JPS61164405A - Controller for electric railcar - Google Patents

Controller for electric railcar

Info

Publication number
JPS61164405A
JPS61164405A JP60002870A JP287085A JPS61164405A JP S61164405 A JPS61164405 A JP S61164405A JP 60002870 A JP60002870 A JP 60002870A JP 287085 A JP287085 A JP 287085A JP S61164405 A JPS61164405 A JP S61164405A
Authority
JP
Japan
Prior art keywords
field
series
current
contactor
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60002870A
Other languages
Japanese (ja)
Inventor
Yuji Kawazoe
雄司 川添
Toshio Numano
沼野 稔夫
Katsuhiko Uyama
宇山 勝彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPANESE NATIONAL RAILWAYS<JNR>
Japan National Railways
Toyo Electric Manufacturing Ltd
Original Assignee
JAPANESE NATIONAL RAILWAYS<JNR>
Japan National Railways
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPANESE NATIONAL RAILWAYS<JNR>, Japan National Railways, Toyo Electric Manufacturing Ltd filed Critical JAPANESE NATIONAL RAILWAYS<JNR>
Priority to JP60002870A priority Critical patent/JPS61164405A/en
Publication of JPS61164405A publication Critical patent/JPS61164405A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/28Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed without contact making and breaking, e.g. using a transductor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Direct Current Motors (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To eliminate a contactor for switching power drive/brake circuit by using a resistor and a contactor for controlling a field weakening and further a field weakening controller and a brake circuit at power drive time in the same manner. CONSTITUTION:A field exciter 6 is not operated in a full field range at power drive time, and a main circuit current is flowed only through a bypass diode 10. As the speed of an electric railcar rises, the resistance of a main resistor 1 is sequentially shortcircuited. A field contactor 8 is closed in a field weakening control range at power drive time, and the exciter 6 starts operating. A regenerative brake current IB is flowed to all induction branches 3 similar to the field weakening control range. A field current IF is supplied from the exciter 6 to flow a closed loop of the branches 3 and the field winding 2.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は直流直巻電動機を用いて回生ブレーキを行う電
気車制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an electric vehicle control device that performs regenerative braking using a DC series-wound motor.

(従来の技術) この種の従来の電気車制御装置の概略接続配置を第3図
に示す。即ちM3a図は力行時における全界磁制御、第
3b図は回生ブレーキ時における制御を夫々示す。この
従来の制ml装置は、第3a図に示すように直流直巻電
動機の電機子1の界磁巻線2に対し、誘導分路3、弱界
磁抵抗器4及び弱界磁接触器8の直列回路を並列に接続
し、この並列接続回路の前記電機子1とは反対端を主抵
抗器5を経て接地すると共に前記電機子1を主回路遮断
用接触器7を経てパンタグラフ11に接続し、更に前記
界磁巻線2の両端を接触器9a 、9bを経て界磁励磁
装置6に接続し得るようにして構成する。
(Prior Art) A schematic connection arrangement of this type of conventional electric vehicle control device is shown in FIG. That is, Fig. M3a shows full field control during power running, and Fig. 3b shows control during regenerative braking. As shown in FIG. 3a, this conventional ML control device includes an inductive shunt 3, a weak field resistor 4, a weak field contactor 8, and a field winding 2 of an armature 1 of a DC series motor. series circuits are connected in parallel, and the opposite end of the parallel connected circuit to the armature 1 is grounded via the main resistor 5, and the armature 1 is connected to the pantograph 11 via the main circuit breaking contactor 7. Furthermore, both ends of the field winding 2 are configured to be connectable to the field excitation device 6 via contactors 9a and 9b.

かかる従来の電気車制御装置の動作を以下に示す。The operation of such a conventional electric vehicle control device will be described below.

カ行の場合は通常の抵抗制御方式と全く同様に接触器7
を投入すると主回路に電流が流れはじめ電気車の速度が
高くなるにつれて主抵抗器5の抵抗を順次短絡していく
。これら抵抗の全部が短絡されると弱界磁接触器8を投
入し界磁巻12に流れる界磁電流を主回路から分流して
弱界磁抵抗器4の抵抗を調整することにより弱界磁制御
を行う。
In the case of KA, the contactor 7 is
When the electric car is turned on, current begins to flow in the main circuit, and as the speed of the electric car increases, the resistance of the main resistor 5 is successively short-circuited. When all of these resistors are short-circuited, the weak field contactor 8 is turned on and the field current flowing through the field winding 12 is diverted from the main circuit to adjust the resistance of the weak field resistor 4, thereby performing weak field control. conduct.

