JP2634595B2 - Semiconductor manufacturing equipment - Google Patents

Semiconductor manufacturing equipment

Info

Publication number
JP2634595B2
JP2634595B2 JP62153306A JP15330687A JP2634595B2 JP 2634595 B2 JP2634595 B2 JP 2634595B2 JP 62153306 A JP62153306 A JP 62153306A JP 15330687 A JP15330687 A JP 15330687A JP 2634595 B2 JP2634595 B2 JP 2634595B2
Authority
JP
Japan
Prior art keywords
semiconductor wafer
semiconductor manufacturing
gas
semiconductor
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62153306A
Other languages
Japanese (ja)
Other versions
JPS63318130A (en
Inventor
徹 加賀
英夫 角南
誠男 田村
定之 奥平
清彦 船越
尚次 吉廣
助芳 恒川
繁 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62153306A priority Critical patent/JP2634595B2/en
Publication of JPS63318130A publication Critical patent/JPS63318130A/en
Application granted granted Critical
Publication of JP2634595B2 publication Critical patent/JP2634595B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体製造装置に関し、詳しくは、絶縁膜の
膜厚および不純物層の深さを均一にするのに好適な半導
体製造装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor manufacturing apparatus, and more particularly, to a semiconductor manufacturing apparatus suitable for making the thickness of an insulating film and the depth of an impurity layer uniform.

〔従来の技術〕[Conventional technology]

従来の半導体製造装置においては、特開昭54−123879
号に記載のように、装置内の温度を管理したり、装置内
に導入される反応性ガスの組成や流量を制御することに
より、高品質で均一な膜を形成しようとしていた。
In a conventional semiconductor manufacturing apparatus, Japanese Patent Application Laid-Open No. 54-123879
As described in the above publication, it has been attempted to form a high-quality and uniform film by controlling the temperature inside the apparatus and controlling the composition and flow rate of the reactive gas introduced into the apparatus.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術は、半導体ウエーハ自体の温度を正しく
測定しているわけではないので、実際の熱処理中のウエ
ーハの熱履歴は装置毎に異なつたり、各装置における処
理の手順が異なるなどのために、膜質や膜厚を均一に制
御するには問題があった。
In the above prior art, since the temperature of the semiconductor wafer itself is not correctly measured, the thermal history of the wafer during the actual heat treatment may be different for each apparatus, or the processing procedure in each apparatus may be different. However, there is a problem in controlling the film quality and the film thickness uniformly.

本発明の目的は、膜質および膜厚をより均一に制御す
ることができ、不純物の拡散深さをさらに正確に制御す
ることのできる半導体製造装置を提供することにある。
An object of the present invention is to provide a semiconductor manufacturing apparatus capable of controlling the film quality and film thickness more uniformly and controlling the diffusion depth of impurities more accurately.

〔問題点を解決するための手段〕[Means for solving the problem]

上記目的は、製造装置内のウエハの表面温度を経時的
に測定し、これに反応の温度係数の重みを乗じるなど、
関数による変換処理を行つた結果を経時的に積算し、処
理条件の制御情報とすることによつて達成される。
The above objective is to measure the surface temperature of the wafer in the manufacturing apparatus over time, multiply this by the weight of the temperature coefficient of the reaction,
This is achieved by integrating the result of the conversion processing by the function over time and using the result as control information of the processing condition.

〔作用〕[Action]

本発明によれば、熱処理による酸化やアニール効果を
理論上完全に積分できるため、酸化膜厚制御制性やアニ
ールによる不純物拡散の深さ制御性を飛躍的に向上でき
る。
According to the present invention, since the oxidation and annealing effects due to the heat treatment can be theoretically completely integrated, the controllability of the oxide film thickness and the control of the depth of impurity diffusion by the annealing can be remarkably improved.

〔実施例〕〔Example〕

以下、第1図を用いて第1の実施例の構造と動作を説
明する。
Hereinafter, the structure and operation of the first embodiment will be described with reference to FIG.

第1図はハロゲンランプ14を利用して加熱処理を行う
半導体制御装置に赤外温度計16,ガス分析器、関数処理
装置19,積算装置111,判断装置112,ハロゲンランプ電源1
3,ガス分析装置17、及びガス流量制御装置15を付加した
本発明の実施例である。
FIG. 1 shows an infrared thermometer 16, a gas analyzer, a function processing device 19, an integrating device 111, a judgment device 112, a halogen lamp power supply 1
3, an embodiment of the present invention to which a gas analyzer 17 and a gas flow controller 15 are added.

