JPS63217902A - Control system for motor for driving electric railcar - Google Patents

Control system for motor for driving electric railcar

Info

Publication number
JPS63217902A
JPS63217902A JP62050843A JP5084387A JPS63217902A JP S63217902 A JPS63217902 A JP S63217902A JP 62050843 A JP62050843 A JP 62050843A JP 5084387 A JP5084387 A JP 5084387A JP S63217902 A JPS63217902 A JP S63217902A
Authority
JP
Japan
Prior art keywords
current
series
field
group
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62050843A
Other languages
Japanese (ja)
Other versions
JPH0797884B2 (en
Inventor
Naoto Yoshinori
直人 義則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP62050843A priority Critical patent/JPH0797884B2/en
Publication of JPS63217902A publication Critical patent/JPS63217902A/en
Publication of JPH0797884B2 publication Critical patent/JPH0797884B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

PURPOSE:To easily and effectively eliminate the slip of wheels in an electric railcar by so reducing the target value of an armature current as to decrease a motor output while an unbalance exists in a magnetic field current between DC series motor groups. CONSTITUTION:If a specific wheel driven by first DC series motor group slightly slips, the armature current of the motor group in which the slip occurs decreases, and a deviation occurs between the armature current and a target current value. In order to eliminate the deviation, a current flowing to the first field winding group 12 is reduced. Thus, a difference occurs between the current of the first group and the field current of a second DC series motor group. A comparator 33 detects the difference of the field currents of the motor groups detected by field current detectors 31, 32, and applies a field current unbalance signal to a current setter 34. The setter 34 decreases the target current value by the unbalance detection signal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、界磁制御方式の直流直巻電動機群で駆動さ
れる電気車で、一部の車輪の空転による出力の不平衡を
解消できる電気車駆動用電動機の制御方式に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is an electric vehicle driven by a group of DC series-wound motors using a field control system, and is capable of eliminating output imbalance caused by idling of some of the wheels. This invention relates to a control method for a drive motor.

〔従来の技術〕[Conventional technology]

第2図は界磁制御方式の直流直巻電動機群で駆動される
電気車の従来例を示す回路図であって、8台の直流直巻
電動機を4台で構成された2組の直流直巻電動機群で電
気車を駆動する場合をあられしている。
Fig. 2 is a circuit diagram showing a conventional example of an electric car driven by a group of DC series motors using a field control method, in which two sets of DC series motors each consisting of 8 DC series motors and 4 sets are shown. This is the case when electric cars are driven in groups.

この第2図において、4台の電機子の直列回路で構成さ
五た第1電機子群11と、4個の界磁巻線の直列回路で
構成された第1界磁巻線群12とを相互に直列接続する
ことにより、第1直流直巻電動機群が形成されるのであ
るが、同様に4台の電機子による第2電機子群21と、
4個の界磁巻線による第2界磁巻線群22とを相互に直
列接続することで第2直流直巻電動機群が形成されてお
り、これら2群で合計8台の直流直巻電動機のそれぞれ
には図示されていない車輪が別個に結合されているので
、パンタグラフ3を介して架線2から取り込まれる直流
電力によりこれら車輪が回転して、電気車を走行させる
In FIG. 2, a first armature group 11 consisting of a series circuit of four armatures, a first field winding group 12 consisting of a series circuit of four field windings, By connecting them in series, a first DC series motor group is formed, and similarly a second armature group 21 consisting of four armatures,
A second DC series motor group is formed by connecting a second field winding group 22 of four field windings in series, and these two groups make a total of eight DC series motors. Since wheels (not shown) are separately connected to each of the wheels, the DC power taken in from the overhead wire 2 via the pantograph 3 rotates these wheels, causing the electric car to travel.

第1界磁巻線群12には可変出力直流電源13が直列接
続され、さらに並列リアクトル14が並列接続されて界
磁回路を形成しているが、同様に第2界磁巻線群22に
も可変出力直流電源23が直列接続され、さらに並列リ
アクトル24が並列接続されている。
A variable output DC power supply 13 is connected in series to the first field winding group 12, and a parallel reactor 14 is further connected in parallel to form a field circuit. A variable output DC power supply 23 is connected in series, and a parallel reactor 24 is also connected in parallel.

