JPS63217621A - Method for making temperature hysteresis between wafers uniform in oxidlzation and diffusion device - Google Patents

Method for making temperature hysteresis between wafers uniform in oxidlzation and diffusion device

Info

Publication number
JPS63217621A
JPS63217621A JP5002787A JP5002787A JPS63217621A JP S63217621 A JPS63217621 A JP S63217621A JP 5002787 A JP5002787 A JP 5002787A JP 5002787 A JP5002787 A JP 5002787A JP S63217621 A JPS63217621 A JP S63217621A
Authority
JP
Japan
Prior art keywords
temperature
wafer
wafers
tube wall
reaction tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5002787A
Other languages
Japanese (ja)
Inventor
Kinji Mokuya
杢屋 錦司
Ikuo Matsuba
松葉 育雄
Takaaki Aoshima
青島 孝明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5002787A priority Critical patent/JPS63217621A/en
Publication of JPS63217621A publication Critical patent/JPS63217621A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make the dispersion of junction depth uniform between wafers by means of time-controlling the reaction tube wall temperature profile of an oxidation and diffusion device. CONSTITUTION:The gradient of tube wall temperature profile from inlet side to inner side of a reaction tube 5 set up in case of insertion into an oxidation and diffusion device fills the role of inversing the temperature of wafers at front end and rear end of wafer lines so that the dispersion of junction depth Xj between wafers 10 may be reduced. Furthermore, a simulation model corresponding to the transient status of wafer temperatures can infer the wafer temperature hysteresis corresponding to the time elapsing changes of the reaction tube wall temperature profine to preliminarily estimate the extent of inversed temperature period to be maintained. Then, the time control signals of tube wall temperature profile based on the results of estimation are transmitted to a CPU 11 of thermostat 2 of the oxidizing and diffusing device. Through these procedures, the dispersion of junction depth Xj between wafers can be minimized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体製造プロセス高温熱処理を伴う工程に係
り、特に、ウェハ列挿入・引出し時のウェハ温度履歴の
バラツキによる接合深さのウェハ間におけるバラツキの
低減に好適な酸化・拡散装置内ウェハ間温度履歴均一化
方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a process involving high-temperature heat treatment in a semiconductor manufacturing process, and in particular, to reduce the bonding depth between wafers due to variations in wafer temperature history during insertion and withdrawal of wafer rows. The present invention relates to a method for uniformizing temperature history among wafers in an oxidation/diffusion device suitable for reducing variations.

〔従来の技術〕[Conventional technology]

従来の装置は、電子材料1985年3月pp92−97
に記載のように、ウェハ列挿入・引出し時のウェハ温度
の過渡的な温度履歴を制御するための制御装置は設けら
れていない。
The conventional device is published in Electronic Materials, March 1985, pp92-97.
As described in , no control device is provided for controlling the transient temperature history of the wafer temperature during insertion and withdrawal of wafer rows.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は酸化・拡散装置へのウェハ列挿入・引出
し時のウェハ温度の過渡状態におけるウェハ間でのバラ
ツキについて配慮がされておらず、素子の微細化に伴い
、この温度履歴のバラツキによる接合深さX、のウェハ
間におけるバラツキが無視できなくなり、半導体素子製
造歩留りを低下させる問題が発生してきた。
The above conventional technology does not take into account variations in wafer temperature during the transient state of wafer temperature when inserting and extracting rows of wafers from oxidation/diffusion equipment, and as elements become smaller, bonding due to variations in temperature history The variation in depth X between wafers has become impossible to ignore, and a problem has arisen that reduces semiconductor device manufacturing yield.

