JPS62268057A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPS62268057A
JPS62268057A JP61110373A JP11037386A JPS62268057A JP S62268057 A JPS62268057 A JP S62268057A JP 61110373 A JP61110373 A JP 61110373A JP 11037386 A JP11037386 A JP 11037386A JP S62268057 A JPS62268057 A JP S62268057A
Authority
JP
Japan
Prior art keywords
base material
electrode
oxidizing agent
conductive
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61110373A
Other languages
Japanese (ja)
Other versions
JPH0636361B2 (en
Inventor
Tetsuyoshi Suzuki
鈴木 哲身
Kazumi Hasegawa
和美 長谷川
Sanehiro Furukawa
古川 修弘
Masahisa Fujimoto
正久 藤本
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Sanyo Electric Co Ltd
Original Assignee
Mitsubishi Kasei Corp
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp, Sanyo Electric Co Ltd filed Critical Mitsubishi Kasei Corp
Priority to JP61110373A priority Critical patent/JPH0636361B2/en
Priority to CA000520107A priority patent/CA1306904C/en
Priority to EP86113998A priority patent/EP0219063B1/en
Priority to US06/917,051 priority patent/US4731311A/en
Priority to DE3689759T priority patent/DE3689759T2/en
Publication of JPS62268057A publication Critical patent/JPS62268057A/en
Publication of JPH0636361B2 publication Critical patent/JPH0636361B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/664Ceramic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/669Steels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To secure such an electrode that is excellent in shelf life and enhances the extent of battery performance, by processing a base material whose one side is hydrophobic, with an oxidant, making only one side of the base material hold this oxidant, and superposing a compound having conjugated double bond on the base material under a vapor-phase ambience. CONSTITUTION:An Fe (ClO4)3 component is held on one side of a hydrophobic, polyethylene-make porous film, by way of example, and it is made contact with pyrrolic steam, forming polypyrrole, and it is dried by air, thus such a film that is flexible and conductive, whose one side is black, is secured. And, such one that is punched out into the specified size is set down to a positive electrode 1, while lithium is set down to a negative electrode 2, and an electrolyte made up of dissolving LiBF4 into propylene carbonate is used, thus a battery is secured. This conductive material is excellent in resistance to oxidation so that it is in no case subjected to oxidizing degradation by oxygen and moisture in the air and, what is more, shelf life in the electrode itself is very good. Therefore, conversion and decomposition are not caused by the presence of oxygen and moisture inside the battery or overcharge and so on.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、導電性ポリマーを特定の基材のいずれかの
面上に有してなる導電材料を電極材料として用いた二次
電池に関するものでおる。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a secondary battery using a conductive material having a conductive polymer on either side of a specific base material as an electrode material. I'll go.

〈従来の技術〉 近年、各種有機材料からなる導電性ポリマーを電極材料
とした二次電池が提察されている。
<Prior Art> In recent years, secondary batteries using conductive polymers made of various organic materials as electrode materials have been proposed.

この種の二次電池の電極材お1となる導電性ポリマーは
、通常は導電性はわずかであるが、各種アニオンやカチ
オンの如きドーパントをドーピング並びにアンド−ピン
グ処理することが可能であり、ドーピング処理により導
電性が飛躍的に上昇する。そして、アニオンがドーピン
グされる導電性ポリマーを正極材料として、またカチオ
ンがドーピングされる導電千生ポリマーを負極材料とし
て各々使用すると共に上記ドーパントを含有する溶iを
電解液として用い、ドーピング及びアンド−ピングを電
気化学的に可逆的に行なうことにより充放電可能な電池
が構成される。
The conductive polymer that serves as the electrode material for this type of secondary battery usually has little electrical conductivity, but it can be doped and undoped with dopants such as various anions and cations. The treatment dramatically increases the conductivity. Then, a conductive polymer doped with anions is used as a positive electrode material, a conductive polymer doped with cations is used as a negative electrode material, and the solution containing the dopant is used as an electrolytic solution, and doping and and- By electrochemically and reversibly performing pinging, a chargeable and dischargeable battery is constructed.

このような導電性ポリマーとしては従来よりポリアセチ
レン、ポリパラフェニレン、ポリチェニレン、ポリピロ
ール、ポリアニリン、ポリパラフェニレンビニレンなど
のような主鎖に共19二重結合を有する重合体が知られ
ており、ポリアセチレンを例に採れば、ポリアセチレン
を正極または負極の少なくとも一方の電極材料として用
い、BF  −1CJO−1SbF6−1P「6−等の
7ニオン、またはLi+、Na 、R4−N  CRは
アルキル基を表わす〉等のカチオンを電気化学的に可逆
的にドーピング、アンド−ピングする構成が採られる。
As such conductive polymers, polymers having co-19 double bonds in the main chain, such as polyacetylene, polyparaphenylene, polythenylene, polypyrrole, polyaniline, and polyparaphenylenevinylene, are conventionally known. For example, polyacetylene is used as the electrode material for at least one of the positive electrode and the negative electrode, and BF-1CJO-1SbF6-1P "7-ions such as 6-, or Li+, Na, R4-N CR represents an alkyl group", etc. A configuration is adopted in which cations are electrochemically and reversibly doped and undoped.

ところで、このような導電性ポリマーは粉状。By the way, such conductive polymers are in powder form.

粒状、塊状おるいはフィルム状で18られるが、粉状2
粒状あるいは塊状の導電性ポリマーの場合には、これら
を電極材料として用いて非水電解液二次電池あるいは固
体電解質二次電池を構成する場合、それら単独、あるい
はそれらに導電性向上のための適宜な導電材、及び/ま
たは電極の機械的強度を高めるための熱可塑性樹脂を加
えた後、電極形状に加圧成形して電極とする等の手間を
要する。その点、導電性ポリマーフィルムの場合には、
それらを電極寸法に打ち扱くのみで電極とすることかで
きて電極作製が比較的容易である等の特長がおる。
Granular, lumpy or film-like particles are classified as 18, but powder-like 2
In the case of granular or lumpy conductive polymers, when they are used as electrode materials to construct non-aqueous electrolyte secondary batteries or solid electrolyte secondary batteries, they may be used alone or with appropriate additives to improve conductivity. After adding a conductive material and/or a thermoplastic resin to increase the mechanical strength of the electrode, it is time-consuming to pressure-form the electrode into the shape of the electrode. On the other hand, in the case of conductive polymer films,
It has the advantage that it is relatively easy to manufacture electrodes because it can be made into electrodes simply by shaping them into electrode dimensions.

上記のような導電性ポリマーフィルムとしては、重合触
媒を塗布したガラス壁にアセチレンガスを吹込んで形成
した後にこのガラス壁より剥離して得られるポリアセチ
レンフィルムや、電気化学的酸化反応(電解酸化重合)
によって電解電極上に形成した後にこの電極より剥離し
て得られるポリチェニレンフィルムまたはポリピロール
フィルム、おるいは酸化剤とポリマーバインダーを含む
溶液をPETフィルムの如き基材上に塗布しピロールヤ
アニリン等の蒸気を接触させて基材上にフィルム状導電
性ポリマ一層を形成して(qだ導電性複合フィルムなど
が知られている。
The above-mentioned conductive polymer films include polyacetylene films obtained by blowing acetylene gas onto a glass wall coated with a polymerization catalyst and then peeling from the glass wall, and polyacetylene films obtained by electrochemical oxidation reaction (electrolytic oxidation polymerization).
A polythenylene film or a polypyrrole film obtained by forming it on an electrolytic electrode and then peeling it off from this electrode, or a solution containing an oxidizing agent and a polymer binder is coated on a base material such as a PET film to form a polythenylene film or a polypyrrole film obtained by peeling it off from the electrode. A single layer of a film-like conductive polymer is formed on a substrate by contacting the vapor with the conductive polymer (a conductive composite film is known).

〈発明が解決しようとする問題点〉 しかしながら、上記従来の導電性ポリマーフィルムを電
池の電極材料に使用して二次電池を構成した場合、ポリ
アセチレンフィルムでは電池内の微最の酸素、水分の存
在でポリマーが劣化するので、電極としての性能が低下
し、またサイクル中に充電電圧の急上昇や充放電効率の
低下などが起こってサイクル寿命の減少が著しいという
欠点がおり、更に作業雰囲気中の酸素により酸化され易
いために電極作製作業が困難で煩雑になる、酸化による
材質劣化が大きいので電極の保存性が悪い等という問題
があった。
<Problems to be Solved by the Invention> However, when a secondary battery is constructed by using the above-mentioned conventional conductive polymer film as a battery electrode material, the presence of minute amounts of oxygen and moisture in the battery with the polyacetylene film This has the disadvantage that the performance of the electrode deteriorates as the polymer deteriorates during cycling, and the cycle life is significantly shortened due to a sudden increase in charging voltage and a decrease in charging/discharging efficiency during cycling. There have been problems such as the fact that the electrode fabrication work is difficult and complicated because it is easily oxidized, and the electrode has poor storage stability because the material deteriorates significantly due to oxidation.