電気車は電流一定制御により走行するのが一般的である
。そこで第1直流直巻電動機群の電機子電流の実際値を
電機子電流検出器15で検出し、この電流実際値が電流
設定器4で設定する電流目標値に一致するように、比例
積分演算器で構成されている電流調節器16へ上記の電
流目標値と電流実際値との偏差を人力させる。電流調節
器16は、この入力偏差を零にする制御信号を移相器1
7へ出力し、移相器17はこの制御信号にもとづいて可
変出力直流電源13の出力電圧を制御するので、第1界
磁巻線群12に流れる界磁電流が変化して電機子電流を
前述の目標値に維持する。第2直流直巻電動機群も、同
様に電機子電流検出器25で検出する電流実際値を電流
設定器4による電流目標値と一致させるように、電流調
節器26と移相器27とにより可変出力直・流電源23
を制御する。
Electric cars generally run under constant current control. Therefore, the actual value of the armature current of the first DC series motor group is detected by the armature current detector 15, and a proportional integral calculation is performed so that this actual current value matches the current target value set by the current setting device 4. The deviation between the target current value and the actual current value is manually input to the current regulator 16, which is composed of a device. The current regulator 16 sends a control signal to the phase shifter 1 to make this input deviation zero.
Since the phase shifter 17 controls the output voltage of the variable output DC power supply 13 based on this control signal, the field current flowing through the first field winding group 12 changes and the armature current changes. Maintain the target value mentioned above. Similarly, the second DC series motor group is variable by a current regulator 26 and a phase shifter 27 so that the actual current value detected by the armature current detector 25 matches the current target value by the current setting device 4. Output DC/current power supply 23
control.

界磁制御方式の直流直巻電動機は、上述のように界磁巻
線に直列に可変出力直流電源13あるいは23を接続し
た界磁添加励磁方式、あるいは直流腹巻電動機の界磁を
チョッパなどで制御する方式がある。そこで第2図で図
示の界磁制御方式の直流直巻電動機群の複数を装備し、
これらで駆動される電気車がカ行運転しているとき、8
台の直流直巻電動機はすべて同一速度で回転しているの
であるが、なんらかの原因で、ある車輪が空転したとす
ると、その車輪を駆動している電動機の速度は他のもの
よりも高くなる。空転している車輪は電気車をカ行運転
させるのに寄与しないので、その分だけ電気車の駆動力
が減少することになって不都合である。
The DC series-wound motor using the field control method is either a field additive excitation method in which the variable output DC power supply 13 or 23 is connected in series with the field winding as described above, or a method in which the field of the DC belly-wound motor is controlled by a chopper or the like. There is. Therefore, we equipped a plurality of DC series motors using the field control method shown in Figure 2.
When an electric car driven by these is driving in a row, 8
All of the DC series-wound motors on the platform rotate at the same speed, but if for some reason one wheel slips, the speed of the motor driving that wheel will be higher than the others. Since the wheels that are idling do not contribute to driving the electric vehicle, the driving force of the electric vehicle decreases accordingly, which is inconvenient.

第2図に示す従来例回路において、たとえば第1電機子
群11に属する特定の電機子に結合された車輪に空転が
生じれば、その電機子の速度が上昇するので電機子電流
は減少する。よって前述した電流調節器16、移相器1
7および可変出力直流電源13の働きにより、第1界磁
巻線群12に流れる界磁電流を減少させて、第1電機子
群11に流れる電流が電流目標値になるように制御が行
われ、同時にこの第1直流直巻電動機群の出力低減によ
って前述の空転を解消させようとする。
In the conventional circuit shown in FIG. 2, for example, if a wheel connected to a specific armature belonging to the first armature group 11 spins, the speed of that armature increases and the armature current decreases. . Therefore, the above-mentioned current regulator 16 and phase shifter 1
7 and the variable output DC power supply 13, the field current flowing through the first field winding group 12 is reduced, and control is performed so that the current flowing through the first armature group 11 reaches the current target value. At the same time, an attempt is made to eliminate the above-mentioned idling by reducing the output of the first DC series motor group.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、上述のようにして空転の解消を図るべく一方
の直流直巻電動機群の出力を低下させるのであるが、空
転が完全に解消されずに、僅かな空転の状態が存在する
と、上述した界磁弱めの状態が継続することになり、一
方の、すなわち第1直流直巻電動機群の出力は、他方す
なわち第2直流直巻電動機群の出力よりも小となる。す
なわち当該電気車は、保有している電動機の容量を有効
利用できず、電気車の駆動力が低下するという重大な欠
点を有する。
By the way, as mentioned above, in order to eliminate the idling, the output of one DC series motor group is reduced, but if the idling is not completely eliminated and a slight idling state exists, the above-mentioned field The state of magnetic weakening continues, and the output of one, ie, the first DC series motor group, becomes smaller than the output of the other, ie, the second DC series motor group. That is, this electric car has a serious drawback that the capacity of the electric motor that it has is not able to be used effectively, and the driving force of the electric car is reduced.

そこでこの発明の目的は、界磁制御方式の直流直巻電動
機群で駆動される電気車の一部車輪に生じた空転を解消
させるべく電動機群の出力を低減させても、微小の空転
が存続して出力低下状態が継続されることにより当該電
気車の駆動力が低下する不都合を解消させることにある
Therefore, the purpose of this invention is to eliminate the slippage that occurs in some of the wheels of an electric vehicle driven by a DC series motor group using a field control method.Even if the output of the motor group is reduced, a small amount of slipping still remains. The purpose of the present invention is to eliminate the inconvenience that the driving force of the electric vehicle decreases due to a continuation of a state of decreased output.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するために、この発明の制御方式は、
直列接続された複数の界磁巻線に可変出力直流電源を直
列接続した回路にリアクトルを並列に接続して得られる
界磁回路と、各個に車輪が結合されている複数の電機子
を直列接続してなる電機子回路とを相互に直列、接続す
ることで直流直巻電動機群を構成し、複数の前記直流直
巻電動機群のそれぞれの前記可変出力直流電源の出力電
圧を調節することで、各電動機群の電機子電流を所定の
目標値に制御している電気車駆動用電動機の制御方式に
おいて、前記各直流直巻電動機群の界磁電流を別個に検
出し、これらの界磁電流に差異があるときは、電機子電
流の前記目標値を低下させることにある。
In order to achieve the above object, the control method of this invention is as follows:
A field circuit obtained by connecting a reactor in parallel to a circuit in which a variable output DC power supply is connected in series to multiple field windings connected in series, and multiple armatures each having a wheel connected in series. A DC series motor group is formed by connecting the armature circuits formed by the above DC series motors in series, and by adjusting the output voltage of the variable output DC power supply of each of the plurality of DC series motor groups, In a control method for an electric vehicle drive motor in which the armature current of each motor group is controlled to a predetermined target value, the field current of each DC series motor group is detected separately, and the field current is If there is a difference, the aim is to reduce the target value of the armature current.

〔作用〕[Effect]

この発明によれば、ある直流直巻電動機群のうちの特定
電動機で駆動される車輪に空転が生じたとき、その電動
機群の界磁電流を減少させて空転の解消を図るのである
が、微小な空転が解消されないと、界磁電流が減少した
まま、すなわちその電動機群の出力が低下したままとな
るので、正常に運転している他の直流直巻電動機群の界
磁電流との差異を検出し、この界磁電流の差異を解消す
るように各直流直巻電動機群の電機子電流の目標値を低
下させ、全電動機の出力を減少させて上述の空転現象を
解消させ、その後に再び電機子電流の目標値を元の値へ
上昇させることにより、素早く空転を解消させるととも
に、電気車がその駆動力低下の状態で走行するのを回避
させることができる。
According to this invention, when a wheel driven by a specific motor in a group of DC series motors slips, the field current of that motor group is reduced to eliminate the slip. If the idling is not resolved, the field current will continue to decrease, that is, the output of that motor group will continue to decrease, so the difference between the field current of other normally operating DC series motor groups will be The target value of the armature current of each DC series motor group is reduced to eliminate the difference in field current, the output of all motors is reduced to eliminate the above-mentioned idling phenomenon, and then By increasing the target value of the armature current to its original value, it is possible to quickly eliminate the slip and prevent the electric vehicle from running with reduced driving force.

〔実施例〕〔Example〕

第1図は本発明の実施例を示す回路図である。 FIG. 1 is a circuit diagram showing an embodiment of the present invention.

