JPH02246703A - Controller for electric vehicle - Google Patents

Controller for electric vehicle

Info

Publication number
JPH02246703A
JPH02246703A JP25973988A JP25973988A JPH02246703A JP H02246703 A JPH02246703 A JP H02246703A JP 25973988 A JP25973988 A JP 25973988A JP 25973988 A JP25973988 A JP 25973988A JP H02246703 A JPH02246703 A JP H02246703A
Authority
JP
Japan
Prior art keywords
circuit
field
contactor
main
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25973988A
Other languages
Japanese (ja)
Inventor
Miyoshi Maki
牧 美好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP25973988A priority Critical patent/JPH02246703A/en
Publication of JPH02246703A publication Critical patent/JPH02246703A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/003Dynamic electric braking by short circuiting the motor

Abstract

PURPOSE:To ensure generative brake force easily when regenerative brake force is not supplied sufficiently by providing a circuit for switching first and second main regenerative brake circuits, connected in parallel, to a generative brake circuit. CONSTITUTION:Parallel regeneration is carried out during normal suppressive regeneration, and regenerative current of a first main circuit is collected by a stringing through a contactor G, a field contactor F1, an inductive shunt IS1, an armature A1, a disconnector 2 and a pantograph 1, connected in parallel. Regenerative current is also collected by the stringing in a second main circuit. When switches Xa, Ya are turned OFF, switches Xb, Yb are turned ON, a series contactor S is thrown in, and a disconnecting switch 2 and the field contactors F1, F2 are turned OFF, a cross-field generative brake circuit is formed, and predetermined brake force can be obtained by controlling the short circuit solenoid contactor of brake resistors, i.e. main resistors MR1, MR2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は添加励磁装置を備える電気車の制御装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a control device for an electric vehicle equipped with an additive excitation device.

〔従来の技術〕[Conventional technology]

第3図は、例えば、特開昭61−164401号公報に
記載された従来の電気車の制御装置を示したものである
。同図において、1はパンタグラフ、2は断流器、3A
、3Bは添加励磁装置、4A、4Bは直流直巻電動機、
AI、A2は電機子、MFI、MF2は直巻界磁巻線で
ある。l5IIS2は誘導分流器、Fl、F2は界磁接
触器であり、添加励磁装置3A、誘導分流器ISI、界
磁接触器F1は直流直巻電動機4Aの界磁制御回路を構
成し、添加励磁装置3B、誘導分流器IS2、界磁接触
器F1は直流直巻電動a4Bの界磁制御回路を構成する
。MR1MR2は速度制御用の主抵抗器(短絡用電磁接
触器は図示しない)、Sは直列接続接触器(電磁接触器
)、P、Gは並列接続接触器(電磁接触器)である。
FIG. 3 shows a conventional electric vehicle control device described in, for example, Japanese Patent Application Laid-open No. 164401/1983. In the same figure, 1 is a pantograph, 2 is a current interrupter, and 3A
, 3B is an additive excitation device, 4A, 4B are DC series motors,
AI and A2 are armatures, and MFI and MF2 are series field windings. 15IIS2 is an induction shunt, Fl, F2 are field contactors, the additive excitation device 3A, the induction shunt ISI, and the field contactor F1 constitute a field control circuit of the DC series motor 4A, and the additive excitation device 3B, The induction shunt IS2 and the field contactor F1 constitute a field control circuit of the DC series-wound electric motor a4B. MR1MR2 is a main resistor for speed control (the short-circuiting electromagnetic contactor is not shown), S is a series connection contactor (magnetic contactor), and P and G are parallel connection contactors (magnetic contactor).

次に、この制御装置の動作について説明する。Next, the operation of this control device will be explained.

電気車の始動に際して、直列接続接触器Sを投入すると
(力行直列)、電流は、パンタグラフ1−断流器2−電
機子A1−直巻界磁巻線MFI励磁装置3A−主抵抗器
MRI−直列接続器S主抵抗器MR2−直巻界磁巻線M
F2−励磁装置3B−電機子A2−アースを通して流れ
、主抵抗器MH1,,MR2を順次短絡することにより
電機車が加速する。
When starting the electric vehicle, when the series-connected contactor S is turned on (powering series), the current flows through the following channels: pantograph 1 - disconnector 2 - armature A1 - series field winding MFI exciter 3A - main resistor MRI - Series connector S Main resistor MR2 - Series field winding M
It flows through F2--excitation device 3B--armature A2--earth, and short-circuits the main resistors MH1, MR2 in sequence, thereby accelerating the electric locomotive.

また、渡り制御が行われて、並列接続接触器P、Gが投
入されると(力行並列、この時、直列接触器Sは開路)
、パンタグラフ1−断流器2電機子A1−直巻界磁巻線
MFI−添加励磁装置3A−主抵抗器MRI−並列接続
接触器G−アスなる第1の閉回路が形成されるとともに
、パンタグラフl−断流器2−並列接続接触器P−主抵
抗器MR2−直巻界磁巻線MF2−添加励磁装置3B−
電機子A2−アースなる第2の閉回路が形成され、主抵
抗器MRI、MR2を図示しない短絡用電磁接触器によ
り順次短絡することにより電気車が加速する。
Also, when crossover control is performed and parallel connection contactors P and G are turned on (power running parallel, at this time, series contactor S is open).
, pantograph 1 - current interrupter 2 armature A1 - series field winding MFI - additive excitation device 3A - main resistor MRI - parallel connection contactor G - a first closed circuit is formed, and the pantograph l - Current interrupter 2 - Parallel connection contactor P - Main resistor MR2 - Series field winding MF2 - Additive excitation device 3B -
A second closed circuit between armature A2 and ground is formed, and the electric vehicle accelerates by sequentially shorting the main resistors MRI and MR2 by a shorting electromagnetic contactor (not shown).

更に、電気車を加速するためには、弱界磁制御が行われ
る。即ち、カ行並列時の回路において、界磁接触器F1
、F2が投入される。これにより、直巻界磁巻線MFI
に流れていた電流は誘導分流器ISIに流れ込み、界磁
電流が減少して弱界磁となる。この時、添加励磁装置3
A−界磁接触器Fl−直巻界磁巻&’iMFl−励磁装
置3Aの向きに添加励磁装置3Aの電源(架線を電源と
する電動発電機等)から電流を流すことにより添加励磁
を行って、所定の弱界磁率を得る。上記第2の閉回路に
おでも、同様に、添加励磁を行って弱界磁率の調整を行
う。この添加励磁の量が小さいと、界磁率(界磁電流/
電機子電流)が小さ(なって、電気車の速度がが上昇す
る。
Furthermore, in order to accelerate the electric vehicle, weak field control is performed. That is, in the circuit when four rows are parallel, the field contactor F1
, F2 are input. As a result, the series field winding MFI
The current that was flowing into the induction shunt ISI flows into the induction shunt ISI, and the field current decreases to become a weak field. At this time, the additive excitation device 3
A-Field contactor Fl-Series field winding &'iMFl-Additive excitation is performed by passing current from the power source of the additive excitation device 3A (such as a motor generator using an overhead wire as a power source) in the direction of the excitation device 3A. to obtain a predetermined weak field magnetic coefficient. Similarly, additional excitation is applied to the second closed circuit to adjust the weak field rate. If the amount of this additional excitation is small, the field rate (field current/
As the armature current becomes smaller, the speed of the electric car increases.

第4図は回生制動(並列回生)時の回路を示したもので
あり、主抵抗器MRI、MR2の図示しない短絡用電磁
接触器が全て開放された状態で示されている点が、第3
図と相違する。並列回生時、上記第1の閉回路の回生電
流は、並列接続接触器G−界磁接触器F1−誘導分流器
l5I−電機子AI−断流器2−パンタグラフ1を通し
て架線に回生され、第2の閉回路の回生電流は、電機子
A2−界磁接触器一誘導分流器l52−並列接続接触器
P−断流器2−パンタグラフ1を通して架線に回生され
、この時、直巻界磁巻線MFIに、励磁装置3Aから界
磁接触器Fl−誘導分流器ISIを通して界磁電流を流
し、電機子電圧を架線電圧よりも高くする。電気車の速
度が低下すると、界磁電流を強めて電機子電圧を一定る
維持するが、この界磁強めが限界に達すると、直列接続
接触器Sを投入し、主抵抗器MRI、MR2を順次短絡
しく途中で、並列接続接触器PとGがオフされる)、直
列回生へ移行する。回生当初から速度が低い場合には、
最初から直列回生を行う。
Figure 4 shows the circuit during regenerative braking (parallel regeneration), and the point that the short-circuiting electromagnetic contactors (not shown) of the main resistors MRI and MR2 are all shown in an open state is the third point.
It differs from the diagram. During parallel regeneration, the regenerative current of the first closed circuit is regenerated to the overhead wire through the parallel connection contactor G, field contactor F1, induction shunt l5I, armature AI, disconnector 2, pantograph 1, and The regenerative current of the closed circuit No. 2 is regenerated to the overhead wire through the armature A2 - field contactor - inductive shunt l52 - parallel connection contactor P - disconnector 2 - pantograph 1, and at this time, the series field winding A field current is passed through the line MFI from the excitation device 3A through the field contactor Fl and the induction shunt ISI to make the armature voltage higher than the overhead line voltage. When the speed of the electric car decreases, the field current is strengthened to maintain a constant armature voltage, but when this field strengthening reaches its limit, the series-connected contactor S is turned on and the main resistors MRI and MR2 are turned on. During the short-circuiting process, the parallel-connected contactors P and G are turned off), and the system shifts to series regeneration. If the speed is low from the beginning of regeneration,
Perform series regeneration from the beginning.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このような添加励磁装置3A、3Bを備える場合、添加
励磁装置3A、3Bは架線から電力を得て界磁電流を送
出するので、架線停電時や装置故障時には、回生制動か
できなくなる。
When such additive excitation devices 3A and 3B are provided, since the additive excitation devices 3A and 3B obtain electric power from the overhead wire and send out field current, regenerative braking becomes impossible in the event of a power outage or device failure.

長い下り軌道を抑速して電気車が走行する場合、この抑
速を、ブレーキシューによって実現することは加熱等の
問題があって難しく、電気ブレーキを使用することにな
る。回生制動は省エネルギの面からは好ましいが、添加
励磁を行う構成では、上記した問題があるので、上記抑
速を、回生制動で実現しようとする場合には、信顛性を
欠くという問題があった。
When an electric vehicle travels on a long downhill trajectory, it is difficult to achieve this speed control using brake shoes due to problems such as heating, so electric brakes are used. Regenerative braking is preferable from the point of view of energy saving, but since the configuration that uses additive excitation has the above-mentioned problems, when trying to achieve the above-mentioned speed suppression with regenerative braking, there is a problem of lack of reliability. there were.

この発明は上記問題を解消するためになされたもので、
添加励磁が不能な場合でも、電気車に、所要の制動力を
確実にかけることができる電気車の制御装置を提供する
ことを目的とする。
This invention was made to solve the above problem.
To provide a control device for an electric vehicle that can reliably apply a required braking force to the electric vehicle even when additive excitation is not possible.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は上記目的を達成するため、一端側で直列接続
接触器を介して相互に接続される第1及び第2の主回路
の速度制御用の抵抗器の他端側を、それぞれが属する主
回路の電機子と界磁回路との間に切換接続する切換え器
を設けて交差界磁発電制動回路を閉成可能とし、回生制
動不能もしくは回生制動非有効時に、この発電制動回路
を閉成する構成としたものである。
In order to achieve the above object, the present invention connects the other ends of the speed control resistors of the first and second main circuits, which are connected to each other via the series-connected contactor at one end, to the main circuits to which they belong. A switching device is provided between the armature of the circuit and the field circuit to enable closing of the cross-field electromagnetic braking circuit, and this electromagnetic braking circuit is closed when regenerative braking is disabled or regenerative braking is disabled. It is structured as follows.

〔作用〕[Effect]

この発明では、切換器を切換えることにより、回生制動
モードから発電制動モードに簡単に切換えることができ
るので、抑速時、回生制動が有効でなくなった場合や不
能になった場合に、発電制動に切換えれば、省エネルギ
ー効果を得た上、信頼性の高い抑速走行を行わせること
ができる。
In this invention, it is possible to easily switch from regenerative braking mode to dynamic braking mode by switching the switch, so when regenerative braking is no longer effective or disabled during braking, it is possible to switch to dynamic braking mode. By switching, it is possible not only to obtain an energy saving effect but also to perform highly reliable slow-speed driving.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図において、Xaは主抵抗器MRIの一端側と添加
励磁装置3Aとの間に挿入された通常時閉のスイッチ、
xbは主抵抗器MRIの上記一端側と電機子A1の直巻
界磁巻線MFI側との間に挿入された通常時開のスイッ
チであり、両者は第1の切換器を構成している。Yaは
主抵抗器MR2の一端側と添加励磁装置3Bとの間に挿
入された通常時閉のスイッチ、ybは主抵抗器MR2の
上記一端側と電機子A2の直巻界磁巻線MF2側との間
に挿入された通常時開のスイッチであり、両者は第2の
切換器を構成している。他の構成は第3図のものと同じ
であるので、同一構成要素には同一符号を付しである。
In FIG. 1, Xa is a normally closed switch inserted between one end of the main resistor MRI and the additive excitation device 3A;
xb is a normally open switch inserted between the above-mentioned one end side of the main resistor MRI and the series field winding MFI side of the armature A1, and both constitute a first switching device. . Ya is a normally closed switch inserted between one end of the main resistor MR2 and the additive excitation device 3B, and yb is a switch inserted between the one end of the main resistor MR2 and the series field winding MF2 of the armature A2. This is a normally open switch inserted between the two switches, and the two constitute a second switching device. Since the other configurations are the same as those in FIG. 3, the same components are given the same reference numerals.

前記したように、抑速回生時は、並列回生が行われて、
第1の主回路の回生電流は、並列接続接触器G−界磁接
触器Fl−誘導分流器l5I−電機子A1−断流器2−
パンタグラフlを通して架線に回生され、第2の主回路
の回生電流は、電機子A2−界磁接触器−誘導分流器T
S2−並列接続接触器P−断流器2−パンタグラフ1を
通して架線に回生され、この時、直巻界磁巻線MFiM
F2に、添加励磁装置3A、3Bから界磁接触器F1、
F2、誘導分流器IS1.  IS2を通して界磁電流
を供給している。
As mentioned above, during suppressed speed regeneration, parallel regeneration is performed,
The regenerative current of the first main circuit is: parallel connection contactor G - field contactor Fl - induction shunt l5I - armature A1 - current interrupter 2 -
The regenerated current of the second main circuit is regenerated through the pantograph L to the overhead wire, and the regenerative current of the second main circuit is connected to the armature A2-field contactor-induction shunt T.
S2 - Parallel connected contactor P - Disconnector 2 - Regenerated to the overhead line through pantograph 1, and at this time, series field winding MFiM
F2 is connected to the field contactor F1 from the additive excitation devices 3A and 3B,
F2, inductive shunt IS1. Field current is supplied through IS2.

この状態で、添加励磁装置3A、3Bが故障したり、架
線に停電が発生したりして、回生制動が不能になった場
合は、故障を検知する装置の検知信号や停電検出装置の
検知信号により上記第1及び第2の切換器を切換えて、
スイッチX a % Y aをオフ、スイッチXb、Y
bをオフさせとともに、直列接続接触器Sを投入し、ま
た、断流器2、界磁接触器F1、F2をオフさせる。こ
れにより、第2図に示す交差界磁発電制動回路が閉成さ
れるので、制動抵抗となる主抵抗器MRI、MR2の短
絡用電磁接触器を制御することにより所定の制動力を得
ることができ、安定した抑速走行を続行することができ
る。
In this state, if regenerative braking becomes impossible due to a failure of the additive excitation devices 3A and 3B or a power outage to the overhead lines, a detection signal from the failure detection device or a detection signal from the power failure detection device will be sent. by switching the first and second switching devices,
Switch X a % Y a off, switch Xb, Y
b is turned off, the series connection contactor S is turned on, and the current interrupter 2 and the field contactors F1 and F2 are turned off. As a result, the cross-field electromagnetic braking circuit shown in FIG. 2 is closed, and a predetermined braking force can be obtained by controlling the short-circuiting electromagnetic contactors of the main resistors MRI and MR2, which serve as braking resistances. It is possible to continue stable driving at reduced speed.

このように、本実施例では、回生制動モードから発電制
動モードへ円滑に切換えることができるので、電気車が
長い下り軌道を抑速して走行する場合、この抑速を回生
制動により行い、回生電流のレベルが、所要の制動力が
得られないレベルに低下した時に、これを検知して上記
第1及び第2の切換器を切換え、発電制動モードに切換
えるようにすれば、安定した抑速を行わせることができ
る。
In this way, in this embodiment, it is possible to smoothly switch from the regenerative braking mode to the dynamic braking mode, so when an electric car runs with reduced speed on a long downward trajectory, this reduced speed is performed by regenerative braking, and the regenerative braking mode is When the current level drops to a level where the required braking force cannot be obtained, if this is detected and the first and second switching devices are switched to switch to the dynamic braking mode, stable braking can be achieved. can be made to do so.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明した通り、並列接続されて回生制動
している第1と第2の主回路を発電制動回路に切換える
ための切換器を設けたことにより、回生により所要の制
動力が得られなくなっても、発電制動に切換えて所要の
制動力を確保することができるので、回°住制動による
抑速を安心して行うことができる。
As explained above, this invention provides a switch for switching the first and second main circuits, which are connected in parallel and performs regenerative braking, to a dynamic braking circuit, so that the required braking force can be obtained by regeneration. Even if it runs out, it is possible to switch to dynamic braking to ensure the required braking force, so it is possible to safely suppress the speed by regenerative braking.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例を示す回路図、第2図は上記
実施例における発電制動回路を示す図、第3図は従来の
電気車の制御装置を示す回路図、第4図は上記従来例の
回生動作を説明するための回路図である。 図において、3A、3B・−添加励磁装置、A1、A2
−直巻電動機の電機子、MFI、MF2直巻電動機の界
T!11巻線、MRI、M R2−抵抗器、P、G・・
−並列接続接触器、S−直列接続接触器、Xa、Xb−
スイッチ、Ya、Yb−スイッチ。 なお、図中、同一符号は同一または相当部分を示す。
Fig. 1 is a circuit diagram showing an embodiment of the present invention, Fig. 2 is a diagram showing a dynamic braking circuit in the above embodiment, Fig. 3 is a circuit diagram showing a conventional electric vehicle control device, and Fig. 4 is a diagram showing the above-mentioned electric vehicle control device. FIG. 2 is a circuit diagram for explaining a regeneration operation in a conventional example. In the figure, 3A, 3B - additive excitation device, A1, A2
- Armature of series motor, MFI, MF2 field T of series motor! 11 windings, MRI, MR2-resistor, P, G...
-Parallel connection contactor, S-Series connection contactor, Xa, Xb-
Switch, Ya, Yb-Switch. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 直流直巻電動機、この直流直巻電動機の界磁量を制御す
るための添加励磁装置を備える界磁制御回路、および速
度制御用抵抗器を備え、直並列接続接触器により互いに
直並列切換え接続される第1の主回路と第2の主回路を
備える電気車の制御装置において、一端側で直列接続接
触器を介して相互に接続される上記第1及び第2の主回
路の上記抵抗器の他端側を、それぞれが属する主回路の
電機子と界磁回路との間に切換接続する切換器を設けて
交差界磁発電制動回路を閉成可能とし、回生制動不能も
しくは回生制動非有効時に、この発電制動回路を閉成す
ることを特徴とする電気車の制御装置。
A DC series motor, a field control circuit equipped with an additive excitation device for controlling the amount of field of the DC series motor, and a speed control resistor are provided. In a control device for an electric vehicle comprising a first main circuit and a second main circuit, the other ends of the resistors of the first and second main circuits are connected to each other via a series-connected contactor on one end side. A switch is provided between the armature of the main circuit and the field circuit to which each side belongs, so that the cross-field electromagnetic braking circuit can be closed. A control device for an electric vehicle characterized by closing a dynamic braking circuit.
JP25973988A 1988-10-14 1988-10-14 Controller for electric vehicle Pending JPH02246703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25973988A JPH02246703A (en) 1988-10-14 1988-10-14 Controller for electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25973988A JPH02246703A (en) 1988-10-14 1988-10-14 Controller for electric vehicle

Publications (1)

Publication Number Publication Date
JPH02246703A true JPH02246703A (en) 1990-10-02

Family

ID=17338277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25973988A Pending JPH02246703A (en) 1988-10-14 1988-10-14 Controller for electric vehicle

Country Status (1)

Country Link
JP (1) JPH02246703A (en)

Similar Documents

Publication Publication Date Title
KR101504585B1 (en) Electric safety braking device with permanent magnet motor and braking torque control
US4284936A (en) Chopper type propulsion system with low speed electrical braking capability for traction vehicles
US4054821A (en) D-C motor drive system with field current flow reversal upon transition between motoring and retarding modes
US3930191A (en) Braking circuit for the mixed regenerative and resistance braking of a d-c series machine operated as a generator
US4256983A (en) Voltage-to-frequency converter having a constant frequency mode of operation
US4380724A (en) Shunt field control apparatus and method
JP2000308388A (en) Driver of permanent magnet motor for electric car
US3938013A (en) D. C. Motor control system effecting changes in the connections of the armature and variations in current flow through the field
JPH02246703A (en) Controller for electric vehicle
JP2002291288A (en) Permanent magnet synchronous motor and multi-contact simultaneous short-circuited contactor
US3818296A (en) Regenerative braking control device for an electric car
JP2637945B2 (en) Electric vehicle regenerative brake control device
US1954770A (en) Traction motor control system
RU2076445C1 (en) Device which regulates speed of traction electric motors
JPS588673B2 (en) Dendo Kinoseigyo Cairo
JPS61164405A (en) Controller for electric railcar
US1948376A (en) Electrically driven vehicle
US3364406A (en) Protective system for motors of electric cars
JPS6212304A (en) Controller of electric railcar
SU974528A1 (en) Multi-motor electric arc
US2512381A (en) Series parallel control system
JPS637101A (en) Controller for electric rolling stock
US1437075A (en) Motor-control system
CA1142629A (en) Chopper type propulsion system with low speed electrical braking capability for traction vehicles
JPS6328202A (en) Controller for electric vehicle