また電気化学的酸化重合反応により作製したポリチェニ
レンフィルムやポリピロールフィルムでは、フィルムの
大きざが電解電極の大きざに規制されるとともに、その
製造法が煩雑で特定の製造装置を必要とするので電池コ
スト高を招く原因となる。更に、膜厚の厚い均一な膜が
得にくいので、この膜を電池電極として集電体と組合せ
て用いた場合には集電体との接触が充放電サイクル中に
悪化したり、電池反応が電極の一部に集中して生じるの
で電池性能劣化を招き易いという問題がおった。
In addition, for polythenylene films and polypyrrole films produced by electrochemical oxidative polymerization reactions, the size of the film is regulated by the size of the electrolytic electrode, and the manufacturing method is complicated and requires specific manufacturing equipment. This causes high battery costs. Furthermore, since it is difficult to obtain a thick and uniform film, when this film is used as a battery electrode in combination with a current collector, contact with the current collector may deteriorate during charge/discharge cycles, and the battery reaction may deteriorate. There was a problem in that since it is concentrated in a part of the electrode, it tends to cause deterioration of battery performance.

更に上記導電性複合フィルムの場合には、基材上に酸化
剤を保持するためにポリマーバインダーを使用すること
から、重合反応後に1qられた導電性ポリマーがピロー
ルあるいは゛アニリンの重合体とこのポリマーバインダ
ーとの混合した複合導電体となる。このため、導電性ポ
リマー内における導電性を有するピロールヤアニリンな
どの重合体の濃度が低下し、これを電極用材料として使
用した場合、例えば上記従来の導電性ポリマーフィルム
を使用した時に較べて、同一性能を発揮させようとして
もポリマー濃度低下の分だけ不利となり、性能的に劣る
という問題がおる。
Furthermore, in the case of the above-mentioned conductive composite film, since a polymer binder is used to hold the oxidizing agent on the substrate, the conductive polymer 1q removed after the polymerization reaction is combined with the pyrrole or aniline polymer. It becomes a composite conductor mixed with a polymer binder. For this reason, the concentration of the conductive polymer such as pyrrole aniline in the conductive polymer decreases, and when this is used as an electrode material, compared to, for example, when using the conventional conductive polymer film mentioned above, Even if an attempt is made to achieve the same performance, there is a problem in that the polymer concentration is reduced and the performance is inferior.

そこで、本発明者等はさきに特願昭60−225761
号で、酸化剤の存在下この酸化剤を保持しうる空間を有
する基材上で共役二重結合を有する化合物をこの基材上
に気相重合させてなり、任意の形状、殊にフィルム状で
作製される上記の欠点のない新規な導電材料を得、特願
昭60−260923号でこの導電材料を二次電池の電
極材料として用いることを提案した。
Therefore, the present inventors first applied for patent application No. 60-225761.
No. 1, in which a compound having a conjugated double bond is polymerized in the gas phase on a base material having a space capable of holding the oxidizing agent in the presence of the oxidizing agent, and is formed into any shape, especially a film shape. A novel conductive material without the above-mentioned drawbacks was obtained, and in Japanese Patent Application No. 60-260923, it was proposed to use this conductive material as an electrode material for secondary batteries.

しかしながら、上記特願昭60−225761号の導電
材料において、例えば平面状基材の片面に導電性ポリマ
一層を形成すべく、基材の片面のみに酸化剤を保持しよ
うとする場合、酸化剤が基材の全空間に浸透し保持され
易いために基材の他の面にまでも酸化剤が浸透し、上記
気相重合後は導電性ポリマーが基材全体に生成する結果
、基材片面のみに導電性ポリマーを生成させることは非
常に困難でおることがわかった。
However, in the conductive material of the above-mentioned Japanese Patent Application No. 60-225761, when an oxidizing agent is to be held on only one side of a planar base material in order to form a single layer of conductive polymer on one side of the base material, the oxidizing agent is Since the oxidizing agent easily penetrates into the entire space of the base material and is retained, the oxidizing agent also permeates other surfaces of the base material, and after the above-mentioned gas phase polymerization, a conductive polymer is generated over the entire base material, and as a result, only one side of the base material is formed. It turns out that it is very difficult to produce conductive polymers.

このため、上記導電材料を正極または負極の少なくとも
一方の電極として使用する際は、上記従来の導電性ポリ
マーフィルムを電極材料とした場合と同様に、対向する
電極間に両極が直接接触しないようにするための不織布
のような隔膜(セパレータ)を配置したり、おるいは電
極と電池缶との間に集電体を密着させて配置する必要が
おり、電池組立ての際には電極材料とセパレータあるい
は集電体とを注意深く緊密に張り合せる工程を要する等
といった欠点がおる。
Therefore, when using the above-mentioned conductive material as at least one of the positive electrode and the negative electrode, as in the case where the above-mentioned conventional conductive polymer film is used as the electrode material, make sure that the two electrodes do not come into direct contact between the opposing electrodes. It is necessary to place a diaphragm (separator) such as a non-woven fabric, or to place a current collector in close contact between the electrode and the battery can, when assembling the battery. Another drawback is that it requires a process of carefully and tightly pasting the current collector together.

く問題点を解決するための手段〉 本発明者らは、上記問題点を解決すべく研究した所、酸
化剤を保持し得る空間を有し且つ少なくとも一面が疎水
性である塞材を酸化剤で処理して該基材のいずれかの面
のみに該酸化剤を保持させ、気相雰囲気下で共役二重結
合を有する化合物を該基材上で重合させ、該いずれかの
面に該化合物の重合体を形成して1qられる導電性の材
料を正極または負極の少なくとも一方のW2Nとして用
いた場合には所期の目的を達成できることを知得した。
Means for Solving the Problems〉 The present inventors conducted research to solve the above problems, and found that a plugging material having a space capable of retaining an oxidizing agent and having at least one surface that is hydrophobic can be used as an oxidizing agent. to retain the oxidizing agent only on either side of the base material, polymerize a compound having a conjugated double bond on the base material in a gas phase atmosphere, and apply the compound to either side of the base material. It has been found that the desired purpose can be achieved when a conductive material formed by forming a polymer of 1q is used as W2N for at least one of the positive electrode and the negative electrode.

上記の如き酸化剤としては、共役二重結合を有する化合
物に対して重合活性を有する化合物であり、単独又は2
種類以上組合せて使用される。通常、強酸残基ヤハロゲ
ン、シアンを有する金属塩、過酸化物等が使用され、具
体的には、Fe (CJ204 >3 、 Fe (B
F4 )3 。
The above-mentioned oxidizing agent is a compound that has polymerization activity toward a compound having a conjugated double bond, and can be used alone or in combination.
Used in combination of more than one type. Usually, metal salts and peroxides having strong acid residues such as halogen and cyan are used. Specifically, Fe (CJ204 > 3, Fe (B
F4)3.

Fe2 (S i F6 )3 、 Cu (C!2.
04 )2 。
Fe2 (S i F6 )3, Cu (C!2.
04)2.

Cu (BF4 )2 、cus! F6 、FeCJ
23゜CuC,22、K3 (Fe (CN)6 )。
Cu (BF4)2, cus! F6, FeCJ
23°CuC,22,K3 (Fe(CN)6).

RuCf!、3 、MOC,25、WCl2.6 。RuCf! , 3, MOC, 25, WCl2.6.

(NH4)2S208.に2S208゜xa  S  
O、NaBO3,町02.などであり、これらは結晶水
を有するもの又は水溶液として19られるものも使用す
ることができる。
(NH4)2S208. 2S208゜xa S
O, NaBO3, Town 02. etc., and those having water of crystallization or those that can be used as an aqueous solution can also be used.

また、上記基材は、上記の如き酸化剤を保持しj7る空
間を有し、かつ少なくとも一面が疎水性を示すものが使
用される。疎水性は水の接触角が90’以上のものでお
る。酸化剤は基材のいずれかの面のみに保持され易いよ
うに水溶液として使用される。基材に浸透性のめるメタ
ノール、エタノール、アセトニトリル、テトラヒドロフ
ランなどの有機溶媒を酸化剤の溶媒として使用すると、
基材の一面が疎水性を示していてもその面にも酸化剤が
容易に浸透するため、基材のいずれかの面のみに酸化剤
を保持することは困難である。そして例えばシート状基
材の一方の面が疎水性、他方の面が親水性を示す場合に
は基材を酸化剤水溶液に浸漬することにより、または親
水性の面に酸化剤水溶液を塗布することによって酸化剤
を基材の親水性の面に容易に保持することができる。ま
たシート状基材の両面が疎水性の場合には、酸化剤水溶
液を一方の面に繰返し塗布することによりこの一方の面
に酸化剤を保持させることができる。更にシート状基材
の両面が親水性の場合は、一方の面をシリコン系、フッ
素系などの1g水剤で処理し疎水化した後、酸化剤水溶
液中に浸漬するか、又は親水性の他方の面に酸化剤水溶
液を塗布することにより、この親水性の面に酸化剤を保
持させることができる。
Further, the base material used has a space for holding the oxidizing agent as described above, and has at least one surface that is hydrophobic. Hydrophobicity is defined as having a water contact angle of 90' or more. The oxidizing agent is used as an aqueous solution so that it is easily retained on only one side of the substrate. When organic solvents such as methanol, ethanol, acetonitrile, and tetrahydrofuran are used as solvents for oxidizing agents, they penetrate into the substrate.
Even if one surface of the substrate is hydrophobic, the oxidizing agent easily permeates into that surface, so it is difficult to retain the oxidizing agent only on one surface of the substrate. For example, if one side of the sheet-like base material is hydrophobic and the other side is hydrophilic, the base material may be immersed in an oxidizing agent aqueous solution, or the oxidizing agent aqueous solution may be applied to the hydrophilic side. The oxidizing agent can be easily retained on the hydrophilic surface of the substrate. Further, when both surfaces of the sheet-like base material are hydrophobic, the oxidizing agent can be retained on one surface by repeatedly applying an oxidizing agent aqueous solution to one surface. Furthermore, if both sides of the sheet-like base material are hydrophilic, one side is treated with 1 g of a silicone-based, fluorine-based, etc. water agent to make it hydrophobic, and then immersed in an oxidizing agent aqueous solution, or the other side is hydrophilic. By applying an oxidizing agent aqueous solution to the surface, the oxidizing agent can be retained on this hydrophilic surface.

酸化剤を保持し得る上記空間としては、使用する酸化剤
が少なくとも分子状又は凝集物として保持しうる空間的
大きさがあればよい。その空間が小さすぎて分子状態の
酸化剤が保持し得ないか、又はその空間が大きすぎて凝
集状態の酸化剤が保持し得ない場合は好ましくない。こ
の空間は種々の形状の細孔又は間隙として基体上又は内
部に分布している。その大きさは、具体的には、細孔の
場合、平均細孔径がo、 ooi〜1t)O,umであ
り、好ましくは0.005〜50 μmである。また細
孔の深さはo、ooiμm以上でおり、好ましくは0.
005μm以上でおること等が知1σされている。
The space that can hold the oxidizing agent may have a spatial size that can hold the oxidizing agent used at least in the form of molecules or aggregates. It is not preferable if the space is too small to hold the oxidizing agent in a molecular state, or if the space is too large to hold the oxidizing agent in an aggregated state. This space is distributed on or inside the substrate as pores or gaps of various shapes. Specifically, in the case of pores, the size thereof is such that the average pore diameter is from o, ooi to 1t) O, um, preferably from 0.005 to 50 μm. Further, the depth of the pores is 0.00 μm or more, preferably 0.00 μm or more.
It is known that 1σ is greater than 0.005 μm.

このような特性を有する例えば平面状の基材の形態は、
具体的には、多孔性材料(板状成形物、シー1〜.フィ
ルム、フィラメント)、織布。
For example, the shape of a planar base material having such characteristics is as follows:
Specifically, porous materials (plate-shaped molded products, films, filaments), woven fabrics.

不織布などで交る。Mixed with non-woven fabrics, etc.

また基材としては有薇系、無機系のものが使用される。In addition, as the base material, arborescent or inorganic materials are used.

有機系基材とし才は、ポリオレフィン系、ポリハロゲン
化ビニル系、ポリフッ素系。
The most suitable organic base materials are polyolefin, polyhalogenated vinyl, and polyfluorine.

ポリエステル系、ポリアミド系、ポリイミド系。Polyester-based, polyamide-based, polyimide-based.

ポリビニルアルコール系、ポリアクリル系、ポリカーボ
ネート系、レーヨン系、セルロース系などの材料及びこ
れらの共重合体系、混合された材料系が使用される。ま
た、無機系基材としては、炭素質系、金属系1合金系、
金属酸化物系、金属炭化物系、金属窒化物系、並びにこ
れらの混合系などが使用される。更に、有機系基材と無
機系基材の混合された基材も使用される。
Materials such as polyvinyl alcohol-based, polyacrylic-based, polycarbonate-based, rayon-based, cellulose-based, copolymers thereof, and mixed material systems are used. In addition, as the inorganic base material, carbonaceous type, metal type 1 alloy type,
Metal oxides, metal carbides, metal nitrides, and mixtures thereof are used. Furthermore, a mixed base material of an organic base material and an inorganic base material may also be used.

このような基体としては、具体的には、有は系基材とし
ては、ポリエチレン、ポリプロピレン、エチレン−プロ
ピレン共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン
、ポリフッ化ビニリデン、ポリテトラフルオロエチレン
、ポリエチレンテレフタレート、ポリブチレンテレフタ
レート、ポリスチレン、ポリアミド、ポリイミド、ポリ
アミドイミド、ポリビニルアルコール。
Specifically, such base materials include polyethylene, polypropylene, ethylene-propylene copolymer, polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, polytetrafluoroethylene, and polyethylene terephthalate. , polybutylene terephthalate, polystyrene, polyamide, polyimide, polyamideimide, polyvinyl alcohol.

エチレン−ビニルアセテート共重合体、ポリアク1ノロ
ニトリル、ポリメタアクリロニトリル。
Ethylene-vinyl acetate copolymer, polyacrylonitrile, polymethacrylonitrile.

ポリメタクリル酸メチル、ポリメタクリル酸ブヂル、ボ
1ノスチレンーアクリロニトリル、ポリカーボネート、
レーヨン、メチルセルロ−スニトロセルロース、カルボ
キシメチルセルロースは、活性炭,カーボンブラック、
黒鉛,クロム。
Polymethyl methacrylate, polybutyl methacrylate, borostyrene-acrylonitrile, polycarbonate,
Rayon, methylcellulose, nitrocellulose, carboxymethylcellulose, activated carbon, carbon black,
Graphite, chromium.

チタン、ニッケル、金,白金,タンタル、銅。Titanium, nickel, gold, platinum, tantalum, copper.

銀,鉄,ステンレススチール、アルミナ、シワ力,シリ
カアルミナ、ジルコニア、開化ベリリ「クム,チタン酸
カリウム、炭化ケイ素,炭化ホウ素,炭化チタン、炭化
モリブデン、炭化タンタル、窒化ホウ素,窒化ケイ素,
窒化ニオブなどが使用される。
Silver, iron, stainless steel, alumina, wrinkle strength, silica alumina, zirconia, kaika berylli cum, potassium titanate, silicon carbide, boron carbide, titanium carbide, molybdenum carbide, tantalum carbide, boron nitride, silicon nitride,
Niobium nitride and the like are used.

本発明で使用する共IQ二重結合を有する化合物はピロ
ール系,チオフェン系化合物などが単独又は混合して使
用される。好ましくはピロール又はチオフェンの環骨格
構造の2,5位置に置換基をもたないピロール系又はチ
オフェン系化合物が使用される。ピロール系化合物とし
て具体的には、ピロール、N−メチルピロール、N−エ
チルピロール, N−n−プロピルピロール。
The compounds having a co-IQ double bond used in the present invention include pyrrole compounds, thiophene compounds, etc. alone or in combination. Preferably, a pyrrole or thiophene compound having no substituents at the 2 or 5 positions of the ring structure of pyrrole or thiophene is used. Specific examples of pyrrole compounds include pyrrole, N-methylpyrrole, N-ethylpyrrole, and N-n-propylpyrrole.

\−n−ブチルピロール、N−フェニルピロール、N−
トルイルピロール、N−ナフチルピロール、3−メチル
ピロール、3,5−ジメチルピロール、3−エチルピロ
ール、3−n−プロピルピロール、3−n−ブチルピロ
ール、3−フェニルピロール、3−トルイルピロール、
3−プフチルピロール,3−メトキシピロール、3−5
−ジメトキシピロール、3−エトキシピロ  。
\-n-butylpyrrole, N-phenylpyrrole, N-
Toluylpyrrole, N-naphthylpyrrole, 3-methylpyrrole, 3,5-dimethylpyrrole, 3-ethylpyrrole, 3-n-propylpyrrole, 3-n-butylpyrrole, 3-phenylpyrrole, 3-toluylpyrrole,
3-pufthylpyrrole, 3-methoxypyrrole, 3-5
-dimethoxypyrrole, 3-ethoxypyrrole.

−ル,3−n−プロボギシピロール,3−フェノキシピ
ロール、3−メチルN−メチルピロール、3−メI〜キ
シNーメチルピロール、3−タロルビロール、3−ブロ
ムピロール、3−メチルチオピロール、3−メチルチオ
N−メチルピロールなどである。
-l, 3-n-probogycypyrrole, 3-phenoxypyrrole, 3-methylN-methylpyrrole, 3-methyl-xyN-methylpyrrole, 3-talolvirol, 3-bromopyrrole, 3-methylthiopyrrole, 3-methylthiopyrrole N-methylpyrrole and the like.

またチオフェン系化合物として具体的には、2、2−ビ
チオフエン,3ーメチル−2,2′−ビチオフエン,3
,3−ジメチル−2,2°−ビチオフエン、3,4−ジ
メチルー242゛−ビチオフエン。
In addition, specific examples of thiophene-based compounds include 2,2-bithiophene, 3-methyl-2,2'-bithiophene, 3
, 3-dimethyl-2,2°-bithiophene, 3,4-dimethyl-242°-bithiophene.

3,4−ジメチル−3°、4゛−ジメチル−2,2゛−
ビチオフエン、3−メトキシ−2,2゛−ビチオフエン
、 3.3’−ジメトキシ−2,2−ビチオフエン。
3,4-dimethyl-3°,4゛-dimethyl-2,2゛-
Bithiophene, 3-methoxy-2,2'-bithiophene, 3,3'-dimethoxy-2,2-bithiophene.