この第1図においては、4台の電機子の直列接続で構成
された第1電機子群11に同じく4個の界磁巻線の直列
接続で構成された第1界磁巻線群12を直列接続して第
1直流直巻電動機群を形成しているが、この第1界磁巻
線群12に可変出力直流電源13を直列接続したものに
並列リアクトル14を並列接続しているのは第2図に示
す従来例回路と同じであり、同様に第2直流直巻電動機
群も第2電機子群21と第2界磁巻線群22とで形成さ
れ、第2界磁巻線群22には可変出力直流電源23が直
列に、さらに並列リアクトル24が並列に接続されてお
り、これら第1、第2直流直巻電動機群へは、パンタグ
ラフ3を介して架線2から直流電力が供給されて電気車
を駆動している。なお電気車を駆動するために、各電機
子には、それぞれに図示されていない車輪が結合されて
いる。さらに電機子電流検出器15で検出される第1電
機子群11の電流を電流調節器16、移相器17右よび
可変出力直流電源13の働きで電流設定器34が設定す
る電流目標値に制御し、同じく電機子電流検出器25で
検出される第2電機子群21の電流を電流調節器26、
移相器27ならびに可変出力直流電源23によって同じ
電流目標値に制御するようにしているのも、第2図で既
述の従来例回路と同じである。
In FIG. 1, a first armature group 11 consisting of four armatures connected in series is connected to a first field winding group 12 consisting of four field windings connected in series. They are connected in series to form a first DC series motor group, and a variable output DC power supply 13 is connected in series to the first field winding group 12, and a parallel reactor 14 is connected in parallel. The circuit is the same as the conventional example circuit shown in FIG. 22, a variable output DC power supply 23 is connected in series and a parallel reactor 24 is connected in parallel, and DC power is supplied to these first and second DC series motor groups from the overhead line 2 via the pantograph 3. Being driven by an electric car. Note that in order to drive the electric vehicle, wheels (not shown) are coupled to each armature. Further, the current of the first armature group 11 detected by the armature current detector 15 is adjusted to the current target value set by the current setting device 34 by the action of the current regulator 16, the phase shifter 17, and the variable output DC power supply 13. A current regulator 26 controls the current of the second armature group 21, which is also detected by an armature current detector 25.
The fact that the phase shifter 27 and the variable output DC power supply 23 are used to control the current to the same target value is the same as in the conventional circuit already described in FIG.

本発明においては、第1界磁巻線群12を流れる界磁電
流を検出する界磁電流検出器31と、第2界磁巻線群2
2を流れる界磁電流を検出する界磁電流検出器32と、
これら両界磁電流の差異を検出するコンパレータ33と
、このコンパレータ33が差異を検出すれば電機子電流
の目標値を低下させるように作動する電流設定器34と
が備えられている。
In the present invention, a field current detector 31 that detects the field current flowing through the first field winding group 12 and a field current detector 31 that detects the field current flowing through the first field winding group 12 and the second field winding group 2
a field current detector 32 that detects the field current flowing through the
A comparator 33 that detects the difference between these two field currents, and a current setter 34 that operates to lower the target value of the armature current when the comparator 33 detects the difference are provided.

電気車が正常に走行中は、各直流直巻電動機群に備えら
れているそれぞれの可変出力直流電源13と23の出力
電圧は、第1、第2電機子群11と21の電流が、電流
設定器34で設定された電流目標値と一致するように制
御されるので、相互に並列接続されている第1と第2の
直流直巻電動機群間では、その電機子電流および界磁電
流が一致しているので、出力に不平衡は生じていない。
When the electric vehicle is running normally, the output voltage of the variable output DC power supplies 13 and 23 provided in each DC series motor group is such that the current of the first and second armature groups 11 and 21 is equal to the current. Since the current is controlled to match the current target value set by the setting device 34, the armature current and field current between the first and second DC series motor groups connected in parallel are Since they match, there is no imbalance in the output.

ここでいずれかの、たとえば第1直流直巻電動機群で駆
動される特定の車輪に微小な空転が生じたとすると、こ
の空転を生じた電動機群の電機子電流が減少し、電流目
標値との間に偏差を生ずるので、この偏差を解消するた
めに可変出力直流電源13の出力電圧が変化して第1界
磁巻線群12に流れる電流を減少させる。そのため正常
に運転している第2直流直巻電動機群の界磁電流との間
に差異を生じる。すなわち第1と第2の直流直巻電動機
群との間に、出力の不平衡を生じることとなる。
If a slight slip occurs in one of the wheels, for example, a specific wheel driven by the first DC series motor group, the armature current of the motor group that caused the slip decreases, and the current target value is reduced. In order to eliminate this deviation, the output voltage of the variable output DC power supply 13 is changed to reduce the current flowing through the first field winding group 12. Therefore, a difference occurs between the field current and the field current of the second DC series motor group which is normally operating. In other words, an unbalanced output will occur between the first and second DC series motor groups.