本発明の目的は、酸化・拡散装置の反応管壁温度のプロ
ファイルを時間制御することにより上記接合深さXlの
ウェハ間におけるバラツキを均一化することにある。
An object of the present invention is to equalize the variation in the junction depth Xl between wafers by controlling the temperature profile of the reaction tube wall of the oxidation/diffusion device over time.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、酸化・拡散装置へのウェハ列挿入時に1反
応管壁温度プロファイルを管巣側、つまり、ウェハ列先
端側の温度を50℃程度低下させておき、さらに、ウェ
ハ列が反応管内を進行するに伴い、ウェハ処後端側、つ
まり反応管入口側の温度を徐々に上げることにより、ウ
ェハ列の先端側と後端側のウェハ温度を逆転させ、挿入
時に必然的に発生するウェハ列の先端側から後端側にか
けてのウェハ温度の時間遅れを、このウェハ列間で逆転
した温度履歴時間を制御させることにより、ウェハ間で
の接合深さの均一化が達成される。
The above purpose is to lower the temperature profile of the wall of one reaction tube by about 50°C on the tube nest side, that is, the temperature at the tip of the wafer row when inserting the wafer row into the oxidation/diffusion device, and to lower the temperature profile of the wafer row inside the reaction tube by about 50°C. As the wafer progresses, by gradually increasing the temperature at the rear end of the wafer process, that is, at the entrance of the reaction tube, the wafer temperatures at the leading and rear ends of the wafer row are reversed, and the wafer row that inevitably occurs during insertion is reversed. By controlling the time delay of the wafer temperature from the leading edge side to the trailing edge side of the wafer, the bonding depth between the wafers can be made uniform by controlling the temperature history time that is reversed between the wafer rows.

なお、上記、ウェハ列間で逆転した温度履歴時間の制御
は、予め、ウェハ温度過渡特性解析用の−物理モデルに
より1反応管奥側が低下した管壁温度プロファイルを均
一なプロファイルに戻す時間を種々変化させた場合のウ
ェハ温度推移をシミュレーションにより求め、各プロセ
ス条件(ウェハ間隔、挿入速度、管壁均熱帯温度など)
に応じて、接合深さXjのウェハ間での均一度が最大に
なる時間を求め、この時間を酸化・拡散装置の温度i;
制御器に与えればよい。
The temperature history time reversed between wafer rows is controlled in advance by varying the time required to return the tube wall temperature profile that has decreased at the back of the reaction tube to a uniform profile using a physical model for wafer temperature transient characteristic analysis. The wafer temperature transition is determined by simulation when the temperature is changed, and each process condition (wafer spacing, insertion speed, tube wall soaking zone temperature, etc.) is determined.
According to
Just give it to the controller.

〔作用〕[Effect]

酸化・拡散装置内へのウェハ列挿入時に設定された反応
管入口側から奥側にかけての管壁温度プロファイルの傾
斜が、ウェハ列先端部のウェハ温度と後端部のウェハ温
度が逆転するように作用することによって、ウェハ間に
おける接合深さX。
The slope of the tube wall temperature profile from the reaction tube inlet side to the back side, which was set when the wafer row was inserted into the oxidation/diffusion equipment, is now set so that the wafer temperature at the front end of the wafer row and the wafer temperature at the rear end are reversed. By acting on the junction depth X between the wafers.

のバラツキを低減させる。また、この1ノ工ハ温度の過
渡状態に対するシミュレーションモデルは、反応管壁温
度プロファイルの時間変化に応じたウェハa度履歴を推
定できるので、上記逆転温度期間をどの程度維持させれ
ばよいがを事前評価でき、この評価結果を基に、管壁温
度プロファイルの時間制御信号を酸化・拡散装置の温度
制御器のCPUへ送信してやれば、ウェハ間の接合深さ
xlのバラツキ最小化が実現できる。
Reduce the variation in In addition, this simulation model for the transient state of the wafer temperature in the first step can estimate the wafer temperature history according to the time change of the reaction tube wall temperature profile, so it is possible to estimate how long the above-mentioned temperature reversal period should be maintained. It can be evaluated in advance, and if a time control signal of the tube wall temperature profile is sent to the CPU of the temperature controller of the oxidation/diffusion device based on the evaluation result, it is possible to minimize the variation in the junction depth xl between wafers.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面を用いて説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第2図は本発明を適用する半導体製造プロセスの全体構
成を示し1反応管5の軸方向温度プロファイルは温度制
御器2により3ゾーン制御されている。この反応管5内
へ治具9上に並べられたウェハ10が自動挿入引出装置
6により挿入され、ドーピングシステム1により所要の
ガスが反応管5内へ供給され、ウェハ10が高温熱処理
された後1反応管5外へ引出される。ここで1反応管5
の加熱は汚染防止用の炉心管4の周囲に巻かれた発熱体
3のヒータ電流の温度制御器2によるオン/オフ制御に
より実現され、その軸方向温度プロファイルは温度測定
部7からの熱電対による温度計測データを参照し、中央
処理装置(CPU)11を介し、温度制御器2により3
ゾ一ン分割方式で、各ゾーンのヒータ電流のオン/オフ
制御により設定値に維持されている。
FIG. 2 shows the overall configuration of a semiconductor manufacturing process to which the present invention is applied, and the axial temperature profile of one reaction tube 5 is controlled by a temperature controller 2 in three zones. The wafers 10 arranged on the jig 9 are inserted into the reaction tube 5 by the automatic insertion/drawing device 6, the required gas is supplied into the reaction tube 5 by the doping system 1, and the wafers 10 are subjected to high-temperature heat treatment. 1 to the outside of the reaction tube 5. Here 1 reaction tube 5
Heating is realized by on/off control of the heater current of the heating element 3 wound around the furnace core tube 4 for contamination prevention by the temperature controller 2, and its axial temperature profile is determined by the thermocouple from the temperature measuring part 7. 3 by the temperature controller 2 through the central processing unit (CPU) 11.
It is a zone-divided system, and the set value is maintained by on/off control of the heater current in each zone.