熱処理を開始したときから、赤外温度計16による温度
測定とガス分析装置17を用いたガス組成の測定を経時的
に行い、制御装置18内の関数処理装置19に送る。ここ
で、制御の対象がSio2膜厚x0である場合、例えば、次の
関数式(1)を用い各時間毎の到達Sio2膜厚x0を計算す
る(AS.グローブ著フイジツクス アンド テクノロジ
ー オブ セミコンダクタ デバイシズ,ジョン ウイ
リーアンドサン社刊(Physics and Technology of Semi
condnctor Devices,John Wiley and SonsInc.:A.S.Grov
e)参照). ここで、A(T),B(T)は温度Tの関数、τはSio2
膜厚x0の履歴で決まる変数である。
From the start of the heat treatment, the temperature measurement by the infrared thermometer 16 and the measurement of the gas composition by the gas analyzer 17 are performed with time, and sent to the function processor 19 in the controller 18. Here, when the control target is the Sio 2 film thickness x 0 , for example, the reached Sio 2 film thickness x 0 is calculated for each time using the following functional expression (1) (Physics and Technology by AS. Globe) Of Semiconductor Devices, John Wiley and Sun (Physics and Technology of Semi)
condnctor Devices, John Wiley and Sons Inc .: ASGrov
e)). Here, A (T) and B (T) are functions of temperature T, and τ is Sio 2
Is a variable which is determined by the history of film thickness x 0.

本実施例の場合は積算装置111は作動させる必要はな
い。Sio2膜厚x0が所望の厚さに到達したかどうかを判断
装置112で判定し、所望の厚さに到達した場合にはガス
流量制御装置15を作動させガスを止めるか、あるいはハ
ロゲンランプ電源13を切るかして酸化を停止することに
より正確なSiO2厚さを得る。
In the case of the present embodiment, it is not necessary to operate the integrating device 111. Sio 2 thickness x 0 is determined by the desired determines whether reached a thickness of 112, or if it reaches the desired thickness stopping gas actuates the gas flow control device 15, or a halogen lamp The exact SiO 2 thickness is obtained by turning off the power supply 13 or stopping the oxidation.

また、第1図に示した装置を、アニール炉として用
い、不純物の拡散深さxjを制御する場合には、熱処理を
開始したときからウエーハ表面温度Tを経時的に測定す
る。測定した温度Tを制御装置18内の関数処理装置19に
取り込む。温度測定の周期Δt秒の間に拡散深さxはΔ
xj深くなる。これは次の全微分方程式(2)で表わせ
る。
Further, the apparatus shown in FIG. 1, used as an annealing furnace, in the case of controlling the diffusion depth x j of the impurities, over time to measure the wafer surface temperature T from the time of starting the heat treatment. The measured temperature T is taken into the function processing device 19 in the control device 18. During the temperature measurement period Δt seconds, the diffusion depth x is Δ
x j deepen. This can be expressed by the following total differential equation (2).

ここで右辺第2項のΔTはΔt秒間に変化した温度を
示す。また、xjは次式で表わすことができる。
Here, ΔT in the second term on the right side indicates a temperature that has changed during Δt seconds. Further, x j can be expressed by the following equation.

ここでD(T)は拡散に用いた不純物の拡散係数、CSUB
は半導体ウエーハ基板の不純物濃度、Qは拡散開始前に
ウエーハ表面に導入しておいた不純物量である。
Where D (T) is the diffusion coefficient of the impurity used for diffusion, C SUB
Is the impurity concentration of the semiconductor wafer substrate, and Q is the amount of impurities introduced to the wafer surface before the start of diffusion.

アニール中の温度と時間の変化、及び拡散させようと
する不純物種がわかれば、上記式(2)を用いることに
よつて接合深さの変化量Δxjを計算できる。この計算結
果を積算装置111で積算し、アニール開始からt秒後の
接合深さxjを得ることができる。このxjが所望の深さに
なつたかどうかを判断装置112で判定し、ハロゲンラン
プ電源を制御する。この半導体制御装置を用いることに
よつて、拡散層深さの正確な制御が可能となる。
If the change in temperature and time during annealing and the impurity species to be diffused are known, the amount of change Δx j in the junction depth can be calculated by using the above equation (2). The calculation result is integrated by the integrating device 111, it is possible to obtain a junction depth x j of t seconds after the annealing starts. The x j is determined in the determination unit 112 whether or has decreased to a desired depth, controls the halogen lamp power. By using this semiconductor control device, it is possible to accurately control the depth of the diffusion layer.

第2図は、第2の実施例を示す。本例は横置き型の酸
化、アニール炉に本発明を適用したものであり、第1図
の反応箱を石英管114に、ハロゲンランプ及びハロゲン
ランプ電源をヒータ116及びヒータ用電源115に置き換
え、さらにウエーハローダ117を加えた点を除き、基本
的には第1図に示した第1の実施例と同じである。
FIG. 2 shows a second embodiment. In this example, the present invention is applied to a horizontal oxidation / annealing furnace. The reaction box shown in FIG. 1 is replaced with a quartz tube 114, and a halogen lamp and a halogen lamp power supply are replaced with a heater 116 and a heater power supply 115. Except that a wafer loader 117 is further added, it is basically the same as the first embodiment shown in FIG.

上記実施例ではランプアニール炉及び横置き石英管型
酸化、アニール炉を示したが、本発明は縦置き石英管型
の酸化、アニール炉等他の形式の半導体制御装置にも実
施でき、炉の形状や構造に依存しないことは勿論であ
る。
Although the lamp annealing furnace and the horizontal quartz tube type oxidation and annealing furnace are shown in the above embodiment, the present invention can be applied to other types of semiconductor control devices such as a vertical quartz tube type oxidation and annealing furnace. Of course, it does not depend on the shape or structure.

〔発明の効果〕〔The invention's effect〕

本発明によれば、酸化膜の膜厚および不純物拡散層の
深さを、高精度で制御することができる。
According to the present invention, the thickness of the oxide film and the depth of the impurity diffusion layer can be controlled with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

第1及び2図はそれぞれ本発明の第1および第2の実施
例のシステム構造を示す模式図である。 11……半導体ウエーハ、12……反応箱、13……ハロゲン
ランプ電源、14……ハロゲンランプ、15……ガス流量制
御装置、16……赤外温度計、17……ガス分析装置、18…
…制御装置、19……関数処理装置、111……積算装置、1
12……判断装置、113……温度測定用窓、114……石英
管、115……ヒータ用電源、116……ヒータ、117……ウ
エーハローダ。
FIGS. 1 and 2 are schematic diagrams showing the system structure of the first and second embodiments of the present invention, respectively. 11 Semiconductor wafer, 12 Reaction chamber, 13 Halogen lamp power supply, 14 Halogen lamp, 15 Gas flow controller, 16 Infrared thermometer, 17 Gas analyzer, 18
... Control device, 19 ... Function processing device, 111 ... Integration device, 1
12 ... judging device, 113 ... temperature measurement window, 114 ... quartz tube, 115 ... heater power supply, 116 ... heater, 117 ... wafer loader.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥平 定之 国分寺市東恋ヶ窪1丁目280番地 株式 会社日立製作所中央研究所内 (72)発明者 船越 清彦 国分寺市東恋ヶ窪1丁目280番地 株式 会社日立製作所中央研究所内 (72)発明者 吉廣 尚次 国分寺市東恋ヶ窪1丁目280番地 株式 会社日立製作所中央研究所内 (72)発明者 恒川 助芳 国分寺市東恋ヶ窪1丁目280番地 株式 会社日立製作所中央研究所内 (72)発明者 高橋 繁 国分寺市東恋ヶ窪1丁目280番地 株式 会社日立製作所中央研究所内 (56)参考文献 実開 昭58−42935(JP,U) ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Sadayuki Okuhira 1-280 Higashi-Koigabo, Kokubunji-shi, Hitachi, Ltd. Central Research Laboratory Co., Ltd. 72) Inventor Shoji Yoshihiro 1-280 Higashi Koigakubo, Kokubunji City, Hitachi, Ltd., Central Research Laboratory, Ltd. (72) Inventor Sukeyoshi Tsunekawa 1-280 Higashi Koigabo, Kokubunji City, Hitachi, Ltd. 1-280 Higashi Koigakubo, Kokubunji-shi Inside Hitachi Central Research Laboratory, Ltd.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】反応槽内に所定のガスを導入し、上記反応
槽内に置かれた半導体ウエハを加熱することによって、
上記半導体ウエハに所定の処理を行う装置において、上
記半導体ウエハの表面温度を経時的に直接測定する手段
と、当該手段によって得られた各測定値にそれぞれ重み
を乗じて積算する手段と、当該積算する手段によって得
られた積算値を所定の値と比較する手段と、上記積算値
が上記所定の値に到達したときに、上記半導体ウエハの
加熱および上記ガスの導入の少なくとも一方を停止する
手段を具備することを特徴とする半導体製造装置。
1. A method according to claim 1, wherein a predetermined gas is introduced into the reaction tank, and the semiconductor wafer placed in the reaction tank is heated.
Means for directly measuring the surface temperature of the semiconductor wafer over time, means for multiplying each measured value obtained by the means with a weight, and integrating the surface temperature of the semiconductor wafer, Means for comparing the integrated value obtained by the means to a predetermined value, and means for stopping at least one of heating of the semiconductor wafer and introduction of the gas when the integrated value reaches the predetermined value. A semiconductor manufacturing apparatus, comprising:
JP62153306A 1987-06-22 1987-06-22 Semiconductor manufacturing equipment Expired - Fee Related JP2634595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62153306A JP2634595B2 (en) 1987-06-22 1987-06-22 Semiconductor manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62153306A JP2634595B2 (en) 1987-06-22 1987-06-22 Semiconductor manufacturing equipment