2.2°、5’、2°°−ターチオフェン、3−メチル
−2,2’、5°、2°“−ターチオフェン、3,3°
−ジメチル−2,2’、5“、2′°−ターチオフェン
などでおる。
2.2°,5',2°°-terthiophene, 3-methyl-2,2',5°,2°"-terthiophene, 3,3°
-dimethyl-2,2',5'',2'°-terthiophene, etc.

共役二重結合を有する化合物に対する酸化剤の使用割合
は重合体の生成量と関連するが、通常0.001〜io
、 oooモル倍でおり、好ましくは0.005〜5,
000モル倍である。
The ratio of the oxidizing agent to the compound having a conjugated double bond is related to the amount of polymer produced, but is usually 0.001 to io
, ooo times the mole, preferably 0.005 to 5,
000 moles.

基材上に共役二重結合を有する化合物の重合体を形成さ
せるのは気相雰囲気下で行なわれる。
Forming a polymer of a compound having a conjugated double bond on a substrate is carried out in a gas phase atmosphere.

即ち、共役二重結合を有する化合物のみの蒸気、又は窒
素、アルゴン、空気、その他のガス又は混合ガスとの共
存下で、気相雰囲気下で重合体形成は行なわれる。全体
の系は加圧、常圧、あるいは減圧下いずれの圧力下でも
行なうことができるが、通常、常圧下で行なうのが工程
管理上などの点から好ましい。
That is, the polymer formation is performed in a gas phase atmosphere in the presence of vapor of only the compound having a conjugated double bond or with nitrogen, argon, air, other gases, or mixed gases. Although the entire system can be operated under elevated pressure, normal pressure, or reduced pressure, it is usually preferable to carry out the process under normal pressure from the viewpoint of process control.

反応温度は、共役二重結合を有する化合物が重合し得る
温度なら特に規定されるものではないが、通常−20〜
150℃、好ましくは0〜100℃で行なわれる。また
、反応時間は反応温度、酸化剤の量、共役二重結合を有
する化合物の母などとも関連するが、通常0.01〜2
00時間でおり、好ましくは0.02〜100時間であ
る。
The reaction temperature is not particularly defined as long as it is a temperature at which a compound having a conjugated double bond can polymerize, but it is usually -20 to
It is carried out at 150°C, preferably from 0 to 100°C. In addition, the reaction time is related to the reaction temperature, the amount of oxidizing agent, the mother of the compound having a conjugated double bond, etc., but is usually 0.01 to 2
00 hours, preferably 0.02 to 100 hours.

そして、重合反応後、基材上の酸化剤を保持した部分に
暗褐色〜黒色の均質な該重合体が生成する。
After the polymerization reaction, a dark brown to black homogeneous polymer is produced on the portion of the base material that retains the oxidizing agent.

一旦生成した上記の如き重合体の上に更に酸化剤を保持
し、同−又は別種の共役二重結合を有する化合物を接触
して重合反応を継続し、重合体生成団の増加又は二種類
以上の重合体の生成を得ることができる。
Once formed, an oxidizing agent is further held on top of the above-mentioned polymer, and the polymerization reaction is continued by contacting with a compound having the same or different type of conjugated double bond to increase the number of polymer-forming groups or to increase the number of two or more types of polymer-forming groups. The production of polymers can be obtained.

重合反応が完了した後、基材上に残存する共役二重結合
を有する化合物及び酸化剤を除去する。通常、水、アル
コール又は有機系溶剤中に基材を浸漬、洗浄することに
より除去することができる。その後、通常の乾燥方法に
よって基材を吃燥することにより本発明の導電材料を得
ることができる。
After the polymerization reaction is completed, the compound having a conjugated double bond and the oxidizing agent remaining on the substrate are removed. Usually, it can be removed by immersing and washing the substrate in water, alcohol, or an organic solvent. Thereafter, the conductive material of the present invention can be obtained by drying the base material using a conventional drying method.

本発明の二次電池には、かかる導電材料を用いてなる電
極を正負両極に使用する場合と、一方の電極のみにこの
電極を使用し、他の電極には、金属や金属酸化物あるい
は他の無機化合物更には本発明の反応生成物以外の公知
の導電性重合体や有機化合物および行間金属化合物等を
電極材料として使用する場合とがある。正極にのみこの
導電材料を用いた電極を使用し、負極の電極材料として
金属を使用する場合を例にとれば、負極を構成する金属
として電気陰性度が1.6以下のものを用いるのが好ま
しく、このような金属の例としてはL 1. Na、に
、 Mg。
In the secondary battery of the present invention, there are cases in which electrodes made of such conductive materials are used for both positive and negative electrodes, and cases in which this electrode is used only for one electrode and metals, metal oxides, or other electrodes are used for the other electrodes. Further, known conductive polymers, organic compounds, and interline metal compounds other than the reaction products of the present invention may be used as electrode materials. For example, if an electrode using this conductive material is used only for the positive electrode and a metal is used as the negative electrode material, it is recommended to use a metal with an electronegativity of 1.6 or less as the negative electrode. Preferred examples of such metals include L1. Na, Mg.

/lあるいはそれらの合金等が挙げられ、特に1−iお
よびl−i合金が好ましい。
/l or alloys thereof, and 1-i and li alloys are particularly preferred.

一方、本発明を非水電解液二次電池に応用した場合にお
いて、その際用いられる電解液としては、電解質を行間
溶剤に溶解した溶液が使用される。かかる電解質として
は、電気陰性度が1.6以下の金属の陽イオンや有機カ
チオン等の陽イオン及び陰イオンとの塩を挙げることか
できる。オニウムイオンの例として、4級アンモニウム
イオン、カルボニウムイオン、オキソニウムイオン等が
挙げられる。また、陰イオンとしては、BF  −1C
,20−1PF6−1ASF  −、CF3SO3−、
I−,13r−10℃−1F−等が挙げられる。そして
、このような電解質の具体例としては、テトラフルオロ
ホウ酸リチウム(LiBF4)、過塩素酸リチウム(L
iCλ04)、ヘキサフルオロリン酸リチウム(LiP
F6)、テトラクロロアルミン酸リチウム(LiAβC
β4)、テトラフルオロホウ酸テトラエヂルアンモニウ
ム((C2H5)4NBF4)、過塩素酸テトラエチル
アンモニウム((C2H5)4NCぶ04)、1−リフ
ルオロメタンスルホン酸リチウム(L ! CF330
3 > 、ヨウ化リチウム(LiI>、臭化リチウム(
LiBr)等が挙げることができるが、これらに限定さ
れるものではない。
On the other hand, when the present invention is applied to a non-aqueous electrolyte secondary battery, the electrolyte used at that time is a solution in which an electrolyte is dissolved in an interline solvent. Examples of such electrolytes include salts with cations and anions such as metal cations and organic cations having an electronegativity of 1.6 or less. Examples of onium ions include quaternary ammonium ions, carbonium ions, oxonium ions, and the like. In addition, as an anion, BF-1C
,20-1PF6-1ASF-,CF3SO3-,
I-, 13r-10°C-1F-, and the like. Specific examples of such electrolytes include lithium tetrafluoroborate (LiBF4) and lithium perchlorate (L
iCλ04), lithium hexafluorophosphate (LiP
F6), lithium tetrachloroaluminate (LiAβC
β4), tetraedylammonium tetrafluoroborate ((C2H5)4NBF4), tetraethylammonium perchlorate ((C2H5)4NCbu04), lithium 1-lifluoromethanesulfonate (L! CF330)
3>, lithium iodide (LiI>, lithium bromide (
Examples include, but are not limited to, LiBr) and the like.

そして、正負両極に本発明の導電材料を用い、し1BF
4を電解質として溶解してなる電解液を用いて構成され
る電池を例にとれば、充電時には、正極内の導電材料に
電解液中のBF4−が、また負極内の導電材料には電解
液中のLl が夫々ドーピングされる。一方、放電時に
は、正、負極にドーピングされたBF4−Ll が夫々
電解液中に放出される。
Then, using the conductive material of the present invention for both the positive and negative electrodes,
For example, if a battery is constructed using an electrolyte solution in which 4 is dissolved as an electrolyte, during charging, BF4- in the electrolyte is added to the conductive material in the positive electrode, and BF4- in the electrolyte is added to the conductive material in the negative electrode. Ll in each layer is doped. On the other hand, during discharge, BF4-Ll doped into the positive and negative electrodes is released into the electrolyte, respectively.