さて1通常の反応管壁温度プロファイルのもとでは第3
図に示すようなウェハ温度推移となり、例えば、31枚
のウェハ列の場合には、先端ウェハ(#1)に比べ後端
ウェハ($31)は過渡的に大きな時間遅れを伴い、接
合深さXjの変動に影響を及ぼす高温領域においてもそ
の時間遅れが顕著となっている。例えば800℃以上の
温度領域で接合深さX−が変化するものとすれば、@端
つェハ(#31)に比べ先端ウェハ(#1)は斜線部で
示した量だけ変化する。つまり、接合深さXjは面ゴ(
Dは拡散係数であり温度依存性が大きく、tは時間を表
わす)により与えられろため、先端ウェハと@端つェハ
との温/?履歴の変化分(斜線部)はJ’57と相関を
持ち、活動、接合深さXjの変化をもたらす。この効果
はウェハ列の引出し時にも同様に発生する。したがって
、この先端ウェハと後端ウェハの温度M歴の違いにより
発生するウェハ間での接合深さX、の変動を第2図に示
したウェハ間温度履歴力−化装置12により補正する。
Now, 1. Under the normal reaction tube wall temperature profile, the third
The wafer temperature changes as shown in the figure. For example, in the case of a row of 31 wafers, the trailing wafer ($31) has a large transient time delay compared to the leading wafer (#1), and the bonding depth The time delay is also noticeable in the high temperature region that affects the fluctuation of Xj. For example, if the junction depth X- changes in a temperature range of 800° C. or higher, the tip wafer (#1) changes by the amount shown by the shaded area compared to the end wafer (#31). In other words, the joining depth Xj is Mengo (
D is a diffusion coefficient and has a large temperature dependence, and t represents time), so the temperature between the tip wafer and the end wafer is /? The change in history (shaded area) has a correlation with J'57 and causes a change in activity and junction depth Xj. This effect similarly occurs when pulling out a wafer row. Therefore, the variation in the bonding depth X between the wafers caused by the difference in the temperature history M between the leading wafer and the trailing wafer is corrected by the inter-wafer temperature history correction device 12 shown in FIG.

第4図にその構成を示す。以下。Figure 4 shows its configuration. below.

その詳細を第1図に示すフローチャートにより説明する
The details will be explained with reference to the flowchart shown in FIG.

まず、ブロック200で、酸化・拡散装置へのウェハ列
挿入時のプロセス条件(ウェハ間隔、挿入速度、管壁温
度など)が設定される。次に、この条件に対応して、ブ
ロック201で、ウェハ列が反応管内へ挿入されるに伴
い、ウェハ列後端部が先端部に比べ、ウェハ温度が高く
なるように。
First, in block 200, process conditions (wafer spacing, insertion speed, tube wall temperature, etc.) for inserting a row of wafers into the oxidation/diffusion device are set. Next, in accordance with this condition, in block 201, as the wafer row is inserted into the reaction tube, the wafer temperature at the rear end of the wafer row becomes higher than that at the front end.

管壁温度プロファイルデータを第5図に示すように設定
する。具体的には、ウェハ列が反応管内位置Z^* Z
B、Zc+ Zoに進むにつれて管中央温度設定値TF
LをTFL八rへTFLB? TFLC? TPLDと
増加させ、管中央温度設定値TFCI及び管中央温度設
定値TFRは正常状態の均熱帯温度TFより25℃、及
び50℃低く設定し、管入口部から管巣側にかけての4
W壁温度の軸方向温度プロファイルを傾斜させる。
The tube wall temperature profile data is set as shown in FIG. Specifically, the wafer row is located at the reaction tube position Z^*Z
B, Zc+ As you advance to Zo, the tube center temperature set value TF
L to TFL8r TFLB? TFLC? TPLD, the pipe center temperature set value TFCI and the pipe center temperature set value TFR are set 25°C and 50°C lower than the normal soaking zone temperature TF, and the
Tilting the axial temperature profile of the W wall temperature.

次に、ブロック202で、管壁温度プロファイルの正常
状態への回復開始時刻tを設定し、ブロック203では
、上記条件の下でウェハ温度過渡解析モデルによるウェ
ハ間温度推移シミュレーションを実行する。モデルの内
容については信学論(C)、Vo168  (C)&6
pp425−432に詳述されている。本シミュレーシ
ョン結果の一例を第6図に示す。シミュレーション条件
としては、第5図に示した管壁温度プロファイルを用い
、9.2W間隔に並べられた31枚のウェハを挿入速度
201/分で挿入し、挿入終了と同時に正常状態の管壁
温度プロファイルに戻した場合である。
Next, in block 202, a time t for starting recovery of the tube wall temperature profile to the normal state is set, and in block 203, a wafer-to-wafer temperature transition simulation is executed using a wafer temperature transient analysis model under the above conditions. Regarding the content of the model, see Theory of Faith (C), Vo168 (C) & 6
It is detailed in pp 425-432. An example of the results of this simulation is shown in FIG. As simulation conditions, using the tube wall temperature profile shown in Fig. 5, 31 wafers arranged at 9.2 W intervals were inserted at an insertion speed of 201/min, and at the same time as the insertion was completed, the tube wall temperature in the normal state This is when you return to your profile.

第6図には、比較のために、従来方式に対するウェハ温
度推移結果も併記した。同図かられかるように、本発明
により、管壁温度プロファイルを上記のように制御する
と、ウェハ列先端部のウェハ(先端から3番目のウェハ
:#3)の温度は後端部のウェハ(先端から29番目の
ウェハ:#29)の温度と、ウェハ列挿入終了直前に逆
転し、その後この逆転状態を維持しながら、徐々に正常
状態の管壁温度の設定値に面温度とも近づいていく。
For comparison, FIG. 6 also shows the wafer temperature transition results for the conventional method. As can be seen from the figure, when the tube wall temperature profile is controlled as described above according to the present invention, the temperature of the wafer at the tip of the wafer row (third wafer from the tip: #3) is lower than that of the wafer at the rear edge (#3). The temperature of the 29th wafer from the tip (#29) is reversed just before the end of the wafer row insertion, and after that, while maintaining this reversed state, the surface temperature gradually approaches the set value of the tube wall temperature in the normal state. .

この結果、両ウェハ温度の逆転以前の温度履歴の差(左
側斜線部)と逆転以後の温度履歴の差(右側斜線部)は
接合深さXjのウェハ間でのバラツキを打ち消し合うよ
うに作用する。
As a result, the difference in temperature history before the temperature reversal of both wafers (shaded area on the left) and the difference in the temperature history after the reversal (shaded area on the right) act to cancel out the variation in bonding depth Xj between wafers. .

ブロック204では、ウェハ間における接合深さX、の
均一化評価をおこない、ブロック205では、接合深さ
のバラツキσ(X」)のl′lII回の結果σ。(Xj
)との比較をおこなう。ブロック202〜205の処理
を繰り返し、ブロック206で、バラツキが最小となっ
た時の94ft IIIA度プロファイルの正常−状態
への温度回復開始時刻tを決定する。
In block 204, uniformity evaluation of the junction depths X between wafers is performed, and in block 205, the result σ of l'lII times of the variation σ(X'') in the junction depths is evaluated. (Xj
). The processes of blocks 202 to 205 are repeated, and in block 206, the time t at which the temperature of the 94ft IIIA degree profile starts to recover to the normal state when the variation is minimized is determined.

次に、ブロック207で、この時刻tと先に設定した管
壁温度プロファイルデータを酸化・拡散装置の温度制御
器2のCPUIIへ転送する。
Next, in block 207, this time t and the previously set tube wall temperature profile data are transferred to the CPU II of the temperature controller 2 of the oxidation/diffusion device.

本実施例によれば、酸化・拡散装置へのウェハ列挿入時
に発生するウェハ間における接合深さXjのバラツキを
管壁温度プロファイルの時間制御によりウェハ間での温
度履歴を制御することで最小化できる効果がある。
According to this embodiment, the variation in bonding depth Xj between wafers that occurs when a row of wafers is inserted into an oxidation/diffusion device is minimized by controlling the temperature history between wafers through time control of the tube wall temperature profile. There is an effect that can be done.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、半導体製造プロセスの酸化・拡散、ア
ニール等の高温熱処理をバッチ方式で行なう酸化・拡散
装置において、ウェハ列挿入・引出し時に発生する過渡
的なウェハ温度履歴のバラツキによる接合深さXjのウ
ェハ間のバラツキを、反応管壁温度プロファイルの時間
制御によりウェハ間での接合深さXjが均一になるよう
にできるので、半導体素子の製造歩留りを高める効果が
ある。
According to the present invention, in an oxidation/diffusion device that performs high-temperature heat treatment such as oxidation/diffusion and annealing in a semiconductor manufacturing process in a batch manner, the bonding depth may be reduced due to variations in transient wafer temperature history that occur when inserting/extracting wafer rows. The variation in Xj between wafers can be reduced by time control of the reaction tube wall temperature profile to make the bonding depth Xj uniform between wafers, which has the effect of increasing the manufacturing yield of semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すフローチャート図、第
2図は全体構成図、第3図は通常方式におけるウェハ間
温度推移図、第4図はウェハ間温度履歴力−化装置の構
成図、第5図は管壁温度プロファイル制御図、第6図は
ウェハ間温度履歴の均−化制御結果図をそれぞれ示す。 1・・・ドーピングシステム、2・・温度制御器、3・
・・発熱体、4・・・炉心管、5・・・反応管、6・・
・自動挿入・引出装置、7・・・温度測定部、9・・・
治具、10・・ウェハ、11・・・CPU、12・・ウ
ェハ間温、昧履歴均−化装置、100・・・管壁温度プ
ロファイル時間制御信号。 第7図 ゼ0ξ 茅 4 図 itrθ  重炎Jj−乃L7°ロアYイ(し時閉◆す
η膠化5茅 6 図
Fig. 1 is a flowchart showing an embodiment of the present invention, Fig. 2 is an overall configuration diagram, Fig. 3 is a diagram of temperature changes between wafers in a normal method, and Fig. 4 is a configuration of an inter-wafer temperature history force generation device. 5 shows a tube wall temperature profile control diagram, and FIG. 6 shows an equalization control result diagram of inter-wafer temperature history. 1... Doping system, 2... Temperature controller, 3...
... Heating element, 4... Furnace tube, 5... Reaction tube, 6...
・Automatic insertion/extraction device, 7...Temperature measurement section, 9...
Jig, 10...Wafer, 11...CPU, 12...Wafer temperature, history equalization device, 100...Tube wall temperature profile time control signal. Fig. 7 ze 0 ξ grass 4 Fig.

Claims (1)