コンパレータ33は、界磁電流検出器31と32が検出
するそれぞれの電動機群の界磁電流に上述の原因により
生じた差異を検出して電流設定器34へ界磁電流の不平
衡信号を伝える。電流設定器34はこの不平衡検出信号
により、その設定する電流目標値を低下させる。電流調
節器16と26、移相器17と27および可変出力直流
電源13と23とは、それぞれの電機子電流の実際値が
、この低下された電流目標値に一致するように動作する
ので、各直流直巻電動機の出力が絞られて、空転中の車
輪の再粘着を促進することとなる。
The comparator 33 detects a difference caused by the above-mentioned causes in the field current of each motor group detected by the field current detectors 31 and 32, and transmits a field current unbalance signal to the current setting device 34. The current setter 34 uses this unbalance detection signal to lower the current target value that it sets. Current regulators 16 and 26, phase shifters 17 and 27 and variable output DC power supplies 13 and 23 operate in such a way that the actual value of the respective armature current corresponds to this reduced current target value. The output of each DC series motor is throttled to promote readhesion of wheels during idling.

車輪の再粘着に成功すると両直流直巻電動機群の間にあ
った界磁電流の差異が零になるので、コンパレータ33
は界磁電流不平衡信号を解除する。
If the wheel re-adhesion is successful, the difference in field current between both DC series motor groups becomes zero, so the comparator 33
cancels the field current imbalance signal.

この時点で両直流直巻電動機群の出力は等しくなってい
る。従って電流設定器34はその出力する電流目標値を
元の値へ戻し、各直流直巻電動機はそれぞれ所定の出力
で電気車を駆動する正常状態に[帰する。
At this point, the outputs of both DC series motor groups are equal. Therefore, the current setter 34 returns the current target value it outputs to its original value, and each DC series motor returns to its normal state of driving the electric car with its respective predetermined output.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、界磁制御方式の直流直巻電動機群で
駆動される電気車で発生しやすい微小な空転状態が是正
されずに継続することによる電動機の駆動力低下は、直
流直巻電動機群相互間の界磁電流の不平衡を検出し、界
磁電流にこの不平衡が存在している間は、電動機出力を
低下させるように電機子電流の目標値を減少させる。電
動機出力の低下により空転していた車輪が再粘着すれば
、上記の界磁電流の不平衡が解消されるので、電機子電
流の目標値を元へ戻すことで、車輪の空転を容易に、か
つ確実に解消できる効果を有し、その間における電動機
出力の低下は短時間であって、当該電気車の走行スケジ
ュールに悪影響を与えるおそれもない利点を有する。
According to this invention, the decrease in the driving force of the electric motor due to the continuation of the minute idle state that tends to occur in electric cars driven by a DC series motor group using a field control system without being corrected can be avoided. The target value of the armature current is decreased so as to reduce the motor output while this imbalance exists in the field current. If the wheel that had been idling becomes sticky again due to a decrease in motor output, the unbalance of the field current mentioned above will be resolved, so by returning the target value of the armature current to the original value, the wheel idling can be easily stopped. It also has the advantage of being able to reliably eliminate the problem, and that the decrease in motor output during that time is short-lived, and there is no risk of adversely affecting the running schedule of the electric vehicle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す回路図であり、第2図は
界磁制御方式の直流直巻電動機群で駆動される電気車の
従来例を示す回路図である。 2−架線、3−パンタグラフ、4 電流設定器、11 
 第1電機子群、12  第1界磁巻線群、13.23
可変出力直流電源、14.24  並列リアクトル、1
5、25・電機子電流検出器、16.26・−電流調節
器、17、27  移相器、21  第2電機子群、2
2  第2界磁巻線群、31.32  界磁電流検出器
、33  コンパ16電流調節雅 第 1 図 Ml  図
FIG. 1 is a circuit diagram showing an embodiment of the present invention, and FIG. 2 is a circuit diagram showing a conventional example of an electric vehicle driven by a group of DC series-wound motors using a field control method. 2-Overhead line, 3-Pantograph, 4 Current setting device, 11
1st armature group, 12 1st field winding group, 13.23
Variable output DC power supply, 14.24 Parallel reactor, 1
5, 25・Armature current detector, 16. 26・−Current regulator, 17, 27 Phase shifter, 21 2nd armature group, 2
2 2nd field winding group, 31. 32 Field current detector, 33 Comparator 16 current adjustment Fig. 1 Fig. Ml Fig.