なお界…励磁装置6は力行時接触器9a 、9bによっ
て遮断する。
The field excitation device 6 is cut off by the contactors 9a and 9b during power running.

回生ブレーキ時には電機子1、誘導分路3及び主抵抗器
5が直列に接続された回路にブレーキ電流IB  が流
れ、界磁は完全な他励形として界磁巻線2には、これに
接続された界磁励磁装置6がら界磁電流IF が供給さ
れる。ブレーキ電流IB  は界磁電流r、を調整する
ことにより制御する。
During regenerative braking, the brake current IB flows through the circuit in which the armature 1, the induction shunt 3, and the main resistor 5 are connected in series, and the field is connected to the field winding 2 as a completely separately excited type. A field current IF is supplied from the field excitation device 6. The brake current IB is controlled by adjusting the field current r.

なお界磁励磁装置6の電源としては図示されていない電
vJ発電機の出力等を用いる。
Note that as a power source for the field excitation device 6, the output of an electric VJ generator (not shown) or the like is used.

(発明が解決しようとする問題点) しかし従来の制御方式ではブレーキ時には完全な他励i
17 allとなるため、架線電圧の急変による突入電
流が電機子1に流れ整流を悪化させる関係上これを防止
するために誘導分路3及び主抵抗器5を電機子1と直列
に接続する必要があり、従って抵抗短絡用、弱界磁抵抗
短絡用および通常のカ行・ブレーキ回路切換用の接触器
の他に、上記誘導分路3を直列に挿入したり、界磁巻線
2を遮断して界磁励磁装置6に切換えるための接触器が
余分に必要になりまた界磁励磁装置6が追加になるなど
制御装置、特にその重量及びスペースが大きくなり、ま
たブレーキ時に抵抗を直列に接続しているため、抵抗器
による損失分回生電力が少なくなる等の欠点があった。
(Problem to be solved by the invention) However, in the conventional control system, when braking, complete external excitation is required.
17 all, an inrush current due to a sudden change in overhead line voltage flows into the armature 1 and worsens rectification, so to prevent this, it is necessary to connect the inductive shunt 3 and the main resistor 5 in series with the armature 1. Therefore, in addition to contactors for resistance short circuits, weak field resistance short circuits, and normal power line/brake circuit switching, the above-mentioned inductive shunt 3 can be inserted in series, or the field winding 2 can be interrupted. An extra contactor is required to switch to the field excitation device 6, and the addition of the field excitation device 6 increases the control device, especially its weight and space, and also requires a resistor to be connected in series during braking. Because of this, there were drawbacks such as a reduction in regenerated power due to the loss caused by the resistor.

□ (問題点を解決するための手段) 本発明はこれらの欠点を改良し小形軽量の電気車制御装
置を提供することを目的とするものである。
□ (Means for solving the problems) The present invention aims to improve these drawbacks and provide a small and lightweight electric vehicle control device.

(実施例) 図面につき本発明を説明する。(Example) The invention will be explained with reference to the drawings.

第1図に示す本発明電気車制御装置では、第3図の従来
の装置において界磁励磁装置6にバイパスダイオード1
0を並列に接続し、全体を界ta巻線2に直列に接続し
、弱界磁抵抗器4及び界磁励磁装置接続用の接触器9a
 、9bを省略するように構成する。その他の構成は、
第3図の装置と同一であり、従ってその説明は省略する
。又、第1図において第3図に示すものと同一機能を呈
するものは同一符号を付して示す。
In the electric vehicle control device of the present invention shown in FIG. 1, a bypass diode 1 is added to the field excitation device 6 in the conventional device shown in FIG.
0 are connected in parallel, the whole is connected in series to the field ta winding 2, and a contactor 9a for connecting the weak field resistor 4 and the field excitation device is connected.
, 9b are omitted. Other configurations are
This device is the same as the device shown in FIG. 3, so its explanation will be omitted. Further, in FIG. 1, parts exhibiting the same functions as those shown in FIG. 3 are designated by the same reference numerals.

