JPS6212304A - Controller of electric railcar - Google Patents
Controller of electric railcarInfo
- Publication number
- JPS6212304A JPS6212304A JP60145710A JP14571085A JPS6212304A JP S6212304 A JPS6212304 A JP S6212304A JP 60145710 A JP60145710 A JP 60145710A JP 14571085 A JP14571085 A JP 14571085A JP S6212304 A JPS6212304 A JP S6212304A
- Authority
- JP
- Japan
- Prior art keywords
- current
- series
- control
- field
- empty
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Landscapes
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、複数の直流電動機を用いた電気車の制御に係
り、特に、界磁の強さを電機子電流に比例して制御し、
かつ速度制御に直並列切換制御を含む電気車の制御装置
に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the control of an electric vehicle using a plurality of DC motors, and in particular, to controlling the field strength in proportion to the armature current,
The present invention also relates to a control device for an electric vehicle that includes serial-parallel switching control for speed control.
走行駆動用として複数台の直流電動機を備え、直流き電
を行なう電気車などにおいては、例えば特開昭54−1
02714号公報に示されるように、従来から、いわゆ
る直並列制御方式が広く用いられており、このような従
来例について第2図ないし第4図によって説明する。For electric cars that are equipped with multiple DC motors for running drive and that perform DC power supply, for example, Japanese Patent Laid-Open No. 54-1
As shown in Japanese Patent No. 02714, a so-called series-parallel control system has been widely used, and such a conventional example will be explained with reference to FIGS. 2 to 4.
まず、第2図は主回路で、図に於いて、1は架線から電
流を集電するためのパンタグラフ、2は界磁用断流器、
3は界磁電流制御装置、4A、4Bは主電動機界磁、5
は主回路用断流器、6A、6Bはカム軸式などの主回路
電流制御装置、7A、7Bは主電動機電機子、8A、8
B、8Cは主回路の直列−並列切替用スイッチ、9は界
磁電流検出装置、10A、 IOBは電機子電流検出装
置である。First, Figure 2 shows the main circuit. In the figure, 1 is a pantograph for collecting current from the overhead wire, 2 is a field current breaker,
3 is a field current control device, 4A and 4B are main motor field magnets, 5
is the main circuit current breaker, 6A, 6B is the main circuit current control device such as camshaft type, 7A, 7B is the main motor armature, 8A, 8
B and 8C are series-parallel switching switches for the main circuit, 9 is a field current detection device, and 10A and IOB are armature current detection devices.
第3図は制御回路を示したもので、図に於いて、11は
運転モードを指令する゛指令器、12は荷重によリトル
クを加減するための応荷重装置を示す。その他、第2図
と同一の機器は同一の符号で示している。FIG. 3 shows a control circuit, in which numeral 11 indicates a command device for instructing the operation mode, and numeral 12 indicates a variable load device for adjusting the torque depending on the load. Other equipment that is the same as in FIG. 2 is indicated by the same reference numerals.
一第4図は第2図、第3図において主電動機が制御され
る状態を示すカ行ノツチ曲線で、以下、これにより動作
について説明する。1. FIG. 4 is a notch curve showing the state in which the main motor is controlled in FIGS. 2 and 3, and the operation will be explained below using this curve.
すなわち、電気車を起動する場合は運転台11より起動
指令を出すことにより、界磁用断流器2゜主回路用断流
器5及び主回路直並列切替用スイッチ8Aが投入し、S
1ノツチの状態で電気車は起動する。That is, when starting an electric car, by issuing a start command from the driver's cab 11, the field circuit breaker 2, the main circuit circuit breaker 5, and the main circuit series/parallel switch 8A are turned on, and the S
The electric car will start when there is only one notch.
このときの電機子回路は、主電動機電機子7A。The armature circuit at this time is main motor armature 7A.
7Bは直列であり、かつ全起動抵抗が挿入された状態と
なっている。7B is in series, and all starting resistances are inserted.
以後、主回路電流制御装置6A、6Bは主電動機の電機
子7A、7Bに直列接続された起動抵抗器を順次短絡し
て行き電機子印加電圧を制御する。ここで、起動抵抗器
の短絡は電気車の起動加速力を一定にすべく主回路電流
値が一定になる様に限流値進段が行なわれる。Thereafter, the main circuit current control devices 6A, 6B sequentially short-circuit the starting resistors connected in series to the armatures 7A, 7B of the main motor, thereby controlling the voltage applied to the armatures. Here, when the starting resistor is short-circuited, the current limit value is advanced so that the main circuit current value becomes constant in order to keep the starting acceleration force of the electric vehicle constant.
この主回路電流値(限流値)は応荷重装置12の働きに
より、荷重の多少により第4図■、■のように変動する
。なお、第4図■は空車の状態、■は満車の状態を示す
。This main circuit current value (current limit value) changes as shown in FIG. In addition, ``■'' in FIG. 4 shows an empty car state, and ``■'' shows a full car state.
一方、このとき、界磁電流は界磁電流制御装置3の働き
により電機子電流に比例した電流が流れる様に制御され
る。この界磁電流を電機子電流に比例した値に制御する
理由は主電動機の特性を直巻電動機特性とする為で、一
般にこのような制御は比例制御と呼ばれている。直列接
続の状態で起動抵抗が全部短絡されると、直列最終段S
IOノツチの状態になる。On the other hand, at this time, the field current is controlled by the field current control device 3 so that a current proportional to the armature current flows. The reason why this field current is controlled to a value proportional to the armature current is to make the characteristics of the main motor to be those of a series motor, and this type of control is generally called proportional control. If all starting resistors are short-circuited in series connection, the final stage in series S
It will be in the IO notch state.
更に速度を上昇するためには、直列→並列切替用スイッ
チ8B、8Cを閉路し、8Aを開路する。In order to further increase the speed, series-to-parallel switching switches 8B and 8C are closed, and switch 8A is opened.
これにより主電動機電機子7A、7Bは架線に対して並
列に接続され、並列P1ノツチの状態になる。As a result, the main motor armatures 7A and 7B are connected in parallel to the overhead wire, resulting in a parallel P1 notch state.
以上は分巻電動機(又は複巻電動機)を用いた電気車の
制御装置のごく一般的な制御方法である。The above is a very general control method for an electric vehicle control device using a shunt-wound motor (or compound-wound motor).
ここで、直列から並列に切替わるときの状態について考
えて見る。起動電流(限流値)は応荷重装置t 12の
働きにより、荷重の多少により変化することは前述の通
りである。Let us now consider the state when switching from series to parallel. As mentioned above, the starting current (current limit value) changes depending on the amount of load due to the action of the load adjusting device t12.
さて、第4図に於いて、■は空車時の加速の状態を示す
が、直列制御段から並列制御段への渡り時に於いて電機
子電流(■1)の増加が著しい。Now, in FIG. 4, ■ indicates the state of acceleration when the vehicle is empty, and the armature current (■1) increases significantly at the time of transition from the series control stage to the parallel control stage.
又、第4図の■は満車時の加速の状態を示すがこの場合
には直列から並列への渡り時に電機子電流の落ち込みが
いちじるしい。4 shows the acceleration state when the vehicle is full, and in this case, the drop in armature current is noticeable when changing from series to parallel.
又、第3図のOは高速での再力行を行ったときの状態を
示すが、このときは直列から並列への渡り時の電機子電
流の変化は空車時よりもさらに大きくなっている。Further, O in FIG. 3 shows the state when repowering is performed at high speed, and in this case, the change in armature current at the time of transition from series to parallel is even larger than when the vehicle is idle.
即ち、従来の制御方式に於ては、定員乗車時には問題は
ないが、空車時および満車時、さらに高速での再力行時
には荷重の多少にかかわらず、それぞれ直列から並列へ
の渡り時に電機子電流の変化が著しく、乗心地上好まし
くない運転状態となってしまうという欠点があった。In other words, with the conventional control method, there is no problem when the vehicle is fully occupied, but when the vehicle is empty or full, and when repowering at high speed, the armature current changes when switching from series to parallel, regardless of the amount of load. This has the disadvantage that the change in speed is significant, resulting in an unfavorable driving condition in terms of riding comfort.
本発明の目的は、上記した従来技術の欠点を除き、主電
動機の直並列渡り時での電機子電流の変化が充分に抑え
られ、良好な乗り心地を与えることができる電気車の制
御装置を提供するにある。An object of the present invention is to provide a control device for an electric vehicle that can sufficiently suppress changes in armature current when the main motor is connected in series and parallel, and provide good riding comfort, while eliminating the drawbacks of the prior art described above. It is on offer.
この目的を達成するため、本発明は、主電動機の電機子
電流に対応して行なわれる界磁の比例制御のための比例
定数を、電気車の空車、満車、再力行運転など種々の運
転条件に応じて変化させるようにした点を特徴とする。In order to achieve this object, the present invention provides a proportional constant for proportional control of the field, which is performed in response to the armature current of the traction motor, under various operating conditions such as empty, full, and re-powering operation of the electric vehicle. It is characterized by the fact that it changes depending on the situation.
以下、本発明による電気車の制御装置について、図示の
実施例により詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS A control device for an electric vehicle according to the present invention will be explained in detail below using illustrated embodiments.
第1図は本発明の一実施例における制御回路を示したも
ので、図において、30は界磁電流制御装置であり、そ
の他は第2図の従来例と同じである。FIG. 1 shows a control circuit according to an embodiment of the present invention. In the figure, numeral 30 is a field current control device, and the other parts are the same as the conventional example shown in FIG.
なお、主回路も第3図の従来例と同じである。The main circuit is also the same as the conventional example shown in FIG.
界磁電流制御装置30は第2図の従来例の場合と同じく
、電機子電流検出装置10A、 IOHによって検出し
た主電動機の電機子電流■1と、界磁電流検出装置9で
検出した主電動機の界磁電流!、とを取込み、電機子電
流1.に対して所定の比例関係をもって界磁電流Trが
供給されるように動作するが、さらに、この実施例では
、界磁電流制御装置30は、主回路電流制御装置6A、
6Bから主電動機が直列制御段にあることと、再力行に
入ったことの指令を取込むと共に、応荷重装置12から
電気車が空車のときと満車のときとを表わす指令を取込
み、これらの指令に基づき、主電動機が直列制御状態に
あることで条件として、電気車が満車のときには上記し
た電機子電流!、と界磁電流!。The field current control device 30, as in the conventional example shown in FIG. field current! , and the armature current 1. In this embodiment, the field current control device 30 operates so that the field current Tr is supplied with a predetermined proportional relationship to the main circuit current control device 6A,
It takes in commands from 6B that the main motor is in the series control stage and that it has started powering again, and also takes in commands from the load adjustment device 12 that indicate when the electric car is empty and when it is full, and these Based on the directive, the above-mentioned armature current when the electric car is full, provided that the traction motor is in series control state! , and field current! .
との比例定数を基準値よりも大きくし、電気車の空車の
とき及び再力行のときには、反対に比例定数を基準値よ
りも小さくし、それぞれ界磁電流!。The proportionality constant is made larger than the reference value, and when the electric car is empty or when it is re-powered, the proportionality constant is made smaller than the reference value, and the field current ! .
の制御動作を行なうように構成しである。すなわち、こ
の界磁電流制御装置30の特性は、第1図の右上方に示
すように変化することになる。It is configured to perform control operations. That is, the characteristics of this field current control device 30 change as shown in the upper right corner of FIG.
次に、この実施例の動作について説明する。Next, the operation of this embodiment will be explained.
まず、第5図は電気車が満車状態にあるときを示したも
ので、このときには、上記したように界磁電流制御装置
30の比例定数が大きな値にセットされるから、主電動
機が直列制御段にあるときには電機子電流1.に対して
界磁電流■、が大きくされ、強め界磁制御となっている
。First, FIG. 5 shows a state where the electric car is fully loaded. At this time, as mentioned above, the proportionality constant of the field current control device 30 is set to a large value, so that the main motor is controlled in series. When in step, the armature current is 1. In contrast, the field current (2) is increased, resulting in stronger field control.
この結果、第5図■に示すように、満車限流値付近での
特性S10とPlとが近すき、直列から並列への渡りに
際しての電機子電流!、の落ち込みを充分に小さく抑え
、はとんど変化しない状態で渡りを行なうことができる
。As a result, as shown in Figure 5 (■), the characteristics S10 and Pl near the full current limit value are close to each other, and the armature current when switching from series to parallel! It is possible to suppress the drop in , sufficiently small, and to migrate with almost no change in .
次に、第6図は電気車が空車状態、或いは高速から再力
行に移った場合の特性で、このときには、上記したよう
に、比例定数が小さくセットされるため、弱め界磁制御
となり、第6図のに示す空車限流値付近及びそれ以下の
領域で特性S10とPIとが近ずき、このときも直列か
ら並列への渡りに際しての大幅な変化は抑えられ、電機
子電流■。Next, Fig. 6 shows the characteristics when the electric car is idle or moves from high speed to power running again. In this case, as mentioned above, the proportionality constant is set small, so field weakening control is performed, and Fig. 6 The characteristics S10 and PI become close to each other in the region near and below the empty vehicle current limit shown in , and even at this time, a large change in transition from series to parallel is suppressed, and the armature current ■.
の著しい増加を伴なうことなく渡りを行なうことができ
る。Migration can be carried out without a significant increase in
さらに、高速時で再力行に入った場合の特性は第6図O
のようになり、このときも渡りによる電機子電流1.の
変化は充分に抑えられている。Furthermore, the characteristics when re-entering the power line at high speed are shown in Figure 6.
The armature current due to crossover is 1. changes are sufficiently suppressed.
従って、この実施例によれば、界磁電流制御装置30の
、満車時及び空車時と再力行時での比例定数の大きさを
、それぞれ適当な値に定めることにより、電気車の運転
条件にかかわらず常に良好な乗り心地を与えることがで
きる。Therefore, according to this embodiment, by setting the magnitude of the proportionality constant of the field current control device 30 to appropriate values when the vehicle is full, when the vehicle is empty, and when re-powering, it is possible to adapt to the operating conditions of the electric vehicle. It can always provide a good ride comfort.
なお、以上の実施例では、主電動機として分巻電動機を
用いた例について示したが、複巻電動機に通用してもよ
いことはいうまでもない。In the above embodiment, a shunt-wound motor is used as the main motor, but it goes without saying that a compound-wound motor may also be used.
以上説明したように、零発−明によれば、直列から並列
への渡りに際しての電機子電流の変化を大幅に抑えるこ
とができるから、従来技術の欠点を除き、電気車の乗り
心地を充分に改善することができる。As explained above, according to the Zero invention, it is possible to significantly suppress the change in armature current when switching from series to parallel, thereby eliminating the drawbacks of the conventional technology and improving the ride comfort of electric cars. can be improved.
第1図は本発明による電気車の制御装置の一実施例を示
すブロック図、第2図は電気車の主回路構成の一例を示
す接続図、第3図は制御装置の従来例を示すブロック図
、第4図、第5図、それに第6図はそれぞれ動作説明用
の特性曲線図である。
4^、4B・・・主電動機の界磁、6A、6B・・・主
回路電流制御装置、7A、7B・・・主電動機の電機子
、9・・・界磁電流検出装置、IOA、 IOB・・・
電機子電流検出装置、12・・・応荷重装置、30・・
・界磁電流制御装置。
!z′寸Fig. 1 is a block diagram showing an embodiment of the electric car control device according to the present invention, Fig. 2 is a connection diagram showing an example of the main circuit configuration of the electric car, and Fig. 3 is a block diagram showing a conventional example of the control device. 4, 5, and 6 are characteristic curve diagrams for explaining the operation. 4^, 4B... Main motor field, 6A, 6B... Main circuit current control device, 7A, 7B... Main motor armature, 9... Field current detection device, IOA, IOB ...
Armature current detection device, 12... Load adjustment device, 30...
・Field current control device. ! z′ dimension
Claims (1)
複数の走行用直流電動機を備え、これら複数の直流電動
機の直列と並列の切換えにより速度制御の少くとも一部
を行なうようにした電気車の制御装置において、上記電
機子電流に比例して界磁の強さを制御するための制御手
段に、その制御のための比例定数を変化させる手段を設
け、電気車の運転条件に応じてそれぞれ異なる所定の比
例定数に基づく界磁制御が行なわれるように構成したこ
とを特徴とする電気車の制御装置。 2、特許請求の範囲第1項において、上記電気車の運転
条件が、空車運転と満車運転、それに再力行運転の少く
ともいずれかであることを特徴とする電気車の制御装置
。[Claims] 1. A plurality of DC motors for running are provided with a method of controlling the field strength in proportion to the armature current, and speed control is reduced by switching between series and parallel of these plurality of DC motors. In a control device for an electric vehicle, the control means for controlling the field strength in proportion to the armature current is provided with means for changing a proportionality constant for the control. 1. A control device for an electric vehicle, characterized in that it is configured to perform field control based on predetermined proportionality constants that vary depending on operating conditions of the electric vehicle. 2. A control device for an electric vehicle according to claim 1, wherein the operating condition of the electric vehicle is at least one of empty vehicle operation, full vehicle operation, and repowering operation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60145710A JPS6212304A (en) | 1985-07-04 | 1985-07-04 | Controller of electric railcar |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60145710A JPS6212304A (en) | 1985-07-04 | 1985-07-04 | Controller of electric railcar |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6212304A true JPS6212304A (en) | 1987-01-21 |
Family
ID=15391329
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60145710A Pending JPS6212304A (en) | 1985-07-04 | 1985-07-04 | Controller of electric railcar |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6212304A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02205630A (en) * | 1989-02-06 | 1990-08-15 | Nippon Steel Corp | Production of hot rolled high strength steel plate with low yield ratio for construction use excellent in fire resistance |
JPH02205625A (en) * | 1989-02-04 | 1990-08-15 | Nippon Steel Corp | Production of hot rolled steel plate with low yield ratio for construction use excellent in fire resistance |
US5069870A (en) * | 1989-03-06 | 1991-12-03 | Sumitomo Metal Industries, Ltd. | High-strength high-cr steel with excellent toughness and oxidation resistance |
US5591391A (en) * | 1994-09-20 | 1997-01-07 | Sumitomo Metal Industries, Ltd. | High chromium ferritic heat-resistant steel |
-
1985
- 1985-07-04 JP JP60145710A patent/JPS6212304A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02205625A (en) * | 1989-02-04 | 1990-08-15 | Nippon Steel Corp | Production of hot rolled steel plate with low yield ratio for construction use excellent in fire resistance |
JPH06104854B2 (en) * | 1989-02-04 | 1994-12-21 | 新日本製鐵株式会社 | Manufacturing method of low yield specific hot-rolled steel sheet for building with excellent fire resistance |
JPH02205630A (en) * | 1989-02-06 | 1990-08-15 | Nippon Steel Corp | Production of hot rolled high strength steel plate with low yield ratio for construction use excellent in fire resistance |
JPH06104855B2 (en) * | 1989-02-06 | 1994-12-21 | 新日本製鐵株式会社 | Method of manufacturing low yield ratio high strength hot rolled steel sheet with excellent fire resistance for construction |
US5069870A (en) * | 1989-03-06 | 1991-12-03 | Sumitomo Metal Industries, Ltd. | High-strength high-cr steel with excellent toughness and oxidation resistance |
US5591391A (en) * | 1994-09-20 | 1997-01-07 | Sumitomo Metal Industries, Ltd. | High chromium ferritic heat-resistant steel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4479080A (en) | Electrical braking control for DC motors | |
JPH08340604A (en) | Regenerative braking method and power control system for electrically driven vehicle | |
US4282466A (en) | Transit vehicle motor effort control apparatus and method | |
US4216417A (en) | Transit vehicle motor operation control apparatus and method | |
JPS6212304A (en) | Controller of electric railcar | |
JP3481787B2 (en) | Electric car control device | |
JPH04145808A (en) | Energy conserving device for electric motor vehicle | |
CA1122679A (en) | Transit vehicle motor operation control apparatus and method | |
JP3244213B2 (en) | Electric car control method | |
JP2637945B2 (en) | Electric vehicle regenerative brake control device | |
JP2002159104A (en) | Controller for electric vehicle | |
SU152804A1 (en) | ||
JPH01157203A (en) | Speed controller for electric motor car | |
SU892632A1 (en) | Electric drive for electric motor car | |
JPS637101A (en) | Controller for electric rolling stock | |
JPH02231904A (en) | Controller for field control electric vehicle | |
JPH0458246B2 (en) | ||
JPH0246104A (en) | Controller for electric vehicle | |
JPS63202203A (en) | Electric rolling stock controller | |
JP2001028802A (en) | Controller of motor and its method | |
JPS61135301A (en) | Controller for electric rail car | |
JPS6118306A (en) | Control device for electric rolling stock | |
JPS6181107A (en) | Controller for electric railcar | |
JPH03265402A (en) | Controller for electric vehicle | |
JPH0984209A (en) | Electric vehicle controller |