Claims (1)

【特許請求の範囲】[Claims] 1)直列接続された複数の界磁巻線に可変出力直流電源
を直列接続した回路にリアクトルを並列に接続して得ら
れる界磁回路と、各個に車輪が結合されている複数の電
機子を直列接続してなる電機子回路とを相互に直列接続
することで直流直巻電動機群を構成し、複数の前記直流
直巻電動機群のそれぞれの前記可変出力直流電源の出力
電圧を調節することで、各電動機群の電機子電流を所定
の目標値に制御している電気車駆動用電動機の制御方式
において、前記各直流直巻電動機群の界磁電流を別個に
検出し、これらの界磁電流値に差異があるときは、電機
子電流の前記目標値を低下させることを特徴とする電気
車駆動用電動機の制御方式。
1) A field circuit obtained by connecting a reactor in parallel to a circuit in which a variable output DC power supply is connected in series to a plurality of field windings connected in series, and a plurality of armatures each having a wheel connected to the circuit. A DC series motor group is configured by mutually connecting the series-connected armature circuits in series, and the output voltage of the variable output DC power source of each of the plurality of DC series motor groups is adjusted. , in a control method for an electric vehicle driving motor in which the armature current of each motor group is controlled to a predetermined target value, the field current of each DC series motor group is detected separately, and these field currents are A control method for an electric vehicle driving motor, characterized in that when there is a difference between the values, the target value of the armature current is lowered.
JP62050843A 1987-03-05 1987-03-05 Control method of electric motor for driving electric car Expired - Lifetime JPH0797884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62050843A JPH0797884B2 (en) 1987-03-05 1987-03-05 Control method of electric motor for driving electric car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62050843A JPH0797884B2 (en) 1987-03-05 1987-03-05 Control method of electric motor for driving electric car

Publications (2)

Publication Number Publication Date
JPS63217902A true JPS63217902A (en) 1988-09-12
JPH0797884B2 JPH0797884B2 (en) 1995-10-18

Family

ID=12870017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62050843A Expired - Lifetime JPH0797884B2 (en) 1987-03-05 1987-03-05 Control method of electric motor for driving electric car

Country Status (1)

Country Link
JP (1) JPH0797884B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58112002U (en) * 1982-01-27 1983-07-30 株式会社日立製作所 electric car control device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58112002U (en) * 1982-01-27 1983-07-30 株式会社日立製作所 electric car control device

Also Published As

Publication number Publication date
JPH0797884B2 (en) 1995-10-18

Similar Documents

Publication Publication Date Title
US4896090A (en) Locomotive wheelslip control system
US3764867A (en) Traction motor speed regulation for propulsion systems providing smooth stepless changes in speed and automatic wheel slip control
JP2515730B2 (en) Electric vehicle control device
US5030898A (en) Variable voltage limit control for an electric propulsion system
US4463289A (en) Wheel slip control using differential signal
JPH0538182A (en) Elevator system
JP2004032849A (en) Control device of elevator
US4282466A (en) Transit vehicle motor effort control apparatus and method
JPH0733342A (en) Control device for elevator
JPH04248301A (en) Controller for electric vehicle
JPS63217902A (en) Control system for motor for driving electric railcar
US3743900A (en) Supplemental wheel-slip control system
CA2028198A1 (en) Drive system for railway vehicle
US3296510A (en) Plural motor traction control by field control
US2773227A (en) Wheel slip control system
JPS63114507A (en) Control method of vehicle
JP2835055B2 (en) Electric car control device
RU53627U1 (en) DEVICE FOR REGULATING LOADS OF TRACTION ENGINES OF ELECTRIC MOBILE COMPOSITION
JPS6212304A (en) Controller of electric railcar
JPH0591602A (en) Controller for electric vehicle
JP2002159104A (en) Controller for electric vehicle
SU1420639A1 (en) D.c. multiple-motor traction electric drive
SU974528A1 (en) Multi-motor electric arc
RU2317217C1 (en) Vehicle traction electric drive
SU1402453A1 (en) Apparatus for controlling vehicle tractive engines