又、界磁励磁装置6の電源としては単相交流電源又は多
相交流電源の何れを用いてもよく、又、位相制御回路も
サイリスタのみのブリッジ回路又はサイリスタ及びダイ
オードの混合ブリッジ回路の何れを用いることもできる
Further, as the power supply for the field excitation device 6, either a single-phase AC power supply or a multi-phase AC power supply may be used, and the phase control circuit may be either a bridge circuit of only thyristors or a mixed bridge circuit of thyristors and diodes. It can also be used.

(作 用) 本発明装置の各動作態様の説明を第2図につき以下に行
う。
(Function) Each operating mode of the device of the present invention will be explained below with reference to FIG.

第2a図は力行時の全界磁領域の動作を示し、この場合
界磁励磁装置6は動作させず、従って主回路電流はバイ
パスダイオード10のみを経て流れる。電気車の速度が
高くなるに従って主抵抗器5の抵抗を順次短絡して行く
FIG. 2a shows the operation of the entire field region during power running, in which case the field excitation device 6 is not activated, so that the main circuit current flows only via the bypass diode 10. As the speed of the electric car increases, the resistances of the main resistor 5 are successively short-circuited.

第2b図は力行時弱界磁制御領域の動作を示す。FIG. 2b shows the operation in the weak field control region during power running.

即ち全界磁で主抵抗器5の抵抗が全部短絡されると弱界
磁接触器8が投入され同時に界磁励磁装置6が動作を開
始する。この場合電機子電流lA  は界磁電流IF 
 と分路電流isに分流し、従って界磁励磁装置6の出
力電流Iヤを適当にfFII Hすることにより界磁電
流I、と分路電流)Sとの分流率を調整することができ
る。これがため第3図に示す弱界磁抵抗器4を省略する
ことができる。また界磁励磁装置6の電源は補助電源装
置(図示せず)を使用する。第2C図はブレーキ時の動
作を示す。
That is, when all the resistances of the main resistor 5 are short-circuited in the full field, the weak field contactor 8 is turned on and at the same time, the field excitation device 6 starts operating. In this case, the armature current lA is the field current IF
By appropriately adjusting the output current I of the field excitation device 6 to fFIIH, it is possible to adjust the division ratio between the field current I and the shunt current S. Therefore, the weak field resistor 4 shown in FIG. 3 can be omitted. Further, as a power source for the field excitation device 6, an auxiliary power source device (not shown) is used. FIG. 2C shows the operation during braking.

この場合回路構成は第3b図の弱界磁制御領域と全く同
じであり、回生ブレーキ電流IB は全て誘導分路3を
経て流れる。又界li!!電流■、は界磁励磁装置6か
ら供給され誘導分路3及び界磁巻線2の閉ループに流れ
、この界磁電流I、を制御することによりブレーキ電流
IB を所定のブレーキ力が得られるよう制御すること
ができる。
In this case, the circuit configuration is exactly the same as in the weak field control region of FIG. 3b, and all regenerative braking current IB flows through the induction shunt 3. Matakai li! ! The current (I) is supplied from the field excitation device 6 and flows through the closed loop of the induction shunt 3 and the field winding 2, and by controlling this field current I, the braking current IB is controlled so that a predetermined braking force can be obtained. can be controlled.

(発明の効果) このように本発明によれば、弱界磁制御用の抵抗器と接
触器、さらに力行時の弱界磁制御回路とブレーキ回路と
が同一であるからカ行・ブレーキ回路切換用の接触器が
不要になり、接触器類を大巾に減少させることが出来る
。また主抵抗器5も力行時全界磁のみしか使用しないた
め熱容量の小さなものを用いることができるなど従来の
抵抗制御方式に比較して制御装置全体を小形化すること
ができる。また、回生ブレーキ時、架線電圧が急降下し
た場合にはブレーキ電流IB  が増加しようとするが
ブレーキ電流lB  が増加すると誘導分路3の両端の
電圧降下が増加するため、界磁巻線2に流れる界lif
m電流■、が減少して界磁磁束が弱まり電機子1の誘起
電圧が降下してブレーキ電流IB の増加を妨げる作用
をするので突入電流を小さく抑え、整流の悪化も防止す
ることができる。
(Effects of the Invention) According to the present invention, since the resistor and contactor for weak field control and the weak field control circuit and brake circuit during power running are the same, the contactor for switching between power running and brake circuits is the same. is no longer necessary, and the number of contactors can be greatly reduced. Further, since only the entire field is used for the main resistor 5 during power running, a resistor with a small heat capacity can be used, and the entire control device can be made smaller compared to the conventional resistance control method. Also, during regenerative braking, if the overhead line voltage suddenly drops, the brake current IB tries to increase, but as the brake current IB increases, the voltage drop across the induction shunt 3 increases, so the voltage flows to the field winding 2. world life
The m current (2) decreases, the field magnetic flux weakens, and the induced voltage in the armature 1 drops, which acts to prevent an increase in the brake current IB, so that the inrush current can be kept small and deterioration of commutation can be prevented.

またバイパスダイオード10を接続することにより全界
磁領域で界磁励磁装置6を動作させないため、界磁励磁
装r6の容量を小さくすることができるとともに界磁励
磁装置6が故障しても全界磁運転だけは行うことが出来
る。
In addition, by connecting the bypass diode 10, the field excitation device 6 is not operated in the entire field region, so the capacity of the field excitation device r6 can be reduced, and even if the field excitation device 6 fails, the field excitation device 6 does not operate in the entire field region. Only magnetic operation can be performed.

このように本発明によれば、直流直巻電動機を用いて回
生ブレーキを行う電気車に小形軽量で性能の良い制御装
置を提供することができる。
As described above, according to the present invention, it is possible to provide a small, lightweight, and high-performance control device for an electric vehicle that performs regenerative braking using a DC series-wound motor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明電気軍制t2g装置の1例の接続配置を
示す回路図、 第2a図は本発明電気車制御装置の力行時全界磁におけ
る動作を示す説明図、 第2b図は同じくその力行時弱界磁における動作を示す
説明図、 第2C図は同じくその回生ブレーキ時における動作を示
す説明図、 第3a図は従来の電気車制御装置の力行時における動作
を示す説明図、 第3b図は同じくその回生ブレーキ時における動作を示
す説明図である。 1・・・電機子     2・・・界磁巻線3・・・誘
導分路    4・・・弱界磁抵抗器5・・・主抵抗器
    6・・・界磁励磁装置7・・・主回路遮断用接
触器 8・・・弱界磁接触器 9a、 9b・・・界磁励磁装置接続用接触器10・・
・バイパスダイオード 11・・・パンタグラフ 特許出願人   日 本 国 有 鉄 遊回 出願人 
  東洋電機製造株式会社稈1励砒我! 第2図 (A) (B) (C) 第3図 (A) (B )
Fig. 1 is a circuit diagram showing the connection arrangement of an example of the electric military system T2G device of the present invention, Fig. 2a is an explanatory diagram showing the operation of the electric vehicle control device of the present invention in full field during power running, and Fig. 2b is the same. Figure 2C is an explanatory diagram showing the operation in a weak field during power running; Figure 2C is an explanatory diagram showing the operation during regenerative braking; Figure 3a is an explanatory diagram showing the operation of a conventional electric vehicle control device during power running; Figure 3b The figure is also an explanatory diagram showing the operation during regenerative braking. 1... Armature 2... Field winding 3... Induction shunt 4... Weak field resistor 5... Main resistor 6... Field excitation device 7... Main Circuit breaking contactor 8... Weak field contactor 9a, 9b... Field excitation device connection contactor 10...
・Bypass diode 11...Pantograph patent applicant Japan National Railways Railway Applicant
Toyo Denki Manufacturing Co., Ltd. Culm 1 excitation! Figure 2 (A) (B) (C) Figure 3 (A) (B)

Claims (1)

【特許請求の範囲】[Claims] 1、複数個の直流直巻電動機を制御するためにこれら電
動機の主界磁巻線を他の交流電源からサイリスタの位相
制御により励磁する界磁励磁装置を備える電気車制御装
置において、界磁励磁装置と並列にバイパスダイオード
を設け、これを直巻界磁巻線と直列に接続し、誘導分路
と接触器とを直列に接続した回路を前記直巻界磁巻線、
界磁励磁装置及びバイパスダイオードの直並列回路に並
列に接続し、力行時には抵抗制御のみを行つて界磁励磁
装置を動作させず、主回路電流は、バイパスダイオード
を経て流し、弱界磁制御になつてから誘導分路と直列に
接続された接触器を閉じて、閉回路を構成して界磁励磁
装置を動作させるようにし、さらに回生ブレーキ時には
弱界磁制御と同一の回路構成で界磁励磁装置を動作させ
て直巻界磁巻線を励磁するとともに、ブレーキ電流は誘
導分路を経て流し回生ブレーキを作用させるようにした
ことを特徴とする電気車制御装置。
1. In an electric vehicle control device equipped with a field excitation device that excites the main field windings of these motors from another AC power source by controlling the phase of a thyristor in order to control a plurality of DC series-wound motors, the field excitation A bypass diode is provided in parallel with the device, this is connected in series with the series field winding, and a circuit in which an inductive shunt and a contactor are connected in series is connected to the series field winding,
It is connected in parallel to the series-parallel circuit of the field excitation device and the bypass diode, and during power running, only resistance control is performed and the field excitation device is not operated, and the main circuit current is passed through the bypass diode, resulting in weak field control. The contactor connected in series with the induction shunt is closed to form a closed circuit to operate the field excitation device, and during regenerative braking, the field excitation device is operated with the same circuit configuration as weak field control. An electric vehicle control device characterized in that the series field winding is excited by causing the braking current to flow through an induction shunt to apply regenerative braking.
JP60002870A 1985-01-11 1985-01-11 Controller for electric railcar Pending JPS61164405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60002870A JPS61164405A (en) 1985-01-11 1985-01-11 Controller for electric railcar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60002870A JPS61164405A (en) 1985-01-11 1985-01-11 Controller for electric railcar

Publications (1)

Publication Number Publication Date
JPS61164405A true JPS61164405A (en) 1986-07-25

Family

ID=11541387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60002870A Pending JPS61164405A (en) 1985-01-11 1985-01-11 Controller for electric railcar

Country Status (1)

Country Link
JP (1) JPS61164405A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108327579A (en) * 2018-03-15 2018-07-27 中铁二院工程集团有限责任公司 Rail traffic surface power supply system conversion system and conversion method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6198101A (en) * 1984-10-17 1986-05-16 Hitachi Ltd Controller for electric railcar

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6198101A (en) * 1984-10-17 1986-05-16 Hitachi Ltd Controller for electric railcar

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108327579A (en) * 2018-03-15 2018-07-27 中铁二院工程集团有限责任公司 Rail traffic surface power supply system conversion system and conversion method

Similar Documents

Publication Publication Date Title
US3923116A (en) Electric vehicle having improved battery reconnect
JPS58198193A (en) Dc motor controller
US4380724A (en) Shunt field control apparatus and method
GB2137035A (en) Apparatus for controlling electric vehicles
JPS61164405A (en) Controller for electric railcar
JP2000134717A5 (en) Motor control device for the power unit of an electric vehicle
JP2002291288A (en) Permanent magnet synchronous motor and multi-contact simultaneous short-circuited contactor
JP2637945B2 (en) Electric vehicle regenerative brake control device
SU1165602A1 (en) Diesel locomotive electric drive
JPS6117231B2 (en)
JPH0515125B2 (en)
JPH0514482B2 (en)
JPS588673B2 (en) Dendo Kinoseigyo Cairo
SU888426A1 (en) Vehicle electric drive
JPH0453124Y2 (en)
JPH062404Y2 (en) Electric vehicle running control device
Allan et al. A gate-turn-off thyristor chopper for traction drives
SU1670764A1 (en) Ac-dc electric drive
US2045038A (en) Power and control equipment of electrically driven vehicles and machinery
JPH04271204A (en) Main circuit of electric vehicle
SU974528A1 (en) Multi-motor electric arc
JPH02246703A (en) Controller for electric vehicle
PL111802B2 (en) Electric driving and independent regenerative braking system for power vehicles
JPS614404A (en) Brake system of chopper control electric railcar
US1853283A (en) Electric vehicle drive