【特許請求の範囲】 1、半導体製造プロセスの高温熱処理をバッチ方式で行
なう酸化・拡散方法において、反応管壁温度プロファイ
ルの時間制御により、ウェハ温度の過渡状態のバラツキ
による接合深さX_jのウェハ間におけるバラツキを均
一化させることを特徴とする酸化・拡散装置内ウェハ間
温度履歴均一化方法。 2、上記反応管壁温度プロファイルの時間制御は、ウェ
ハ温度推定用の物理モデルにより、反応管壁温度プロフ
ァイルの変化に応じたウェハ温度過渡特性をシミュレー
ションにより予め求める処理と、各ウェハの温度履歴結
果を利用して、ウェハ温度とその経過時間が支配的とな
る接合深さX_jのウェハ間での均一度が最大になるよ
うにウェハ列先端ウェハと後端ウェハの温度逆転時間を
制御させる処理とからなることを特徴とする第1項の酸
化・拡散装置内ウェハ間温度履歴均一化方法。
[Scope of Claims] 1. In an oxidation/diffusion method in which high-temperature heat treatment in a semiconductor manufacturing process is performed in a batch manner, time control of the reaction tube wall temperature profile is used to reduce the bonding depth between wafers of X_j due to variations in the transient state of the wafer temperature. A method for equalizing temperature history between wafers in an oxidation/diffusion device, characterized by equalizing variations in temperature between wafers. 2. The above-mentioned time control of the reaction tube wall temperature profile involves a process in which the wafer temperature transient characteristics in accordance with changes in the reaction tube wall temperature profile are determined in advance by simulation using a physical model for wafer temperature estimation, and the temperature history results of each wafer. A process of controlling the temperature reversal time of the leading wafer and the trailing wafer of the wafer row using 1. A method for equalizing temperature history between wafers in an oxidation/diffusion apparatus according to item 1.
JP5002787A 1987-03-06 1987-03-06 Method for making temperature hysteresis between wafers uniform in oxidlzation and diffusion device Pending JPS63217621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5002787A JPS63217621A (en) 1987-03-06 1987-03-06 Method for making temperature hysteresis between wafers uniform in oxidlzation and diffusion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5002787A JPS63217621A (en) 1987-03-06 1987-03-06 Method for making temperature hysteresis between wafers uniform in oxidlzation and diffusion device

Publications (1)

Publication Number Publication Date
JPS63217621A true JPS63217621A (en) 1988-09-09

Family

ID=12847517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5002787A Pending JPS63217621A (en) 1987-03-06 1987-03-06 Method for making temperature hysteresis between wafers uniform in oxidlzation and diffusion device

Country Status (1)

Country Link
JP (1) JPS63217621A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1777505A1 (en) * 2005-10-19 2007-04-25 Siemens Aktiengesellschaft Virtual temperature measuring point

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1777505A1 (en) * 2005-10-19 2007-04-25 Siemens Aktiengesellschaft Virtual temperature measuring point
WO2007045546A1 (en) * 2005-10-19 2007-04-26 Siemens Aktiengesellschaft Virtual temperature measuring point
US7909506B2 (en) 2005-10-19 2011-03-22 Siemens Aktiengesellschaft Virtual temperature measuring point

Similar Documents

Publication Publication Date Title
KR101420920B1 (en) Control apparatus and control method
US6780795B2 (en) Heat treatment apparatus for preventing an initial temperature drop when consecutively processing a plurality of objects
JPS63217621A (en) Method for making temperature hysteresis between wafers uniform in oxidlzation and diffusion device
CN114355998A (en) Compensation parameter acquisition method and device for semiconductor heat treatment equipment
JP4262908B2 (en) Heat treatment apparatus and heat treatment method
US6296709B1 (en) Temperature ramp for vertical diffusion furnace
JP2000195809A (en) Semiconductor manufacturing method and semiconductor manufacturing apparatus
JPH01236616A (en) Heat-treatment method for semiconductor device
JPS54154376A (en) Jig for detecting internal temperature of horizontal type heat treatment furnace
JP4783029B2 (en) Heat treatment apparatus and substrate manufacturing method
KR100849012B1 (en) Heat treatment system and heat treatment method
JP3074823B2 (en) Heat treatment equipment for semiconductor wafers
JP4463633B2 (en) Substrate processing apparatus and substrate manufacturing method
JPS59175719A (en) Heat-treatment of semiconductor device
JPH045263B2 (en)
JP2002134491A (en) Heat treatment apparatus
JPH1126413A (en) Manufacture of semiconductor device
JPS604589B2 (en) Heat treatment method for semiconductor wafers
JPS62101037A (en) Control system of temperature of wafer in oxidizing and diffusing device
JP2634595B2 (en) Semiconductor manufacturing equipment
WO2019186869A1 (en) Temperature control device and temperature control method
JP4021826B2 (en) Substrate processing apparatus and substrate manufacturing method
JPS6119122A (en) Heat treatment equipment of semiconductor integrated circuit device
JPS63128623A (en) Heat treatment control substrate and its application
JPS61120427A (en) System for uniformizing thickness of oxide film in wafer within furnace for oxidizing semiconductor