また、電解質を溶解する有機溶剤としては、高誘電率で
非プロトン性のものが好ましく、ニトリル、カーボネー
ト、エーテル、ニトロ化合物、アミド、含硫黄化合物、
塩素化炭化水素、ケトン、エステル等を用いることがで
きる。また、このような溶剤は二種以上を混合して用い
ることもできる。これらの代表例として、アセトニトリ
ル、プロピオニトリル、ブチロニトリル、ベンゾニトリ
ル、プロピレンカーボネート、エチレンカーボネート、
テトラヒドロフラン、ジオキソラン、1,4−ジオキサ
ン、ニトロメタン、N、N−ジメチルホルムアミド、ジ
メチルスルホキシド、スルホラン、1,2−ジクロロエ
タン、T−ブヂロラクトン、1,2−ジメトキシエタン
、リン酸メチル、リン酸エチル等を挙げることができる
が、これらに限定されるものではない。
In addition, as the organic solvent for dissolving the electrolyte, it is preferable to use an aprotic one with a high dielectric constant, such as nitrile, carbonate, ether, nitro compound, amide, sulfur-containing compound,
Chlorinated hydrocarbons, ketones, esters, etc. can be used. Moreover, two or more kinds of such solvents can also be used in combination. Representative examples of these include acetonitrile, propionitrile, butyronitrile, benzonitrile, propylene carbonate, ethylene carbonate,
Tetrahydrofuran, dioxolane, 1,4-dioxane, nitromethane, N,N-dimethylformamide, dimethylsulfoxide, sulfolane, 1,2-dichloroethane, T-butyrolactone, 1,2-dimethoxyethane, methyl phosphate, ethyl phosphate, etc. These include, but are not limited to.

そして、本発明の電解液の濃度は、通常o、 ooi〜
10モル/βで用いられ、好ましくは0.1〜3モル/
λで用いられる。
The concentration of the electrolytic solution of the present invention is usually o, ooi~
Used at 10 mol/β, preferably 0.1 to 3 mol/β
Used in λ.

このような電解液は注液の他、予め本発明の導電材料を
用いた電極に含液させて用いることもできる。
In addition to being injected, such an electrolytic solution can also be used by impregnating an electrode made of the conductive material of the present invention in advance.

また、本発明においては、以上のような電解質溶液のか
わりに固体電解質を用いることもできる。そのような固
体電解質は、例えば、リチウム導電性固体電解質として
、L;r、L;■−Aぶ203 、 L i3 N、 
LISICON、リチウムイオン導電性ガラス(例えば
し;2S−P2S5−Lil系等)、γ■−Li3P○
4型構造を有するリチウムイオン導電体(例えばL !
4 S !04− L !3 PO4系等)、リチウム
イオン導電性高分子電解質(例えばポリエチレンオキシ
ド−LiCiQ04系等)及びそれらに添加物を加えた
もの等が挙げられる。
Moreover, in the present invention, a solid electrolyte can also be used instead of the above electrolyte solution. Such solid electrolytes include, for example, L;r, L;■-Abu203, Li3N, as a lithium conductive solid electrolyte.
LISICON, lithium ion conductive glass (for example, 2S-P2S5-Lil system, etc.), γ■-Li3P○
Lithium ion conductors with type 4 structure (e.g. L!
4 S! 04-L! 3 PO4 series, etc.), lithium ion conductive polymer electrolytes (for example, polyethylene oxide-LiCiQ04 series, etc.), and those with additives added thereto.

また、以上では導電材料にドーピング処理をすることな
くそのまま電極に成形加工する方法について説明したが
、ドーパントを予めドーピングせしめ、しかる後電極と
して使用することもできる。
Moreover, although the above description has been made of a method of forming an electrode as is without subjecting the conductive material to doping treatment, it is also possible to dope the conductive material with a dopant in advance and then use it as an electrode.

更に、本発明に於て、電解質中で電極を固定するために
、スノコ状または孔を有するガラス、テフロン、ポリエ
チレン、板等を用いて電極を被覆する構成としてもよい
Further, in the present invention, in order to fix the electrode in the electrolyte, the electrode may be covered with a slat-like or holed glass, Teflon, polyethylene, plate, or the like.

そして、本発明に係る導電材料として例えば上記有機系
基材を使用したものを用いた場合にはこの有機系基材に
セパレータを兼用させることができる。また、上記の如
き無機系基材を使用した導電材料を用いれば基材を集電
体として兼用させることができる。
When the conductive material according to the present invention uses, for example, the above organic base material, the organic base material can also serve as a separator. Further, if a conductive material using an inorganic base material as described above is used, the base material can also be used as a current collector.

また、例えば基材に集電体を兼用させた場合、ガラスフ
ィルター濾紙、テフロン、ポリエチレン、ポリプロピレ
ン、ナイロンなどの多孔質膜をセパレータとして用いて
もよい。
Further, for example, when the base material also serves as a current collector, a porous membrane such as glass filter paper, Teflon, polyethylene, polypropylene, or nylon may be used as the separator.

〈作 用〉 上記の導電材料は耐酸化性が優秀で空気中の酸素や水分
によって酸化劣化することがないので電極作製環境の管
理が容易化でおりまた電極自身の保存性がよいのみなら
ず、電池内部の酸素や水分の存在あるいは過充電などに
よって変成や分解を起こすことがなく、充電時の電圧急
上昇がなくて充電効率並びにサイクル寿命の向上を図る
ことができる。
<Function> The above-mentioned conductive materials have excellent oxidation resistance and do not deteriorate due to oxidation due to oxygen or moisture in the air, making it easy to control the electrode manufacturing environment, and not only has a good shelf life of the electrode itself. The battery does not undergo denaturation or decomposition due to the presence of oxygen or moisture inside the battery or overcharging, and there is no sudden voltage increase during charging, making it possible to improve charging efficiency and cycle life.

また、この導電材料は、適宜な基材上で共役二重結合を
有する化合物を酸化剤の存在下気相雰囲気で重合させて
得られるものでおるので、製造容易でコストが比較的安
くてすむのみならず膜厚の厚いものでも均一厚のものが
得られると共に、セパレータまたは集電体と一体化した
電極材料が容易に得られるので電池組立て工程の大幅な
簡略化を達成することができる。更に塞材として多孔性
のものを用いた場合には、電極内体の含液性(金電解液
性)が改善されて電池の充放電効率が向上するなどとい
った利点がある。
In addition, this conductive material is obtained by polymerizing a compound having a conjugated double bond on a suitable base material in a gas phase atmosphere in the presence of an oxidizing agent, so it is easy to manufacture and relatively inexpensive. Not only that, even if the film is thick, a uniform thickness can be obtained, and an electrode material integrated with a separator or current collector can be easily obtained, so that the battery assembly process can be greatly simplified. Furthermore, when a porous material is used as the plugging material, there are advantages such as improvement in the liquid impregnation property (gold electrolyte property) of the electrode inner body and improvement in the charging and discharging efficiency of the battery.

〈実施例〉 以下に本発明に係る導電材料の製造例、並びに二次電池
の実施例を挙げて本発明を具体的に説明する。
<Example> The present invention will be specifically described below with reference to manufacturing examples of conductive materials and examples of secondary batteries according to the present invention.

導電材料の製造例1〜3 孔径0.1〜10μm、膜厚20μmの両面が疎水性の
ポリエチレン製多孔性フィルム(縦10cm、横20C
m)の片面に Fe (CJ2c)  )  −8H20−水飽和溶液
を3回塗布してフィルム片面上に均一に Fe (C!;104 )3成分を保持した。次いで、
ピロール4m、l)をガラス製容器(奥行10cm、横
25cm、高さ15Cm)の底部におき、上記の処理で
得た多孔性フィルムをガラス製容器の上部より吊し、容
器上部をガラス板で密閉しピロール蒸気に接触させた。
Production Examples 1 to 3 of Conductive Materials A polyethylene porous film with a pore diameter of 0.1 to 10 μm and a film thickness of 20 μm and hydrophobic on both sides (height: 10 cm, width: 20 cm)
A Fe (CJ2c) -8H20-water saturated solution was applied three times to one side of the film to maintain the three Fe (C!;104) components uniformly on one side of the film. Then,
Pyrrole (4 m, l) was placed at the bottom of a glass container (depth 10 cm, width 25 cm, height 15 cm), the porous film obtained by the above treatment was suspended from the top of the glass container, and the top of the container was covered with a glass plate. It was sealed and exposed to pyrrole vapor.

ピロール蒸気との接触とともに多孔性フィルムは黄色か
ら暗緑色に、更に黒色に急速に変色し、多孔性フィルム
の片面上にポリピロールが生成した。第1表に示す所定
の接触時間経過後フィルムを取出し、メタノール中に3
Q分間浸漬して、未反応ピロール及び Fe (C104)3成分を抽出除去した。この操作を
3回継続した後、風乾すると可撓性のある片面が黒色の
フィルムが1qられた。
Upon contact with pyrrole vapor, the porous film rapidly changed color from yellow to dark green to black, forming polypyrrole on one side of the porous film. After the predetermined contact time shown in Table 1, the film was removed and diluted with methanol for 3 hours.
The sample was immersed for Q minutes to extract and remove unreacted pyrrole and the three Fe (C104) components. After continuing this operation three times and air drying, 1 q of flexible film with black on one side was obtained.

このフィルムの膜厚、並びにフィルム片面上に電極を置
いてフィルム片面の水平方向の電気伝導度を測定した結
果を第1表に併せて示した。
Table 1 also shows the thickness of this film and the results of measuring the electrical conductivity in the horizontal direction on one side of the film by placing an electrode on one side of the film.

第1表 尚、電気伝導度は四端子法により測定した。Table 1 Incidentally, the electrical conductivity was measured by a four-terminal method.

また、フィルムの片面上と他面上とに電極を置いてフィ
ルムの垂直方向の電気伝導度をそれぞれ測定した所、い
ずれも10−103cm”以下でおり、片面のみの導電
化を行なえたことが確認できた。
In addition, when we measured the electrical conductivity of the film in the vertical direction by placing electrodes on one side and the other, both values were less than 10-103 cm, indicating that we were able to make only one side conductive. It could be confirmed.

導電材料の製造例4゜ 最大孔径0.02 X O,2μm 、膜厚25μmで
両面疎水性のポリプロピレン製多孔膜(ジュラガード 
2400 )を使用したほかは上記製造例3の場合と同
様に行なった結果、膜厚28μmで片面が黒色の光沢の
あるフィルムが得られた。
Manufacturing example of conductive material 4° Maximum pore diameter 0.02 x O, 2 μm, film thickness 25 μm, double-sided hydrophobic polypropylene porous membrane (Duraguard)
As a result, a glossy film having a thickness of 28 μm and black on one side was obtained.

このフィルムの水平方向の電気伝導度は6,5×10−
2S Cm”で、また垂直方向の電気伝導度は10”1
03cm−1以下でおり、片面のみの導電化を行なうこ
とができた。
The horizontal electrical conductivity of this film is 6,5 x 10-
2S Cm", and the vertical conductivity is 10"1
03 cm-1 or less, and only one side could be made conductive.

導電材料の製造例5 界面活性剤で表面を親水化処理しである膜厚220μm
 、1875 Mm2のポリプロピレン製不織布を30
%水酸化カリウム水溶液中に浸漬し、温度60℃で1時
間加熱処理した後、十分に水洗し乾燥すると、界面活性
剤が除去されて不[布の表面は疎水性を示すようになる
Manufacturing example 5 of conductive material: Surface hydrophilized with surfactant, film thickness 220 μm
, 30 pieces of polypropylene nonwoven fabric of 1875 mm2
% potassium hydroxide aqueous solution and heat-treated at a temperature of 60° C. for 1 hour, and then thoroughly washed with water and dried, the surfactant is removed and the surface of the cloth becomes hydrophobic.

この不織布を用いたほかは上記製造例2の場合と同様に
して不織布片面に Fe (CaO2)3成分を保持させ且つピロール蒸気
に接触させるなどした所、膜厚230μmで片面が黒色
の不織布を得た。この不織布の水平方向の電気伝導度は
1.8X ’I O’S Cm−1であり、また垂直方
向の電気伝導度は−to−1O8CIIl−1以下であ
り、不織布片面のみの導電化を行なうことができた。
Except for using this nonwoven fabric, the same procedure as in Production Example 2 above was carried out to hold three components of Fe (CaO2) on one side of the nonwoven fabric and to bring it into contact with pyrrole vapor. A nonwoven fabric with a film thickness of 230 μm and one side black was obtained. Ta. The electrical conductivity of this nonwoven fabric in the horizontal direction is 1.8X'IO'S Cm-1, and the electrical conductivity in the vertical direction is -to-1O8CIIl-1 or less, making only one side of the nonwoven fabric conductive. I was able to do that.

導電材料の比較製造例1 30%水酸化カリウム水溶液による処理を行なりない他
は上記製造例5と同様の処理を行なった結果、酸化剤は
不織布片面のみに保持することが不可能でポリピロール
蒸気接触俊は不織布は両面ともポリピロールが生成し黒
色化した。
Comparative Production Example 1 of Conductive Materials The same process as in Production Example 5 above was carried out except that the treatment with 30% potassium hydroxide aqueous solution was not carried out. As a result, it was impossible to retain the oxidizing agent on only one side of the nonwoven fabric, and polypyrrole vapor was removed. Upon contact, polypyrrole was generated on both sides of the nonwoven fabric, resulting in a black color.

この不織布の水平方向の電気伝導度は1.5×10’S
cm−’、垂直方向のS気伝導度ハ4.8x10’5c
m−1であり、不織布片面のみの導電化を行なうことが
できなかった。
The electrical conductivity of this nonwoven fabric in the horizontal direction is 1.5×10'S
cm-', vertical S air conductivity 4.8x10'5c
m-1, and it was not possible to make only one side of the nonwoven fabric conductive.

導電材料の比較製造例2 酸化剤溶液としてFe(CflO4)3・8日20−水
飽和溶液の代りに Fe (C2O4)3・8日20−メタノール飽和溶液
を使用した他は上記製造例1と同様にして行なった結果
、両面がポリピロール生成により黒色化したフィルムが
得られた。このフィルムの電気伝導度は水平方向が2.
8X 10−15cm  、垂直方向が1.8x 1 
o−25cm−1テcy5つ、フィルム片面のみの導電
化を行なうことができなかった。
Comparative Production Example 2 of Conductive Materials Same as Production Example 1 above, except that a 3.8 day 20 methanol saturated solution of Fe (C2O4) was used instead of a 3.8 day 20 water saturated solution of Fe(CflO4) as the oxidizing agent solution. As a result of carrying out the same procedure, a film was obtained in which both sides were blackened due to the formation of polypyrrole. The electrical conductivity of this film in the horizontal direction is 2.
8X 10-15cm, vertical direction is 1.8x 1
It was not possible to make only one side of the film conductive for 5 o-25 cm-1 cy.

導電材料の製造例6 孔径0.1〜1Qμm 、膜厚80.czm 、 !1
0cm、横20cmで両面疎水性のポリエチレン製多孔
性フィルムの片面上に、FeCJ2.3・6H20の水
飽和溶液で縦方向に幅2II1mの直線40本を描き、
風乾後上記製造例1と同様にピロールの蒸気雰囲気下に
おいた。その結果、片面の縦方向に黒色の幅2mmの直
線40本をもつフィルムが1qられた。このフィルムは
縦方向が電気伝導度1.3x 10−1S0−1Sを示
し、横方向及び垂直方向は絶縁性を示した。
Manufacturing example 6 of conductive material: pore diameter 0.1 to 1Qμm, film thickness 80. czm,! 1
On one side of a polyethylene porous film measuring 0 cm and 20 cm wide and hydrophobic on both sides, draw 40 straight lines with a width of 2 II 1 m in the vertical direction with a water saturated solution of FeCJ2.3 6H20.
After air drying, it was placed in a pyrrole vapor atmosphere in the same manner as in Production Example 1 above. As a result, 1q of films having 40 black straight lines with a width of 2 mm in the longitudinal direction on one side were formed. This film exhibited electrical conductivity of 1.3x 10-1S0-1S in the longitudinal direction, and insulating properties in the lateral and vertical directions.

このようにして、フィルム片面の縦方向にのみ導電性を
有する導電性フィルムを得ることができた。
In this way, it was possible to obtain a conductive film having conductivity only in the vertical direction on one side of the film.

導電材料の製造例7 ピロールの代りに3−メチルピロールを使用し、Fe 
(CJ204 >3 ・8H20の代りにCu(BF4
)2の40%水溶液を使用した他は上記製造例1の場合
と同様に行なった結果、膜厚22μmで片面が黒色のフ
ィルムが得られた。このフィルム水平方向の電気伝導度
は1,8x 1Q’3cm−1であり、垂直方向の電気
伝導度は10−10−1OS’以下であった。
Manufacturing example 7 of conductive material Using 3-methylpyrrole instead of pyrrole, Fe
(CJ204 > 3 ・Cu(BF4 instead of 8H20)
) A 40% aqueous solution of 2 was used in the same manner as in Production Example 1 above, and as a result, a film having a thickness of 22 μm and black on one side was obtained. The electrical conductivity of this film in the horizontal direction was 1,8x 1Q'3 cm-1, and the electrical conductivity in the vertical direction was less than 10-10-1 OS'.

導電材料の製造例8〜14 各種のピロール化合物を第2表に示した各種酸化剤を各
種の多孔性フィルムの片面に存在させ気相雰囲気下で2
4時間接触させて重合した結果を第2表に併せて示した
Production Examples 8 to 14 of Conductive Materials Various pyrrole compounds and various oxidizing agents shown in Table 2 were present on one side of various porous films, and 2
The results of polymerization after 4 hours of contact are also shown in Table 2.

導電材料の製造例15〜21 第3表に示す各種の不織布を使用したほかは上記製造例
1と同様にして行なった結果を第3表に併せて示した。
Manufacturing Examples 15 to 21 of Conductive Materials The results were shown in Table 3 in the same manner as Manufacturing Example 1 above, except that the various nonwoven fabrics shown in Table 3 were used.

なあ製造例16.17,18,20.21の場合、予め
各不織布の片面にフッ素系撥水剤をスプレー塗布してこ
の片面の疎水化処理を行なった後、酸化剤を含む飽和水
溶液に各不織布を浸漬し、疎水化処理されていない面に
酸化剤を保持させた。
In the case of Production Examples 16, 17, 18, and 20. 21, one side of each nonwoven fabric was spray-coated with a fluorine-based water repellent to make this one side hydrophobic, and then each nonwoven fabric was soaked in a saturated aqueous solution containing an oxidizing agent. The nonwoven fabric was dipped, and the oxidizing agent was retained on the surface that had not been made hydrophobic.

導電材料の製造例22〜28 第4表に示す各種の織布あるいは不織布を使用したほか
は上記製造例1と同様にして行なった結果を第4表に併
せて示した。
Production Examples 22 to 28 of Conductive Materials Table 4 also shows the results of production conducted in the same manner as in Production Example 1 above, except that various woven or nonwoven fabrics shown in Table 4 were used.

尚、これらの製造例において各織布、不織布は、それら
の片面にシリコン系溌水剤をスプレー塗布して片面の疎
水化処理を行なった後、疎水化処理していない面に酸化
剤を塗布して保持させた。
In addition, in these production examples, each woven fabric and non-woven fabric is treated by spraying a silicone-based water repellent on one side to make it hydrophobic, and then applying an oxidizing agent to the side that has not been made hydrophobic. and held it.

導電材料の製造例29 上記製造例2で得られた導電性フィルムの電気伝導度の
経時変化を測定した結果を第5表に示した。
Manufacturing Example 29 of Conductive Material Table 5 shows the results of measuring changes over time in the electrical conductivity of the conductive film obtained in Manufacturing Example 2 above.

第5表 以上の結果、本発明に係る導電性フィルムの電気伝導度
の変化は極めて僅かでおることが示された。
The results shown in Table 5 and above show that the change in electrical conductivity of the conductive film according to the present invention is extremely small.

導電材料の製造例30 ピロールの代りに2,2゛−ビチオフエン5.OC1を
使用し、反応温度70’Cで行なったほかは導電材料の
製造例3と同様に行なった結果、片面が黒色の多孔性フ
ィルムが1qられた。このフィルムの電気伝導度は水平
方向が7.5X 10’SCm 、垂直方向は10−1
°s cm−’以下で必ツーま た。
Production example of conductive material 30 2,2'-bithiophene instead of pyrrole 5. The same procedure as in Conductive Material Production Example 3 was conducted except that OC1 was used and the reaction temperature was 70'C. As a result, 1q of porous films with one side black were obtained. The electrical conductivity of this film is 7.5X 10'SCm in the horizontal direction and 10-1 in the vertical direction.
A must-see again below °s cm-'.

前記製造例1で得た導電材料を正極材料として用い、こ
れを所定寸法に打ち扱いたものを正極とし、またリチウ
ムを所定寸法に打ち扱いたものを負極とした。そして、
これらの正極並びに負極と、テトラフルオロホウ酸リチ
ウムLiBF4(電解質)をプロピレンカーボネート(
溶媒)に溶解してなる電解液を用いて、第1図(A)に
示した構造の本発明に係る電池(本発明品A)を作った
The conductive material obtained in Production Example 1 was used as a positive electrode material, the material was punched to a predetermined size to serve as a positive electrode, and the lithium was punched to a predetermined size to serve as a negative electrode. and,
These positive and negative electrodes and lithium tetrafluoroborate LiBF4 (electrolyte) were mixed with propylene carbonate (
Using an electrolytic solution dissolved in a solvent), a battery according to the present invention (product A of the present invention) having the structure shown in FIG. 1(A) was made.

また、上記製造例23で得た導電材料を正極材料として
用い、これを所定寸法に打ち俵いたものを正極とし、ま
たポリプロピレン不織布からなるセパレータを使った他
は本発明品Aと同様にして、第1図(8)に示す本発明
に係る電池(本発明品B)を作製した。
In addition, the conductive material obtained in Production Example 23 above was used as the positive electrode material, the positive electrode was made by punching this into a bag of predetermined dimensions, and a separator made of polypropylene nonwoven fabric was used, but in the same manner as product A of the present invention, A battery according to the present invention (product B of the present invention) shown in FIG. 1 (8) was produced.

一方、従来の電解酸化重合により得たポリピロールフィ
ルムを正極材料として用い、これを所定寸法に打ち汲い
たものを正極とし、この正極を正極集電体を介して正極
缶底面にプレスして圧着させ且つポリプロピレン不織布
からなるセパレータを使用した以外は本発明品Aと同様
にして比較用の電池(比較量C)を作製した。
On the other hand, a polypyrrole film obtained by conventional electrolytic oxidative polymerization is used as a positive electrode material, and this is punched to a predetermined size to make a positive electrode, and this positive electrode is pressed and crimped to the bottom of a positive electrode can through a positive electrode current collector. A comparative battery (comparative quantity C) was produced in the same manner as inventive product A except that a separator made of polypropylene nonwoven fabric was used.

以上の3つの電池について、0.1 mAの電流で1時
間充電した後、0.1mAの電流で電池電圧が2゜5V
になるまで放電するという一連の充放電υイクルを繰り
返し行なった。
After charging the above three batteries with a current of 0.1 mA for 1 hour, the battery voltage decreased to 2°5V with a current of 0.1 mA.
A series of charging and discharging υ cycles was repeated until the voltage was reached.

第2図に、本発明品Aと比較量Cとの、第60サイクル
目の充放電における電池電圧の経時変化を示した。尚、
同図において実線は充電時の、点線は放電時の電圧変化
である。第2図から明らかなように、本発明品Aは比較
量Cに較べて充電電圧が低く、また放電電圧が高いこと
から、その分売放電効率が向上していることがわかる。
FIG. 2 shows the change in battery voltage over time in the 60th cycle of charging and discharging for the product A of the present invention and the comparative product C. still,
In the figure, the solid line shows the voltage change during charging, and the dotted line shows the voltage change during discharging. As is clear from FIG. 2, the product A of the present invention has a lower charging voltage and a higher discharging voltage than the comparative product C, which indicates that its distribution discharge efficiency is improved.

ちなみに、このサイクルにおける充放電効率は本発明品
Aが92%であるのに対し、比較量Cは80%でめった
。本発明品Aの充放電効率がこのように改善された理由
としては、本発明品への正極として用いた導電材料が吸
液性のよい多孔性フィルムを基材として用いてなるもの
であるので正極自体の含液性が向上したことに加え、本
発明品Aでは比較量に較べて極間距離が小ざくなってそ
の弁内部抵抗が低下し、この結果充電電圧の上昇抑制並
びに放電電圧の向上が図れたためと思われる。
Incidentally, the charging/discharging efficiency in this cycle was 92% for the product A of the present invention, whereas the efficiency for the comparative product C was 80%. The reason why the charge/discharge efficiency of product A of the present invention was improved in this way is that the conductive material used as the positive electrode for the product of the present invention is made of a porous film with good liquid absorption properties as a base material. In addition to improving the liquid-retaining property of the positive electrode itself, in the product A of the present invention, the distance between the electrodes is smaller compared to the comparative amount, and the internal resistance of the valve is reduced. As a result, the increase in charging voltage is suppressed and the discharging voltage is reduced. This seems to be because improvements were made.

また、第3図に、本発明品Bと比較量Cとの充放電効率
(%)のサイクル変化を示した。同図より、比較量Cは
60サイクルを過ぎるあたりから充放電効率の低下がみ
られ、100サイクルにおいては50%にまで低下して
いる。これに対し本発明品Bでは、全サイクルを通じて
比較量Cより高い充放電効率を示すのみならず、100
サイクル目においても90%と高い充放電効率を維持し
ていることがわかる。比較量Cのサイクル特性がこのよ
うに悪いのは、充放電サイクルの途中で正極のポリピロ
ールフィルムが正極集電体から剥がれ、両者の密着性並
びに接触性が次第に悪化していくことが原因と考えられ
る。そして、本発明品Bの場合は、正極としてカーボン
クロスを基材として用いてなる導電材料を使用し、この
基材に正極集電体を兼用させたことから、正極材料であ
るポリピロールと集電体との密着度が格段によく、充放
電サイクルの途中でポリピロールが集電体から剥がれて
いく度合が極く僅かでおり、この結果サイクル特性が向
上したものと思われる。
Further, FIG. 3 shows the cycle change in charge/discharge efficiency (%) of the product B of the present invention and the comparative product C. As shown in the figure, the charging/discharging efficiency of the comparison amount C begins to decrease after 60 cycles, and decreases to 50% at 100 cycles. On the other hand, product B of the present invention not only exhibits higher charge/discharge efficiency than comparative amount C throughout the entire cycle, but also has a
It can be seen that a high charge/discharge efficiency of 90% is maintained even in the 1st cycle. The reason why the cycle characteristics of comparative amount C are so bad is thought to be that the polypyrrole film of the positive electrode peels off from the positive electrode current collector during the charge/discharge cycle, and the adhesion and contact between the two gradually deteriorate. It will be done. In the case of product B of the present invention, a conductive material made of carbon cloth as a base material is used as the positive electrode, and this base material also serves as a positive electrode current collector, so that polypyrrole, which is the positive electrode material, and current collector are used. The degree of adhesion to the body was extremely good, and the degree to which the polypyrrole peeled off from the current collector during the charge/discharge cycle was extremely small, which is thought to be the reason for the improved cycle characteristics.

尚、以上は正極にのみ導電材料を用いたものについて説
明したが、負極、あるいは正負極に本発明の導電材料を
用いた場合も同様の効果がIPられることは明らかであ
る。
Although the above description has been made of a case in which a conductive material is used only for the positive electrode, it is clear that similar effects can be obtained when the conductive material of the present invention is used for the negative electrode or the positive and negative electrodes.

〈発明の効果〉 以上のように購成されるこの発明の二次電池によれば、
耐酸化性が優れ製造容易でコスト安な導電材料からなる
電極を用いたので、電極作製環境の管理が容易化し電極
自身の保存性が向上すると共に、充電電圧が急上昇する
等といった不都合がなく、また電池コス]〜高を招くこ
ともない。更に、この導電材料はセパレータまたは集電
体を兼ねる基材と導電性ポリマ一層とを一体化させた電
極材料として用いることができるので、電池組立工程が
簡略化できることは勿論、基材にセパレータを兼用させ
た場合には電池内部抵抗の低減によって充電電圧の抑刊
及び放電電圧の上昇が図れ、また集電体を兼用させた場
合はサイクル特性の向上が図れるといった効果を奏する
。この伯、使用する導電材料の基材として多孔性のもの
を用いた場合は電極の含液性が改善されて電池特性が向
上する等の利点があり、その工業上利用価値は大きい。
<Effects of the Invention> According to the secondary battery of this invention purchased as described above,
Since we used an electrode made of a conductive material that has excellent oxidation resistance, is easy to manufacture, and is inexpensive, it is easier to manage the electrode production environment, improve the shelf life of the electrode itself, and eliminate inconveniences such as sudden increases in charging voltage. Moreover, the battery cost does not increase. Furthermore, this conductive material can be used as an electrode material that integrates a base material that also serves as a separator or current collector with a single layer of conductive polymer, which not only simplifies the battery assembly process, but also allows the use of a separator as a base material. When used in combination, it is possible to reduce the charging voltage and increase the discharge voltage by reducing the internal resistance of the battery, and when it is used in combination as a current collector, it is possible to improve cycle characteristics. In this case, when a porous material is used as the base material of the conductive material used, there is an advantage that the liquid impregnation of the electrode is improved and the battery characteristics are improved, and its industrial utility value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)、 (B)は夫々本発明の実施例の電池構
造を示した断面図、第2図は本発明品及び比較量の充放
電サイクルにおける電池電圧の経時変化を示したグラフ
、第3図は本発明品及び比較量のサイクル特性を示した
グラフである。 1・・・正極、2・・・負極、3・・・セパレータ、4
・・・絶縁バッキング、5・・・正極缶、6・・・負極
缶、7・・・負極集電体、8・・・カーボンクロス、9
・・・ポリエチレン製多孔性フィルム。
Figures 1 (A) and (B) are cross-sectional views showing battery structures of examples of the present invention, respectively, and Figure 2 is a graph showing changes in battery voltage over time during charge/discharge cycles of the invention product and a comparative amount. , FIG. 3 is a graph showing the cycle characteristics of the product of the present invention and a comparative amount. 1...Positive electrode, 2...Negative electrode, 3...Separator, 4
... Insulating backing, 5... Positive electrode can, 6... Negative electrode can, 7... Negative electrode current collector, 8... Carbon cloth, 9
...Porous polyethylene film.

Claims (1)

【特許請求の範囲】 1、酸化剤を保持し得る空間を有し且つ少なくとも一面
が疎水性である基材を酸化剤で処理して該基材のいずれ
かの面のみに該酸化剤を保持させ、気相雰囲気下で共役
二重結合を有する化合物を該基材上で重合させ、該いず
れかの面に該化合物の重合体を形成して得られる導電性
の材料を正極または負極の少なくとも一方の電極として
用いてなることを特徴とする二次電池。 2、一方の面が疎水性で他方の面が親水性の基材を酸化
剤水溶液に浸漬するか、または該他方の面に酸化剤水溶
液を塗布して該他方の面に該酸化剤を保持させてなる導
電材料を用いたことを特徴とする特許請求の範囲第1項
記載の二次電池。 3、両面が疎水性の基材の一方の面に酸化剤水溶液を塗
布して該一方の面に該酸化剤を保持させてなる導電材料
を用いたことを特徴とする特許請求の範囲第1項記載の
二次電池。 4、親水性の基材の一方の面を撥水剤で処理して得られ
る導電材料を用いたことを特徴とする特許請求の範囲第
1項記載の二次電池。 5、該共役二重結合を有する化合物がピロール系あるい
はチオフェン系化合物であることを特徴とする特許請求
の範囲第1項、第2項、第3項または第4項記載の二次
電池。
[Claims] 1. A base material having a space capable of retaining an oxidizing agent and having at least one surface that is hydrophobic is treated with an oxidizing agent to retain the oxidizing agent only on one surface of the base material. A conductive material obtained by polymerizing a compound having a conjugated double bond on the substrate in a gas phase atmosphere and forming a polymer of the compound on either surface is applied to at least one of the positive electrode or the negative electrode. A secondary battery characterized by being used as one electrode. 2. Dip a base material with one side hydrophobic and the other side hydrophilic in an oxidizing agent aqueous solution, or apply the oxidizing agent aqueous solution to the other side to retain the oxidizing agent on the other side. 2. A secondary battery according to claim 1, characterized in that a conductive material is used. 3. Claim 1, characterized in that a conductive material is used, which is made by applying an aqueous oxidizing agent solution to one side of a base material whose both sides are hydrophobic, and retaining the oxidizing agent on the one side. Secondary batteries listed in section. 4. The secondary battery according to claim 1, which uses a conductive material obtained by treating one side of a hydrophilic base material with a water repellent. 5. The secondary battery according to claim 1, 2, 3, or 4, wherein the compound having a conjugated double bond is a pyrrole-based or thiophene-based compound.
JP61110373A 1985-10-09 1986-05-14 Secondary battery Expired - Fee Related JPH0636361B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61110373A JPH0636361B2 (en) 1986-05-14 1986-05-14 Secondary battery
CA000520107A CA1306904C (en) 1985-10-09 1986-10-08 Electrically conductive material and secondary battery using the electrically conductive material
EP86113998A EP0219063B1 (en) 1985-10-09 1986-10-09 Process of manufacturing an electrically conductive material and a secondary battery using the electrically conductive material
US06/917,051 US4731311A (en) 1985-10-09 1986-10-09 Electrically conductive material and secondary battery using the electrically conductive material
DE3689759T DE3689759T2 (en) 1985-10-09 1986-10-09 Method for producing an electrically conductive material and a secondary battery using this electrically conductive material.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61110373A JPH0636361B2 (en) 1986-05-14 1986-05-14 Secondary battery

Publications (2)

Publication Number Publication Date
JPS62268057A true JPS62268057A (en) 1987-11-20
JPH0636361B2 JPH0636361B2 (en) 1994-05-11

Family

ID=14534156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61110373A Expired - Fee Related JPH0636361B2 (en) 1985-10-09 1986-05-14 Secondary battery

Country Status (1)

Country Link
JP (1) JPH0636361B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63202858A (en) * 1987-02-18 1988-08-22 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
WO2012105048A1 (en) * 2011-02-04 2012-08-09 トヨタ自動車株式会社 Coated active material, battery, and method for producing coated active material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918578A (en) * 1982-07-21 1984-01-30 Nippon Denso Co Ltd Organic battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918578A (en) * 1982-07-21 1984-01-30 Nippon Denso Co Ltd Organic battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63202858A (en) * 1987-02-18 1988-08-22 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
WO2012105048A1 (en) * 2011-02-04 2012-08-09 トヨタ自動車株式会社 Coated active material, battery, and method for producing coated active material
JP5472492B2 (en) * 2011-02-04 2014-04-16 トヨタ自動車株式会社 Solid battery

Also Published As

Publication number Publication date
JPH0636361B2 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
US4731311A (en) Electrically conductive material and secondary battery using the electrically conductive material
US4999263A (en) Sheet-shaped electrode, method or producing the same, and secondary battery
CN110176591B (en) Aqueous zinc ion secondary battery and preparation method of anode based on organic electrode material
US20020089807A1 (en) Polymer electrochemical capacitors
KR101056582B1 (en) Films for electrochemical components and a method for production thereof
Yata et al. Studies of porous polyacenic semiconductors toward application II. Fundamental electrochemical properties
JPS62268057A (en) Secondary battery
JPS62119860A (en) Secondary cell
KR102617869B1 (en) Method for preparing electrode
KR100359054B1 (en) Metal oxide electrodes modified by conductive slurries and lithium secondary batteries
JP2562601B2 (en) Organic electrolyte battery with activated carbon-aniline composite as positive electrode
JP2006310384A (en) Process for producing porous electrode, porous electrode, and electrochemical device
JP3089707B2 (en) Solid electrode composition
JP2588405B2 (en) Organic electrolyte battery using high concentration mixed solute
JP2515547B2 (en) Organic electrolyte battery using aniline composite as positive electrode
JPH02172162A (en) Nonaqueous electrolyte secondary battery
JPS62256362A (en) Secondary cell
JP2008198427A (en) Manufacturing method of negative electrode for lithium ion battery, and lithium ion battery
JPS62176068A (en) Cylindrical polymer battery
JPH0193053A (en) Electrode for battery
JPH01134856A (en) Secondary battery
JP2681888B2 (en) Organic electrolyte battery
JPH0664928B2 (en) Conductive material
JPH0210660A (en) Sheet electrode
JPS63218152A (en) Organic electrolyte battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees