al. Performances of lithium/gel electrolyte/polypyrrole secondary batteries
JPH09309173A (en) Ion conductive laminated matter, its manufacture, and use thereof
CN114292484B (en) Interpenetrating network structure layer, in-situ preparation method and application thereof
JP4060899B2 (en) Film for separator of electrochemical device, its production method and use
Kim et al. Highly conductive polymer electrolytes supported by microporous membrane
CN110611120A (en) Single-ion conductor polymer all-solid-state electrolyte and lithium secondary battery comprising same
JP4169134B2 (en) Electrochemical element separator and its use
JP2001110423A (en) Secondary battery and material therefor
JP3685296B2 (en) Electrode for lithium secondary battery, polarizable electrode for electric double layer capacitor, and binder for these electrodes
JPS63181273A (en) Manufacture of cell
JP2000067643A (en) Polymerizable compound, high molecular solid electrolyte using the same and its application
EP0956603B1 (en) Ion conductive laminate and production method and use thereof
JPH1036657A (en) Polymerizable monomer, solid polyelectrolyte comprising the same, and its use
JPS63205063A (en) Manufacture of battery
JPH1166948A (en) High polymer electrolyte and lithium ion secondary battery
JP3235157B2 (en) Ion conductive polymer electrolyte
JPS618854A (en) Cell and its manufacturing method
Jeon et al. A Rechargeable Battery Using Electrochemically-Doped Poly (3-vinylperylene) as an Electrode Material.
JPH1197026A (en) Electrode for li cell
Kim et al. Study on the electrochemical characteristics of quasi-solid-state electric double layer capacitors assembled with sulfonated poly (ether ether ketone)
JPH043066B2 (en)
JP3734896B2 (en) Solid electrolyte and non-aqueous battery