Publications (2)

Publication Number Publication Date
JPS63318130A JPS63318130A (en) 1988-12-27
JP2634595B2 true JP2634595B2 (en) 1997-07-30

Family

ID=15559598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62153306A Expired - Fee Related JP2634595B2 (en) 1987-06-22 1987-06-22 Semiconductor manufacturing equipment

Country Status (1)

Country Link
JP (1) JP2634595B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4068327B2 (en) 2001-10-11 2008-03-26 株式会社東芝 Semiconductor manufacturing apparatus and semiconductor device manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842935U (en) * 1981-09-16 1983-03-23 株式会社日立製作所 semiconductor manufacturing equipment

Also Published As

Publication number Publication date
JPS63318130A (en) 1988-12-27

Similar Documents

Publication Publication Date Title
TW464983B (en) Method to selectively heat semiconductor wafers
TW200845224A (en) Thermal processing system, thermal processing method and program
JPH10154665A (en) Adaptive temperature controller and method of operation
JPWO2005010970A1 (en) Substrate processing apparatus and substrate processing method
JP2001077041A (en) Temperature calibrating method for thermal process device
JP3688264B2 (en) Heat treatment method and heat treatment apparatus
JP2634595B2 (en) Semiconductor manufacturing equipment
JP2007081348A (en) Method for controlling temperature of thermal process, method of thermal process of substrate and device of thermal process of substrate
JPH06204143A (en) Cvd equipment
JP4222461B2 (en) Batch type heat treatment method
JPH0834191B2 (en) Method for high-temperature drive-in diffusion of dopant into semiconductor wafer
JPS60727A (en) Inflared ray heat treatment device
JPH07283158A (en) Thermal treatment device and temperature controlling method thereof
JPH06132231A (en) Cvd equipment
JP2511288B2 (en) Semiconductor device heat treatment method
JPH07201765A (en) Heat-treating device and heat treatment
JP4802019B2 (en) Temperature control method for substrate processing apparatus, substrate processing apparatus and substrate processing system
JP2534193Y2 (en) Temperature measuring device
JPH05267200A (en) Semiconductor thermal treatment device
JPH05217930A (en) Wafer heating apparatus
JP3074823B2 (en) Heat treatment equipment for semiconductor wafers
JP2976318B2 (en) Monitoring method of lamp annealing temperature
JPS62101037A (en) Control system of temperature of wafer in oxidizing and diffusing device
JPH063353A (en) Method for measuring thickness of oxide film on rear surface of semiconductor wafer
JP2004071987A (en) Method of manufacturing semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees