JPS63217381A - Developer supplying member and its production - Google Patents

Developer supplying member and its production

Info

Publication number
JPS63217381A
JPS63217381A JP5179787A JP5179787A JPS63217381A JP S63217381 A JPS63217381 A JP S63217381A JP 5179787 A JP5179787 A JP 5179787A JP 5179787 A JP5179787 A JP 5179787A JP S63217381 A JPS63217381 A JP S63217381A
Authority
JP
Japan
Prior art keywords
fluorine
developer
amorphous carbon
carbon film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5179787A
Other languages
Japanese (ja)
Inventor
Toshiya Natsuhara
敏哉 夏原
Mochikiyo Osawa
大澤 以清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP5179787A priority Critical patent/JPS63217381A/en
Priority to US07/164,448 priority patent/US4836136A/en
Priority to DE3807112A priority patent/DE3807112C2/en
Publication of JPS63217381A publication Critical patent/JPS63217381A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dry Development In Electrophotography (AREA)

Abstract

PURPOSE:To prevent the deterioration of the image quality due to bias drop, and to improve the toner electrification, the friction-resistance and the carrying characteristics of a developer by forming an amorphous carbon film contg.fluorine provided on a cylinderical substrate in a rugged spotting state by a glow discharge decomposing method in a vacuum atmosphere. CONSTITUTION:The amorphous carbon film contg. fluorine is formed on the cylinderical aluminum substrate 752 by making the inside of a reaction chamber 733 in a coating layer manufacturing apparatus into a high vacuum, and feeding gaseous hydrogen and gaseous tetrafluorocarbon in said reaction chamber, and subjecting to a plasma polymerization reaction. The rugged spotting surface is formed on the substrate by transferring the substrate to an electron beam deposition device and forming a latent image on the substrate and transferring again the obtd. substrate to the coating layer manufacturing device followed by plasma-etching. Since the content of a fluorine atom contg. in the polymerized film is 0.1-35atom.%, the friction-resistance of the titled member to an another member is increased. The deterioration of the image quality due to the bias drop, and the electrode effect of the excess and deficient electrification is prevented, and the carrying characteristics of the developer of the titled member is improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は現像剤供与部材、特に、電子写真複写機の現像
器における現像剤供与部材に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a developer donor member, and more particularly to a developer donor member in a developer unit of an electrophotographic copying machine.

従来p練街 カールソン法に代表されるqとく、一般に、電子写真複
写法においては、光導電性を有する感光体上に帯電およ
び露光工程により静TL潜作を形成し、その後、トナー
とキャリアとからなる二成分系現像剤あるいはトナーだ
けからなる一成分系現像剤を回転可能な現像剤供与部材
周面に保持し、これを前記静電潜像に接触せしめ、トナ
ー像として顕像化する現像工程が用いられる。
Conventionally, in electrophotographic copying methods, such as the Renmachi Carlson method, a latent electrostatic TL is formed on a photoconductor by a charging and exposure process, and then toner and carrier are combined. A two-component developer consisting of or a one-component developer consisting only of toner is held on the circumferential surface of a rotatable developer donor member, and brought into contact with the electrostatic latent image to be visualized as a toner image. process is used.

従来よりこれらの現像方法における問題点の一つとして
いわゆるカブリ現象があることは周知の事実である。こ
れは静電潜像形成工程において感光体上露光部の電荷が
完全に消滅しない状態で現像を行なうために残留電荷に
よりトナーが静電的に付着し、その結果、複写物が全体
的に汚れた状態を呈する現象をいう。この様な問題を解
決するために、現像バイアス印加法が常用されている。
It is a well-known fact that one of the conventional problems in these developing methods is the so-called fog phenomenon. This is because during the electrostatic latent image forming process, development is performed before the charge on the exposed area on the photoreceptor is completely eliminated, so toner adheres electrostatically due to the residual charge, resulting in the copy becoming smeared overall. This refers to a phenomenon that exhibits a certain state. In order to solve such problems, a developing bias application method is commonly used.

現像バイアス法とは、現像に際して感光体上の露光部の
有する残留電位と同極性で、かつ、それ以上の直流電圧
もしくは交流を重畳せしめtコ直流電圧を現像剤供与部
材側に設けた電極に印加すると共に、この電極の対向電
極となるべき前記感光体もしくは感光体を構成するため
の一要素である導電性支持体を接地に保って両者間に電
界を形成せしめ、前記感光体の露光部の有する帯電極性
と印加バイアス電圧極性との反撥作用を利用して、前記
露光部へのトナー付着を防止する方法である。
The development bias method is a method in which, during development, a DC voltage or an AC voltage of the same polarity and higher polarity than the residual potential of the exposed area on the photoreceptor is superimposed, and the DC voltage is applied to an electrode provided on the developer supplying member side. At the same time, the photoreceptor that is to be the opposite electrode of this electrode or a conductive support that is one of the components of the photoreceptor is kept grounded to form an electric field between the two, and the exposed portion of the photoreceptor is This is a method of preventing toner from adhering to the exposed area by utilizing the repulsion between the charged polarity of the toner and the applied bias voltage polarity.

上述したものは、感光体上に形成された静電潜像と逆極
性の電荷を持つトナーによって現像動作を行なう正規現
像に関するものであるが、潜体と同極性の電荷を持つト
ナーを使用する反転現像の場合においても、極性あるい
は電位量等に差異はあるものの、同様の手法によりバイ
アス電圧が印加される。この現像バイアス印加法は、カ
ブリ現象を防止するためには有効な方法ではあるが、反
面それに付随して新たな問題を引き起こす。
The above-mentioned method is related to regular development in which the developing operation is performed using a toner having a charge of the opposite polarity to the electrostatic latent image formed on the photoreceptor, but a toner having a charge of the same polarity as the latent image is used. Even in the case of reversal development, the bias voltage is applied using the same method, although there are differences in polarity, potential amount, etc. This developing bias application method is an effective method for preventing the fogging phenomenon, but on the other hand, it causes new problems.

例えば、前記現像剤供与部材側電極および前記感光体側
電極間が電気的にリークした場合、現像バイアスの低減
によるカブリ現象を生じせしめる事がある。このような
電気的リークの発生要因には幾つかのものが挙げられる
が、例えば、二成分現像の場合において現像剤のキャリ
アとして常用される磁性体粒子が感光体層を貫通し、導
電性ノ1(板にまで達したような場合に発生する。この
現象は感光体が低硬度な時しばしば発生する。特に、最
近進歩が著しい有機感光体は、硬度が低いため問題とな
る。また、感光体上に往々にして発生ずる感光層のいわ
ゆるピンホール状の欠陥部においても、二成分現像では
キャリアとして常用される磁性体粒子と感光体の導電性
基板とが接触した場合、また、−成分現像では前記現像
剤供与部材側電極と感光体の導電性基板とが直接接触し
た場合に発生する。このような現象に基づくいわゆるバ
イアス落ちは、リークが発生した部分のみならずリーク
発生時に現像剤と感光体が接している部分全体に影響が
及ぶため、実用の複写機においては画像上に帯状のカブ
リが発生し、リーク発生自体はわずかの欠陥部位におけ
る現象であるにもかかわらず画像品位を著しく損なう。
For example, if electrical leakage occurs between the developer-donating member-side electrode and the photoreceptor-side electrode, a fogging phenomenon may occur due to a reduction in the developing bias. There are several factors that can cause such electrical leakage, but for example, in the case of two-component development, magnetic particles commonly used as developer carriers penetrate the photoreceptor layer, causing conductive particles to pass through the photoreceptor layer. 1 (This phenomenon occurs when the photoreceptor reaches the plate. This phenomenon often occurs when the photoreceptor has low hardness. In particular, organic photoreceptors, which have recently made remarkable progress, are problematic because of their low hardness. Even in the so-called pinhole-like defects that often occur on the photosensitive layer, when the magnetic particles commonly used as a carrier in two-component development come into contact with the conductive substrate of the photoreceptor, the -component During development, this occurs when the electrode on the side of the developer donor member comes into direct contact with the conductive substrate of the photoreceptor.The so-called bias drop based on this phenomenon occurs not only in the area where the leak occurs, but also in the developer when the leak occurs. This affects the entire area where the photoreceptor is in contact with the photoreceptor, so in practical copying machines, band-shaped fog occurs on the image, and even though the leak itself is a phenomenon in a small defective area, it can affect the image quality. Significant damage.

一方、−成分現像の場合においては静電潜像の極性並び
に正規現像か反転現像かの種別に応じて現像前にトナー
を所定の極性に帯電させる必要があり、例えば、トナー
と摩擦帯電序列において隔たっている摩擦帯電ブレード
を使用する方法や、コロナ帯電器によりトナーを帯電さ
せる方法や、バイアス電圧の印加された金属ブレードを
トナーと接触させてトナーに電荷を付与して帯電させる
方法等が考えられている。しかしながら、摩擦帯電ブレ
ード方法はトナーの帯電量が不充分なため高速現像には
適きないとか、充分にトナーを帯電きせるために多数の
摩擦帯電ブレードを配置しなければならないという問題
があった。コロナ放電器による方法は、コロナ帯電時ト
ナーが電界の作用で飛散したり、トナ一層の内部まで充
分に帯電しない等の問題を有していた。また、金属ブレ
ードによる電荷付与方法は、上述の問題は少ないものの
、現像剤供与部材を導電性にして金属ブレードと現像剤
供与部材との間に電位差を形成し、この間を通過するト
ナーを帯電させるため、現像時、現像剤供与部材による
電極効果が効き過ぎてエツジ効果がでないという現象が
生ずる。即ち、−成分トナーを用いる現像においては、
現像剤供与部材上のトナ一層厚は、高々50μmである
ため、静電潜像面と現像剤供与部材表面とがトナ一層厚
以下に接近するため極めて大きな電極効果が生じ、従っ
て、階調性が悪く、低濃度原稿の再現性が悪いといった
間層があった。
On the other hand, in the case of -component development, it is necessary to charge the toner to a predetermined polarity before development depending on the polarity of the electrostatic latent image and the type of regular development or reversal development. Possible methods include using separate friction charging blades, charging the toner with a corona charger, and charging the toner by bringing a metal blade to which a bias voltage is applied into contact with the toner. It is being However, the triboelectric charging blade method has problems in that it is not suitable for high-speed development because the amount of charge on the toner is insufficient, and that a large number of triboelectric charging blades must be arranged to sufficiently charge the toner. The method using a corona discharger has problems such as the toner scattering due to the action of the electric field during corona charging and the inside of the toner layer not being sufficiently charged. In addition, although the above-mentioned problems are less common in the charge applying method using a metal blade, the developer donor member is made conductive to form a potential difference between the metal blade and the developer donor member, and the toner passing between the metal blade and the developer donor member is charged. Therefore, during development, a phenomenon occurs in which the electrode effect by the developer supplying member is too strong and there is no edge effect. That is, in development using -component toner,
Since the thickness of one layer of toner on the developer donor member is at most 50 μm, an extremely large electrode effect occurs because the electrostatic latent image surface and the surface of the developer donor member approach each other to less than the thickness of the toner layer. There were problems such as poor quality and poor reproducibility of low-density originals.

これらの問題点を解決するために現像剤供与部材に高抵
抗層或は高硬度層を被覆する手法がある。
In order to solve these problems, there is a method of coating the developer donor member with a high resistance layer or a high hardness layer.

即ち、感光体と現像剤供与部材との間に常に一定の抵抗
層を介在させることによって、前述し・た如きいわゆる
バイアス落ち、帯電量不足あるいは過大な電極効果を防
止しようとするものである。
That is, by always interposing a constant resistance layer between the photoreceptor and the developer supplying member, it is intended to prevent so-called bias drop, insufficient charge amount, or excessive electrode effect as described above.

例えば、特開昭51−6730号公報には、エンドレス
部材表面にアルマイト処理による高抵抗層、あるいは、
珪素樹脂、尿素樹脂、メラミン樹脂、ポリビニールブチ
ラール樹脂等による被覆層を設けた電子写真複写法にお
ける現像方法が開示されている。また、特開昭55−4
6768号公報には、現像剤供与部材に体積固有抵抗率
が108Ωam乃至1015cmのシリコンゴム、ネオ
ブレンゴム、ニトリルゴム等による表面層を約5mm設
けた静電潜体現像装置が開示されている。
For example, Japanese Patent Application Laid-Open No. 51-6730 discloses a high resistance layer formed by alumite treatment on the surface of an endless member, or
A developing method for electrophotographic copying in which a coating layer of silicone resin, urea resin, melamine resin, polyvinyl butyral resin, etc. is provided is disclosed. Also, JP-A-55-4
Japanese Patent No. 6768 discloses an electrostatic latent developing device in which a developer supplying member is provided with a surface layer of about 5 mm made of silicone rubber, neoprene rubber, nitrile rubber, etc. and having a volume resistivity of 10 8 Ωam to 10 15 cm.

しかし、これらの開示に見られるような現像剤供与部材
に樹脂系の高抵抗層或は高硬度層を被覆しただけでは、
樹脂系被覆層の摩擦係数が低いため、現像剤供与部材の
本来の機能としての現像剤の搬送性が確保されず好適な
画像濃度を得ることができない。そこで現像剤供与部材
表面に微小な凹凸を形成し現像剤の担持性能を向上させ
ることが有効となるが、これらの被覆層に対し従来その
ような微細加工を施す手段並びにそのような微細加工を
施せるような材料はなかった。
However, simply coating the developer donor member with a resin-based high resistance layer or high hardness layer as seen in these disclosures does not
Since the resin-based coating layer has a low coefficient of friction, the developer supplying member cannot maintain its original function of conveying the developer, making it impossible to obtain a suitable image density. Therefore, it is effective to improve the developer carrying performance by forming minute irregularities on the surface of the developer donor member, but there are no conventional methods for applying such microfabrication to these coating layers, and there are no methods for applying such microfabrication to these coating layers. There were no materials that could be used.

発明が解決しようとする間H点 前述した如きバイアス落ち、帯電量不足あるいは過大な
電極効果による画像品位の低減を解決するために、現像
剤供与部材に被覆層を設ける技術において、この被覆層
は相応の高抵抗を有する必要がある。また、この被覆層
は、複写機内での実使用時にしばしば発生する現像剤に
よる汚染あるいは他部材との接触摩耗による傷を発生し
ないように、現像剤との融着性が低くかつ高硬度な材料
を用いる必要がある。また、この被覆層は、現像剤供与
部材上に設けられた被rIi層全域にわたっていわゆる
抵抗値のムラを有ざず、さらにこの被覆層と前記感光体
との間のいわゆる現イ象ギャップを一定に保つために、
均質で均等な膜厚を有する膜でなくてはならない。ざら
に、このような被覆層を有する現像剤供与部材は充分な
現像剤の搬送性能を備える必要がある。しかしながら、
従来技術は必ずしもこれらの性能を満足するものとはい
えず、より高性能な被覆層が必要とされていた。
In order to solve the above-mentioned problem of bias drop, insufficient charge amount, or excessive electrode effect, the image quality is reduced due to the above-mentioned bias drop, insufficient charge amount, or excessive electrode effect. It is necessary to have a correspondingly high resistance. In addition, this coating layer is made of a material that has low adhesion to the developer and is highly hard, in order to prevent contamination from the developer and scratches caused by contact wear with other parts, which often occur during actual use in copying machines. It is necessary to use Further, this coating layer has no so-called unevenness in resistance value over the entire area of the rIi layer provided on the developer donor member, and furthermore, the so-called phenomenon gap between this coating layer and the photoreceptor is kept constant. In order to keep
The film must be homogeneous and have an even thickness. In general, a developer supplying member having such a coating layer needs to have sufficient developer transport performance. however,
Conventional techniques cannot necessarily satisfy these performances, and a coating layer with higher performance is required.

本発明は、これらの問題点を全て解消すると共に、従来
とは全く材料も製法も異なる被覆層を有する現像剤供与
部材を提供しようとするものである。
The present invention aims to solve all of these problems and to provide a developer-donating member having a coating layer made of completely different materials and manufacturing methods from those of the prior art.

”点を”決するための 即ち、本発明の現像剤供与部材は、真空中グロー放電分
解法から生成される弗素含有非晶質炭素膜により被覆さ
れ、かつ、この弗素含有非晶質炭素膜が斑点状凹凸を有
することを特徴とするものである。ざらに、本発明の現
像剤供与部材の製造方法は、真空中グロー放電分解法か
ら生成される弗素含有非晶質炭素膜により被覆する工程
と、この弗素含有非晶質炭素膜に電子ビームを照射して
潜像を形成する工程と、この潜像をプラズマエツチング
により現像する工程とを含むことを特徴とするものであ
る。
In order to determine the "point", the developer donor member of the present invention is coated with a fluorine-containing amorphous carbon film produced by a vacuum glow discharge decomposition method, and this fluorine-containing amorphous carbon film is It is characterized by having speckled irregularities. In general, the method for producing a developer donor member of the present invention includes a step of coating with a fluorine-containing amorphous carbon film produced by a glow discharge decomposition method in a vacuum, and a step of applying an electron beam to the fluorine-containing amorphous carbon film. This method is characterized by comprising the steps of forming a latent image by irradiation and developing the latent image by plasma etching.

本発明における弗素含有非晶質炭素膜の作製には、炭化
水素化合物を用いることができる。この炭化水素化合物
における相状態は常温常圧において必ずしも気相である
必要はなく、加熱或は減圧等により溶融、蒸発、昇華等
を経て気化しうるものであれば、液相でも固相でも使用
可能である。
Hydrocarbon compounds can be used for producing the fluorine-containing amorphous carbon film in the present invention. The phase state of this hydrocarbon compound does not necessarily have to be a gas phase at room temperature and normal pressure; it can be used in either a liquid or solid phase as long as it can be vaporized through melting, evaporation, sublimation, etc. by heating or reduced pressure. It is possible.

炭化水素化合物としては、例えば、飽和炭化水素、不飽
和炭化水素、脂環式炭化水素、芳香族炭化水素、等が用
いられる。
As the hydrocarbon compound, for example, saturated hydrocarbons, unsaturated hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, etc. are used.

使用可能な炭化水素化合物には種類が多いが、飽和炭化
水素としては、例えば、メタン、エタン、プロパン、ブ
タン、ペンタン、ヘキサン、ヘプタン、オクタン、ノナ
ン、デカン、ウンデカン、ドデカン、トリデカン、テト
ラデカン、ペンタデカン、ヘキサデカン、ヘプタデカン
、オクタデカン、ノナデカン、エイコサン、ヘンエイコ
サン、トコサン、トリコサン、テトラコサン、ペンタコ
サン、ヘキサコサン、ヘプタコサン、オクタコサン、ノ
ナコサン、トリアコンタン、トドリアコンタン、ペンタ
トリアコンタン、等のノルマルパラフィン並びに、イソ
ブタン、イソペンタン、ネオペンタン、イソヘキサン、
ネオヘキサン、2,3−ジメチルブタン、2−メチルヘ
キサン、3−エチルペンタン、2.2−ジメチルペンタ
ン、2,4−ジメチルペンタン、3.3−ジメチルペン
タン、トリブタン、2−メチルへブタン、3−メチルへ
ブタン、2.2−ジメチルヘキサン、2.2.5−ジメ
チルヘキサン、2,2.3−トリメチルペンタン、2.
2.4−トリメチルペンタン、2,3゜3−トリメチル
ペンタン、2,3.4−)ジメチルペンタン、イソナノ
ン、等のイソパラフィン、等が用いられる。
There are many types of hydrocarbon compounds that can be used, but examples of saturated hydrocarbons include methane, ethane, propane, butane, pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, and pentadecane. , hexadecane, heptadecane, octadecane, nonadecane, eicosane, heneicosane, tocosane, tricosane, tetracosane, pentacosane, hexacosane, heptacosane, octacosane, nonacosane, triacontane, todoriacontane, pentatriacontane, and other normal paraffins, as well as isobutane, isopentane, neopentane, isohexane,
Neohexane, 2,3-dimethylbutane, 2-methylhexane, 3-ethylpentane, 2.2-dimethylpentane, 2,4-dimethylpentane, 3.3-dimethylpentane, tributane, 2-methylhebutane, 3 -Methylhebutane, 2.2-dimethylhexane, 2.2.5-dimethylhexane, 2,2.3-trimethylpentane, 2.
Isoparaffins such as 2,4-trimethylpentane, 2,3°3-trimethylpentane, 2,3,4-)dimethylpentane, isonanone, etc. are used.

不飽和炭化水素としては、例えば、エチレン、プロピレ
ン、イソブチレン、1−ブテン、2−ブテン、1−ペン
テン、2−ペンテン、2−メチル−1−ブテン、3−メ
チル−1−ブテン、2−メチル−2−ブテン、1−ヘキ
セン、テトラメチルエチレン、1−ヘプテン、1−オク
テン、1−ノネン、1−デセン、等のオレフィン、並び
に、アレン、メチルアレン、ブタジェン、ペンタジェン
、ヘキサジエン、シクロペンタジェン、等のジオレフィ
ン、並びに、オシメン、アロシメン、ミルセン、ヘキサ
トリエン、等のトリオレフイン、並びに、アセチレン、
メチルアセチレン、1−ブチン、2−ブチン、1−ペン
チン、1−ヘキシン、1−ヘプチン、1−オクチン、1
−ノニン、1−デシン、等が用いられる。
Examples of unsaturated hydrocarbons include ethylene, propylene, isobutylene, 1-butene, 2-butene, 1-pentene, 2-pentene, 2-methyl-1-butene, 3-methyl-1-butene, 2-methyl -Olefins such as 2-butene, 1-hexene, tetramethylethylene, 1-heptene, 1-octene, 1-nonene, 1-decene, and allene, methylalene, butadiene, pentadiene, hexadiene, cyclopentadiene, diolefins such as ocimene, allocimene, myrcene, hexatriene, and acetylene,
Methylacetylene, 1-butyne, 2-butyne, 1-pentyne, 1-hexyne, 1-heptyne, 1-octyne, 1
-nonine, 1-decyne, etc. are used.

脂環式炭化水素としては、例えば、シクロプロパン、シ
クロブタン、シクロペンタン、シクロヘキサン、シクロ
へブタン、シクロオクタン、シクロノナン、シクロデカ
ン、シクロウンデカン、シクロドデカン、シクロトリデ
カン、シクロテトラデカン、シクロペンタデカン、シク
ロヘキサデカン、等のシクロパラフィン並びに、シクロ
プロペン、シクロブテン、シクロペンテン、シクロヘキ
セン、シクロヘプテン、シクロオクテン、シクロノネン
、シクロデセン、等のシクロオレフィン並びに、リモネ
ン、テルビルン、フエランドレン、シルベストレン、ツ
エン、カレン、ピネン、ボルニレン、カンフエン、フエ
ンチェン、シクロウンデカン、トリシクレン、ビサボレ
ン、ジンギベレン、クルクメン、フムレン、カジネンセ
スキベニヘン、セリネン、カリオフィレン、サンタレン
、セドレン、カンホレン、フィロクラテン、ボドカルブ
レン、ミレン、等のテルペン並びに、ステロイド等が用
いられる。
Examples of alicyclic hydrocarbons include cyclopropane, cyclobutane, cyclopentane, cyclohexane, cyclohebutane, cyclooctane, cyclononane, cyclodecane, cycloundecane, cyclododecane, cyclotridecane, cyclotetradecane, cyclopentadecane, cyclohexadecane, Cycloparaffins such as cyclopropene, cyclobutene, cyclopentene, cyclohexene, cycloheptene, cyclooctene, cyclononene, cyclodecene, and cycloolefins such as limonene, tervirun, phelandrene, sylvestrene, thuene, carene, pinene, bornylene, kamphuen, fuenchen , cycloundecane, tricyclene, bisabolene, zingiberene, curcumene, humulene, kajinensesesquivenichen, selinene, caryophyllene, santarene, cedrene, campholene, phylloclatene, bodocarbrene, mirene, and other terpenes, steroids, and the like are used.

芳香族炭化水素としては、例えば、ベンゼン、トルエン
、キシレン、ヘミメンテン、プソイドクメン、メシチレ
ン、プレニテン、インジュレン、ジュレン、ペンタメチ
ルベンゼン、ヘキサメチルベンゼン、エチルベンゼン、
プロピルベンゼン、クメン1.スチレン、ビフェニル、
テルフェニル、ジフェニルメタン、トリフェニルメタン
、ジベンジル、スチルベン、インデン、ナフタリン、テ
トラリン、アントラセン、フェナントレン、等が用いら
れる。
Examples of aromatic hydrocarbons include benzene, toluene, xylene, hemimentene, pseudocumene, mesitylene, prenitene, indulene, durene, pentamethylbenzene, hexamethylbenzene, ethylbenzene,
Propylbenzene, cumene 1. styrene, biphenyl,
Terphenyl, diphenylmethane, triphenylmethane, dibenzyl, stilbene, indene, naphthalene, tetralin, anthracene, phenanthrene, etc. are used.

これらの炭化水素化合物の相状態は常温常圧において必
ずしも気体とは限らないが、液体または固体であっても
加熱あるいは減圧等により容易に融解を経て気化でき、
従って本発明における弗素含有非晶質炭素膜を作製する
ための真空中グロー放電分解法にはプラズマCVD (
ChemicaI  Vapor  Depositi
on)の常法を用いる事が可能である。
The phase state of these hydrocarbon compounds is not necessarily gaseous at normal temperature and pressure, but even if they are liquid or solid, they can be easily melted and vaporized by heating or reduced pressure.
Therefore, the plasma CVD (
Chemica I Vapor Deposit
on) can be used.

本発明における弗素含有非晶質炭素膜には炭化水素化合
物の他に、膜中に弗素原子を添加するために弗素化合物
が使用きれる。この弗素化合物における相状態は常温常
圧において必ずしも気相である必要はなく、加熱或は減
圧等により溶融、蒸発、昇華等を経て気化しうるもので
あれば、液相でも固相でも使用可能である。弗素化合物
とじては、例えば、弗素、弗化水素、弗化塩素、弗化臭
素、弗化沃素、弗化硫黄、弗化酸素、弗化砒素、弗化硼
素、弗化珪素、弗化水素アンモニウム、弗化水素カリウ
ム、弗化スルフリル、弗化セレン、弗化チオニル、弗化
チオホスホリル、弗化窒素、弗化テルル、弗化ニオブ、
弗化ニトリル、弗化ニトロシル、弗化シアン、弗化ホス
ホリル、等の無機化合物、あるいは、弗化メチル、弗化
エチル、弗化プロピル、弗化ブチル、弗化アミル、弗化
ヘキシル、弗化ヘプチル、弗化オクチル、弗化ノニル、
弗化デシル、弗化エチレン、弗化ブチレン、弗化ブタジ
ェン、弗化アセチル、弗化ビニリデン、フルオロベンゼ
ン、フルオルスチレン、フルオロホルム、弗化オキサリ
ル、弗化カルボニル、弗化エチリデン、弗化アリル、弗
化クロミル、弗化シアン等の有機化合物が用いられる。
In the fluorine-containing amorphous carbon film of the present invention, in addition to the hydrocarbon compound, a fluorine compound can be used to add fluorine atoms into the film. The phase state of this fluorine compound does not necessarily have to be a gas phase at room temperature and pressure; it can be used in either a liquid or solid phase as long as it can be vaporized through melting, evaporation, sublimation, etc. by heating or reduced pressure. It is. Examples of fluorine compounds include fluorine, hydrogen fluoride, chlorine fluoride, bromine fluoride, iodine fluoride, sulfur fluoride, oxygen fluoride, arsenic fluoride, boron fluoride, silicon fluoride, and ammonium hydrogen fluoride. , potassium hydrogen fluoride, sulfuryl fluoride, selenium fluoride, thionyl fluoride, thiophosphoryl fluoride, nitrogen fluoride, tellurium fluoride, niobium fluoride,
Inorganic compounds such as nitrile fluoride, nitrosyl fluoride, cyanogen fluoride, phosphoryl fluoride, or methyl fluoride, ethyl fluoride, propyl fluoride, butyl fluoride, amyl fluoride, hexyl fluoride, heptyl fluoride , octyl fluoride, nonyl fluoride,
Decyl fluoride, ethylene fluoride, butylene fluoride, butadiene fluoride, acetyl fluoride, vinylidene fluoride, fluorobenzene, fluorostyrene, fluoroform, oxalyl fluoride, carbonyl fluoride, ethylidene fluoride, allyl fluoride, Organic compounds such as chromyl fluoride and cyanogen fluoride are used.

これらの弗素化合物の相状態は常温常圧において必ずし
も気体とは限らないが、液体または固体であっても加熱
あるいは減圧等により容易に融解を経て気化でき、従っ
て本発明における弗素含有非晶質炭素膜を作製するため
の真空中グロー放電分解法にはプラズマCVDの常法を
用いることが可能である。即ち、前記化合物の中から少
なくとも炭素原子と弗素原子が原料ガス中に含まれるよ
うに使用する化合物を選択し、この原料ガスを減圧下で
放電分解し、発生したプラズマ雰囲気中に含まれる活性
中性種あるいは荷電種を基板上に拡散、電気力、あるい
は磁気力等により誘導し、基板上での再結合反応により
同相として堆積きせるプラズマCVD反応から重合生成
される。
The phase state of these fluorine compounds is not necessarily gaseous at normal temperature and pressure, but even if they are liquid or solid, they can be easily melted and vaporized by heating or reduced pressure, and therefore, the fluorine-containing amorphous carbon in the present invention A conventional method of plasma CVD can be used for the in-vacuum glow discharge decomposition method for producing the film. That is, a compound to be used is selected from among the above-mentioned compounds so that at least carbon atoms and fluorine atoms are contained in the raw material gas, and this raw material gas is subjected to discharge decomposition under reduced pressure to decompose the active molecules contained in the generated plasma atmosphere. Polymerization is produced through a plasma CVD reaction in which sexual or charged species are induced onto a substrate by diffusion, electric force, magnetic force, etc., and deposited as the same phase through a recombination reaction on the substrate.

これらの化合物ガスは、プラズマCVD反応における放
電安定性、成膜安定性、あるいは、ガス供給安定性等を
保つために、例えば、水累、ヘリウム、アルゴン、ある
いは、キセノン等のキャリアガスと混合して用いること
かで伊る。
These compound gases are mixed with a carrier gas such as water, helium, argon, or xenon in order to maintain discharge stability, film formation stability, or gas supply stability in plasma CVD reactions. Is it possible to use it?

また、これらの化合物ガスは、作製される弗素含有非晶
質炭素膜の電気的特性を調整するために、例えば、周期
律表第1II族に属する原子を含むガス、周期律表第V
族に属する原子を含むガス、アルカリ金属原子を含むガ
ス、あるいは、ハロゲン原子を含むガスと混合して用い
ることができる。
In addition, these compound gases may be used, for example, gases containing atoms belonging to Group 1II of the periodic table, gases containing atoms belonging to Group V of the periodic table, etc., in order to adjust the electrical properties of the fluorine-containing amorphous carbon film to be produced.
It can be used in combination with a gas containing atoms belonging to the group, a gas containing an alkali metal atom, or a gas containing a halogen atom.

本発明における弗素含有非晶質炭素膜の膜厚は凸部にお
いて、1μm乃至2mm、好ましくは10Ltm乃至1
mm、mm上は100μm乃至500μmとする事が好
ましい。膜厚が1μmより薄いと必要とされる抵抗値が
必ずしも確保されなくなり、また、耐摩耗性が低下し好
ましくない。膜厚が2mmより厚いと抵抗値が高く成り
過ぎ、また、生産性の面からも好ましくない。また、こ
の弗素含有非晶質炭素膜の堆積速度は、0.01μm/
分乃至50μm/分とすることが好ましい。
The thickness of the fluorine-containing amorphous carbon film in the present invention is 1 μm to 2 mm, preferably 10 Ltm to 1 μm at the convex portion.
It is preferable that mm and mm are 100 μm to 500 μm. If the film thickness is less than 1 μm, the required resistance value will not necessarily be ensured, and the wear resistance will decrease, which is not preferable. If the film thickness is thicker than 2 mm, the resistance value will be too high, and it is also unfavorable from the viewpoint of productivity. Moreover, the deposition rate of this fluorine-containing amorphous carbon film is 0.01 μm/
It is preferable to set it to 50 micrometers/minute.

堆積速度が0.01μm/分より低いと、生産性の面で
好ましくない。堆積速度が50μm/分より高いと弗素
含有非晶質炭素膜の成膜性が低下し、いわゆる荒れた膜
となり基板表面の被覆性が低下し好ましくない。この弗
素含有非晶質炭素膜の膜厚は、成膜時間の調整により容
易に制御可能である。また、この弗素含有非晶質炭素膜
の堆積速度は、使用するプラズマCVD装置の形態によ
り制御量の差異はあるが、堆積速度を高くするには、例
えば、前記有機化合物の流量を増やす、印加電力を大き
くする、印加電力の周波数を低くする、基板温度を低く
する等の手段、あるいはこれらの手段の組合せを用いる
ことにより容易に制御可能である。
A deposition rate lower than 0.01 μm/min is unfavorable in terms of productivity. If the deposition rate is higher than 50 μm/min, the film-forming properties of the fluorine-containing amorphous carbon film will be lowered, resulting in a so-called rough film and the coverage of the substrate surface will be lowered, which is not preferable. The thickness of this fluorine-containing amorphous carbon film can be easily controlled by adjusting the film formation time. The deposition rate of this fluorine-containing amorphous carbon film has different control amounts depending on the type of plasma CVD equipment used, but in order to increase the deposition rate, for example, increasing the flow rate of the organic compound, applying This can be easily controlled by increasing the power, lowering the frequency of applied power, lowering the substrate temperature, or a combination of these methods.

また本発明における弗素含有非晶質炭素膜中に含有され
る弗素原子の量は0.1乃至35原子%、好ましくは2
乃至30原子%、最適には10乃至25原子%とするこ
とが好ましい。弗素原子の含有量が0.1原子%より少
ないと現像剤による汚染あるいは他部材との接触摩耗に
よる傷が発生しやすくなり耐久性の面で好ましくない。
Further, the amount of fluorine atoms contained in the fluorine-containing amorphous carbon film in the present invention is 0.1 to 35 at%, preferably 2
The content is preferably 10 to 25 atomic %, most preferably 10 to 25 atomic %. If the fluorine atom content is less than 0.1 atomic %, it is unfavorable from the viewpoint of durability because it tends to be contaminated by developer or scratches due to contact wear with other members.

弗素原子の含有量が35原子%より多いと前述の一成分
現像における帯電量の低下を招き好ましくない。
If the content of fluorine atoms is more than 35 at %, the amount of charge in the one-component development mentioned above will decrease, which is not preferable.

また、本発明における現像剤供与部材の形状は、製法的
にも実用的にも特に限定を受けるものではなく、例えば
円筒形状あるいはベルト形状等を有することができる。
Further, the shape of the developer supplying member in the present invention is not particularly limited in terms of manufacturing method or practicality, and may have, for example, a cylindrical shape or a belt shape.

本発明における弗素含有非晶質炭素膜に設けられた斑点
状凹凸は、前記原料ガスのうちの少なくとも一つを真空
中グロー放電によりプラズマ重合せしめた弗素含有非晶
質炭素膜に電子ビームを照射して斑点状潜像を形成する
工程と、この斑点状潜像をプラズマエツチングにより現
像する工程から形成される。
The speckled irregularities provided on the fluorine-containing amorphous carbon film in the present invention are obtained by irradiating an electron beam onto the fluorine-containing amorphous carbon film obtained by plasma polymerizing at least one of the raw material gases by glow discharge in a vacuum. It is formed by a step of forming a spot-like latent image by etching, and a step of developing the spot-like latent image by plasma etching.

斑点状潜像の形状は、前記現像剤搬送性能を満足しうる
ものであれば特に限定的ではないが、例えば、円形状、
楕円状、矩形状、等を有することができる。
The shape of the spotty latent image is not particularly limited as long as it satisfies the developer transport performance, but for example, it may be circular,
It can have an elliptical shape, a rectangular shape, etc.

本発明による弗素含有非晶質炭素膜は、電子ビーム描画
により電子ビーム照射部がプラズマエツチングにより凹
部となるいわゆるネガ型エッチ・ング特性を有するが、
成膜後口弗化炭素プラズマ照射を行なうことによりエツ
チング特性をポジ型に変更することも可能である。この
四弗化炭素プラズマ照射処理時間は、プラズマ条件並び
に弗素含有非晶質炭素膜の膜厚等により調整が必要であ
るが、概ね1分乃至30分程度が適当である。また、四
弗化炭素プラズマ照射は、弗素含有非晶質炭素膜作製に
用いたプラズマCVD装置をそのまま用いて行なうこと
が可能である。
The fluorine-containing amorphous carbon film according to the present invention has a so-called negative etching characteristic in which the electron beam irradiated area becomes a concave part by plasma etching by electron beam writing.
It is also possible to change the etching characteristics to positive type by performing carbon fluoride plasma irradiation after film formation. The carbon tetrafluoride plasma irradiation treatment time needs to be adjusted depending on the plasma conditions and the thickness of the fluorine-containing amorphous carbon film, but approximately 1 minute to 30 minutes is appropriate. Further, carbon tetrafluoride plasma irradiation can be performed using the plasma CVD apparatus used for producing the fluorine-containing amorphous carbon film as is.

この弗素含有非晶質炭素膜における四弗化炭素プラズマ
照射によるネガポジ反転の効果は、四弗化炭素プラズマ
により炭素原子歯は弗素原子が弗素含有非晶質炭素膜中
に取り込まれたか、または、四弗化炭素プラズマにより
真空装置に常用されるステンレス製部材中の原子がスパ
ッタにより弗素含有非晶質炭素膜表面に付着したことに
起因するものと考えられる。
The effect of negative/positive reversal due to carbon tetrafluoride plasma irradiation on this fluorine-containing amorphous carbon film is that fluorine atoms are taken into the fluorine-containing amorphous carbon film by the carbon tetrafluoride plasma, or This is thought to be due to carbon tetrafluoride plasma causing atoms in stainless steel members commonly used in vacuum equipment to adhere to the surface of the fluorine-containing amorphous carbon film by sputtering.

本発明における弗素含有非晶質炭素膜の斑点状凹凸の形
成方法において、潜像形成工程には、電子ビーム描画の
常法、例えば、ベクタースキャン方式、或は、ラスター
スキャン方式等を用いる。
In the method for forming speckled irregularities in a fluorine-containing amorphous carbon film according to the present invention, a conventional electron beam lithography method, such as a vector scan method or a raster scan method, is used in the latent image forming step.

電子ビームには、例えば、ポイント電子ビーム、固定成
形電子ビーム、あるいは、可変成形電子ビーム等を用い
ることができる。また、本発明における現像工程には、
プラズマによるドライエツチングを用いる。
For example, a point electron beam, a fixed shaped electron beam, or a variable shaped electron beam can be used as the electron beam. In addition, the development step in the present invention includes
Dry etching using plasma is used.

以上のように、本発明においてはウェットプロセスを全
く用いる事なく弗素含有非晶質炭素膜上に任意の斑点状
潜像パターンを形成することが可能である。
As described above, in the present invention, it is possible to form any speckled latent image pattern on a fluorine-containing amorphous carbon film without using any wet process.

このようにして作製された斑点状凹凸の深ざは、本発明
現像剤供与部材が用いられる現像器の種類によっても差
異があるが、凸部の弗素含有非晶質炭素膜の膜厚に対し
て凹部の弗素含有非晶質炭素膜の膜厚が概ねO乃至95
%程度が好ましい。ここで、0%の意味するところは、
エツチングにより凹部の弗素含有非晶質炭素膜を完全に
除去することであるが、本発明の一形態に属する。また
、斑点状凹凸の最大径は、本発明現像剤供与部材が用い
られる現像器の種類によっても差異があるが、凹部凸部
何れにおいても概ね5μm乃至2mm程度が好ましい。
The depth of the speckled unevenness produced in this way varies depending on the type of developing device in which the developer donor member of the present invention is used, but The film thickness of the fluorine-containing amorphous carbon film in the recessed portion is approximately 0 to 95 mm.
% is preferable. Here, what 0% means is:
The method of completely removing the fluorine-containing amorphous carbon film in the recessed portions by etching is one form of the present invention. Further, the maximum diameter of the spotted unevenness varies depending on the type of developing device in which the developer supplying member of the present invention is used, but it is preferably about 5 μm to 2 mm in both the concave and convex portions.

次に、本発明について図面を参照しながら説明する。こ
こでは、本発明における現像剤供与部材の形状として円
筒形状を用いて説明するが、他の形状についても同様に
して本発明における現像剤供与部材を得ることができる
Next, the present invention will be explained with reference to the drawings. Here, a cylindrical shape will be used as the shape of the developer donor member in the present invention, but the developer donor member in the present invention can be obtained in the same manner with other shapes.

第1図(a)は、本発明における現像剤供与部材の断面
図を示し、図中(1)は現像剤供与部材、(2)はバイ
アス印加電極となりうる導電性円筒形部材、(3)は弗
素含有非晶質炭素膜からなる被覆層である。また第1図
(b>、(c)は本発明の現像剤供与部材の側面図であ
り、被覆層に設けられる斑点状凹凸の例を示している。
FIG. 1(a) shows a cross-sectional view of the developer supply member according to the present invention, in which (1) is the developer supply member, (2) is the conductive cylindrical member that can serve as a bias application electrode, and (3) is a coating layer made of a fluorine-containing amorphous carbon film. FIGS. 1(b) and 1(c) are side views of the developer supplying member of the present invention, showing examples of speckled irregularities provided on the coating layer.

第2図は、本発明における現像剤供与部材を搭載した二
成分用現像装置の一例を示し、図中(11)は現像器、
(12)は現像剤供与部材、 (13)は現像剤、(1
4)はバイアス印加電源である。
FIG. 2 shows an example of a two-component developing device equipped with a developer supplying member according to the present invention, and (11) in the figure shows a developing device,
(12) is a developer supplying member, (13) is a developer, (1
4) is a bias application power supply.

現像剤(13)中のトナーは、キャリアと混合・攪拌さ
れることによって摩擦帯電され、磁石を内蔵した現像剤
供与部材(12)上に磁気力によってキャリアとともに
磁気ブラシを形成し現像剤供与部材(12)の回転によ
って感光体対向面(現像領域)まで移動される。
The toner in the developer (13) is triboelectrically charged by being mixed and stirred with the carrier, and the toner forms a magnetic brush together with the carrier by magnetic force on the developer supplying member (12) containing a built-in magnet. By the rotation (12), it is moved to the surface facing the photoreceptor (development area).

第3図は、本発明における現像剤供与部材を搭載した一
成分用現像装置の一例を示し、図中(21)は現像器、
(22)は現像剤供与部材、(23)は現像剤、(24
)はバイアス印加電源、(25)は規制部材である。
FIG. 3 shows an example of a one-component developing device equipped with a developer supplying member according to the present invention, and in the figure (21) is a developing device,
(22) is a developer supplying member, (23) is a developer, (24)
) is a bias applying power source, and (25) is a regulating member.

現像剤(23)は現像剤供与部材(22)の回転に伴ワ
て移動し、規制部材(25)と現像剤供与部材(22)
との間隙を規制部材(25)の圧接力に抗して通過する
ときに摩擦帯電きれる。それと同時に現像剤供与部材(
22)上にトナー薄層が形成されて、感光体対向面(現
像領域)まで移動される。
The developer (23) moves with the rotation of the developer supply member (22), and is moved between the regulating member (25) and the developer supply member (22).
Frictional electrification occurs when the material passes through the gap between the material and the material against the pressing force of the regulating member (25). At the same time, the developer supply member (
22) A thin layer of toner is formed on the toner and transferred to the surface facing the photoreceptor (development area).

第4図は本発明に係わる弗素含有非晶質炭毒殺形成用プ
ラズマCVD装置を示す。この装では、ドライエツチン
グ用としても兼用することができる。図中(701)乃
至(706)は常温において気相状態にある原料化合物
、ボンバードガス、エツチングガス、およびキャリアガ
スを密封した第1乃至第6タンクで、各々のタンクは第
1乃至第6調節弁(707)乃至(712)と第1乃至
第6流量制御器(713)乃至(718)に接続されて
いる。図中(719)乃至(721)は常温において液
相または固相状態にある原料化合物を封入した第1乃至
第3容器で、各々の容器は気化のため第1乃至第3温調
器(722)乃至(724)により与熱可能であり、ざ
らに各々の容器は第7乃至第9調節弁(725)乃至(
727)と第7乃至第9流量制御器(728)乃至(7
30)に接続されている。これらのガスは混合器(73
1)で混合された後、主管(732)を介して反応室(
733)に送り込まれる。途中の配管は、常温において
液相または固相状態にあった原料化合物が気化したガス
が、途中で凝結しないように、適宜配置された配管加熱
器(734)により、与熱可能とされている。反応室内
には接地電極(735)と電力印加電極(736)が対
向して設置され、各々の電極は電極加熱器(737)に
より与熱可能とされている。電力印加電極(736)に
は、高周波電力用整合器(738)を介して高周波電源
(739)、低周波電力用整合器(740)を介して低
周波電源(741)、ローパスフィルタ(742)を介
して直流電源(743)が接続されており、接続選択ス
イッチ(744)により周波数の異なる電力が印加可能
とされている。反応室(733)内の圧力は圧力制御弁
(745)により調整可能であり、反応室(733)内
の減圧は、排気系選択弁(746)を介して、拡散ポン
プ(747) 、油回転ポンプ(748)、あるいは、
冷却除外装置(749) 、メカニカルブースターポン
プ(750)、油回転ポンプ(748)により行なわれ
る。排ガスについては、ざらに適当な除外装置(753
)により安全無害化した後、大気中に排気される。これ
ら排気系配管についても、常温において液相または固相
状態にあった原料化合物が気化したガスが、途中で凝結
しないように、適宜配置された配管加熱器(734)に
より、与熱可能とされている。反応室(733)も同様
の理由から反応室加熱器(751)により与熱可能とき
れ、その内部には、接地電極(735)を兼ねた導電性
円筒形部材が基板(752)として設置され、内側には
電極加熱器(737)が配されている。基板(752)
周囲には同じく円筒形状をした電力印加電極(736)
が配され、外側には電極加熱器(737)が配されてい
る。基板(752)は、外部より駆動モータ(754)
を用いて自転可能となっている。
FIG. 4 shows a plasma CVD apparatus for forming fluorine-containing amorphous carbon poisoning according to the present invention. This device can also be used for dry etching. In the figure, (701) to (706) are the first to sixth tanks in which the raw material compound, bombarded gas, etching gas, and carrier gas, which are in a gaseous state at room temperature, are sealed, and each tank is used for the first to sixth adjustment. It is connected to valves (707) to (712) and first to sixth flow rate controllers (713) to (718). In the figure, (719) to (721) are first to third containers filled with raw material compounds that are in a liquid or solid phase at room temperature, and each container is connected to a first to third temperature controller (722) for vaporization. ) to (724), and each container can be heated by the seventh to ninth control valves (725) to (724).
727) and seventh to ninth flow rate controllers (728) to (7
30). These gases are mixed in a mixer (73
After being mixed in step 1), the reaction chamber (
733). The pipes along the way can be heated by appropriately placed pipe heaters (734) so that the gas, which is the vaporized raw material compound that is in a liquid or solid state at room temperature, does not condense on the way. . A ground electrode (735) and a power application electrode (736) are installed facing each other in the reaction chamber, and each electrode can be heated by an electrode heater (737). The power application electrode (736) is connected to a high frequency power source (739) via a high frequency power matching box (738), a low frequency power source (741) via a low frequency power matching box (740), and a low pass filter (742). A DC power supply (743) is connected through the power supply, and power with different frequencies can be applied by a connection selection switch (744). The pressure inside the reaction chamber (733) can be adjusted by a pressure control valve (745), and the pressure inside the reaction chamber (733) can be reduced through an exhaust system selection valve (746), a diffusion pump (747), and an oil rotary valve. pump (748), or
This is carried out using a cooling exclusion device (749), a mechanical booster pump (750), and an oil rotary pump (748). Regarding exhaust gas, use a suitable exclusion device (753
) after making it safe and harmless, it is exhausted into the atmosphere. These exhaust system piping can also be heated by appropriately placed piping heaters (734) to prevent the vaporized gas of the raw material compound, which is in a liquid or solid phase state at room temperature, from condensing on the way. ing. The reaction chamber (733) can also be heated by the reaction chamber heater (751) for the same reason, and inside thereof, a conductive cylindrical member that also serves as a ground electrode (735) is installed as a substrate (752). , an electrode heater (737) is arranged inside. Substrate (752)
Around the same cylindrical power application electrode (736)
is arranged, and an electrode heater (737) is arranged on the outside. The board (752) is connected to the drive motor (754) from the outside.
It is possible to rotate using.

第4図に示した本発明に係わる弗素含有非晶質炭素膜形
成用プラズマCVD装置は、潜像形成のための電子ビー
ム照射装置、並びに、基板の装脱着のための予備室等と
ゲートバルブを介して接続する事が可能であり、またそ
うする事により全く真空を破る事なく基板上の弗素含有
非晶質炭素膜に斑点状凹凸を形成する事が可能である。
The plasma CVD apparatus for forming a fluorine-containing amorphous carbon film according to the present invention shown in FIG. By doing so, it is possible to form speckled irregularities on the fluorine-containing amorphous carbon film on the substrate without breaking the vacuum at all.

第4図に示した本発明に係わる弗素含有非晶質炭素膜形
成用プラズマCVD装置において、反応室は拡散ポンプ
により予め10−4乃至10=T。
In the plasma CVD apparatus for forming a fluorine-containing amorphous carbon film according to the present invention shown in FIG. 4, the reaction chamber is heated to 10-4 to 10=T in advance by a diffusion pump.

rr程度にまで減圧し、真空度の確認と装置内部に吸着
したガスの脱離を行なう。同時に電極加熱器により、電
極並びに基板を所定の温度まで昇温する。次いで、第1
乃至第6タンクおよび第1乃至第3容器から、原料ガス
を適宜第1乃至第9流量制師器を用いて定流量化しなが
ら反応室内に導入し、圧力調節弁により反応室内を一定
の減圧状態に保つ。ガス流量が安定化した後、接続選択
スイッチにより、例えば低周波電源を選択し、電力印加
電極に低周波電力を投入する。両電極間には放電が開始
され、時間と共に基板上に固相の弗素含有非晶質炭素膜
が形成される。反応時間により膜厚を制御し、所定の膜
厚並びに積層構成に達したところで放電を停止し、本発
明現像剤供与部材を得る。次いで、第1乃至第9調節弁
を閉じ、反応室内を充分に排気する。
The pressure is reduced to approximately rr, the degree of vacuum is confirmed, and the gas adsorbed inside the device is desorbed. At the same time, the electrode and substrate are heated to a predetermined temperature using an electrode heater. Then the first
The raw material gases are introduced into the reaction chamber from the sixth to sixth tanks and the first to third containers while being kept at a constant flow using the first to ninth flow rate controllers, and the pressure control valve is used to maintain a constant reduced pressure in the reaction chamber. Keep it. After the gas flow rate is stabilized, the connection selection switch selects, for example, a low frequency power source, and low frequency power is applied to the power application electrode. A discharge is started between the two electrodes, and over time a solid phase fluorine-containing amorphous carbon film is formed on the substrate. The film thickness is controlled by the reaction time, and when a predetermined film thickness and laminated structure are reached, the discharge is stopped to obtain the developer donor member of the present invention. Next, the first to ninth control valves are closed to sufficiently exhaust the inside of the reaction chamber.

得られた弗素含有非晶質炭素膜は、本発明番三よるネガ
型エツチング特性を有する弗素含有非晶質炭素膜として
次の電子ビーム描画工程に供せられる。ここで、電子ビ
ーム描画工程においてポジ型エツチング特性が必要とさ
れる場合においては、再び弗素含有非晶質炭素膜形成時
と同様の操作により反応室内に第1乃至第6タンクの何
れかより四弗化炭素ガスを導入し放電を行なえばよい。
The obtained fluorine-containing amorphous carbon film is subjected to the next electron beam lithography process as a fluorine-containing amorphous carbon film having negative etching characteristics according to the third aspect of the present invention. Here, if positive etching characteristics are required in the electron beam lithography process, the same procedure as in the formation of the fluorine-containing amorphous carbon film is performed again to remove any one of the first to sixth tanks into the reaction chamber. What is necessary is to introduce carbon fluoride gas and perform discharge.

このように、わずかの操作によりエツチング特性のネガ
型ポジ型を選択し得ることが、本発明弗素含有非晶質炭
素膜の特徴の一つである。
As described above, one of the features of the fluorine-containing amorphous carbon film of the present invention is that it is possible to select a negative type or a positive type of etching property with a few operations.

次いで、本発明弗素含有非晶質炭素膜が形成された基板
を電子ビーム照射装置に移し、常法により所望の斑点状
パターンを描画し、潜像形成を行なう。
Next, the substrate on which the fluorine-containing amorphous carbon film of the present invention is formed is transferred to an electron beam irradiation device, and a desired spot pattern is drawn by a conventional method to form a latent image.

次いで、潜像形成が成された基板を、再び、第4図に示
した本発明に係わる弗素含有非晶質炭素膜形成用プラズ
マCVD装置に移し、弗素含有非晶質炭素膜形成時と同
様の操作により反応室内に第1乃至第6タンクの何れか
よりエツチングガスな導入し放電を行なうことにより現
像を行なう。
Next, the substrate on which the latent image has been formed is again transferred to the plasma CVD apparatus for forming a fluorine-containing amorphous carbon film according to the present invention shown in FIG. By the operation described above, an etching gas is introduced into the reaction chamber from any one of the first to sixth tanks, and a discharge is performed to perform development.

これら一連の本発明による現像剤供与部材の形成方法に
より、ウェットプロセスを全く用いることなく、斑点状
凹凸を有する弗素含有非晶質炭素膜により被覆された本
発明現像剤供与部材を容易に得ることができる。
By using these series of methods for forming a developer donor member according to the present invention, the developer donor member of the present invention coated with a fluorine-containing amorphous carbon film having speckled irregularities can be easily obtained without using any wet process. Can be done.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

衷旅倒1 弗素含有非晶質炭素膜形成用プラズマCVD装置を用い
て、第1図に示す現像剤供与部材を作製した。斑点状凹
凸としては、いわゆる円形状パターンを凹部に用いた。
Step 1 Using a plasma CVD apparatus for forming a fluorine-containing amorphous carbon film, a developer donor member shown in FIG. 1 was produced. As the spotted irregularities, a so-called circular pattern was used for the recesses.

第4図に示す弗素含有非晶質炭素膜形成用プラズマCV
D装置において、まず、反応室(733)の内部を1O
−6Torr程度の高真空にした後、第7調節弁(72
5)を解放し、第1容器(719)よりスチレンガスを
第1温調器(722)温度65℃の下で、第7流量制御
器(728)内へ流入させた。同時に第1および第2調
節弁(707および708)を解放し、第1および第2
タンク(701および702)より水素ガスおよび四弗
化炭素ガスを第1および第2流量制御器(713および
714)内へ流入させな。そして流量制御器の目盛を調
整して、スチレンガスの流量を16.8sccrrb水
素ガスの流量を1001005cおよび、四弗化炭素ガ
スの流量を50s e cmとなるように設定して、主
管(732)より反応室(733)内へ流入した。流量
が安定した後に、反応室(733)内の圧力が0.2T
orrとなるように圧力調節弁(745)を調整した。
Plasma CV for forming fluorine-containing amorphous carbon film shown in Figure 4
In apparatus D, first, the inside of the reaction chamber (733) is heated to 10
After creating a high vacuum of about -6 Torr, the seventh control valve (72
5) was released, and styrene gas was allowed to flow into the seventh flow rate controller (728) from the first container (719) at a first temperature controller (722) temperature of 65°C. At the same time, the first and second control valves (707 and 708) are released, and the first and second control valves (707 and 708) are opened.
Do not allow hydrogen gas and carbon tetrafluoride gas to flow into the first and second flow rate controllers (713 and 714) from the tanks (701 and 702). Then, adjust the scale of the flow rate controller to set the flow rate of styrene gas to 16.8 sccrrb, the flow rate of hydrogen gas to 1001005c, and the flow rate of carbon tetrafluoride gas to 50 s e cm. The liquid then flowed into the reaction chamber (733). After the flow rate stabilized, the pressure inside the reaction chamber (733) decreased to 0.2T.
The pressure control valve (745) was adjusted so that the

一方、基板(752)としては、直径22×長き330
mmの円筒形アルミニウム基板を用いて予め70℃に加
熱しておき、ガス流量および圧力が安定した状態で、予
め接続選択スイッチ(744)により接続しておいた低
周波電源(741)を投入し、電力印加型fM (73
6)に145Wattの電力を周波数50KHzの下で
印加して約60分間プラズマ重合反応を行ない、基板(
752)上に厚き200μmの弗素含有非晶質炭素膜を
形成した。成膜完了後は、電力印加を停止し、調節弁を
閉じ、反応室(733)内を充分に排気した。
On the other hand, the substrate (752) has a diameter of 22 mm and a length of 330 mm.
A cylindrical aluminum substrate (mm) was preheated to 70°C, and with the gas flow rate and pressure stable, the low frequency power supply (741) connected in advance using the connection selection switch (744) was turned on. , power application type fM (73
6), a power of 145 Watts was applied at a frequency of 50 KHz to perform a plasma polymerization reaction for about 60 minutes, and the substrate (
752) A 200 μm thick fluorine-containing amorphous carbon film was formed thereon. After the film formation was completed, power application was stopped, the control valve was closed, and the inside of the reaction chamber (733) was sufficiently evacuated.

以上のようにして得られた弗素含有非晶質炭素膜につき
元素分析を行なったところ、全構成原子に対し含有され
る水素原子の量ば39原子%、弗素原子の量は10.3
原子%であった。また、JIS−に−5400規格に準
拠して鉛筆硬度を測定したところ7H以上の硬度を有し
、通常の有機合成反応より得られる重合膜に比べてはる
かに高硬度であった。
Elemental analysis was performed on the fluorine-containing amorphous carbon film obtained as described above, and the amount of hydrogen atoms contained in the total constituent atoms was 39 at%, and the amount of fluorine atoms was 10.3.
It was atomic%. Further, when the pencil hardness was measured in accordance with the JIS-5400 standard, it was found to have a hardness of 7H or more, which is much higher than that of a polymer film obtained by a normal organic synthesis reaction.

次いで、弗素含有非晶質炭素膜が形成された円筒形基板
をゲートバルブを介して、電子ビーム蒸着装置(JEB
E−48No、41006 日本電子社製)に移し、電
子ビームを100μmにフォーカシングし、円筒形基板
の長手方向に走査しながら、一走査毎に円筒形基板を円
周方向に3ooμmずつ回転きせ潜像形成を行なった。
Next, the cylindrical substrate on which the fluorine-containing amorphous carbon film was formed was placed in an electron beam evaporator (JEB) through a gate valve.
E-48No. 41006 (manufactured by JEOL Ltd.), the electron beam was focused at 100 μm, and while scanning in the longitudinal direction of the cylindrical substrate, the cylindrical substrate was rotated by 30 μm in the circumferential direction for each scan. Formation was carried out.

ここで、長手方向の走査は300μm毎に停止し、停止
した状態で電子ビームの照射を行なった。このとき、真
空度は2.6X10=Torr以下とした。電子ビーム
照射は、電子照射量が1mr、/cm2となるまで行な
った。次いで、再び基板を第4図に示す弗素含有非晶質
炭素膜形成用プラズマCVD装置にゲートバルブを介し
て移し、弗素含有非晶質炭素膜形成時と同様の操作に′
C1反応室(733)内に第6タンクC706’)より
エツチングガスとして酸素ガスを導入し7、高周波電源
(739)より周波数13.56MHzの高周波電力を
電力印加電極(736)に印加し、50Wの電力で10
分間プラズマエツチングを行ない現像した。得られた現
像剤供与、′3材の表面を、表面粗き計(サーフコム5
5OA 東京精密袋)にて測定したところ、凸部の膜厚
は100μm1凹部の最大径は約100μm1凹部と凸
部との膜厚差は約18μmであった。
Here, scanning in the longitudinal direction was stopped every 300 μm, and irradiation with the electron beam was performed while the scanning was stopped. At this time, the degree of vacuum was set to 2.6×10=Torr or less. Electron beam irradiation was performed until the electron irradiation amount reached 1 mr/cm2. Next, the substrate was again transferred to the plasma CVD apparatus for forming a fluorine-containing amorphous carbon film shown in FIG.
Oxygen gas was introduced as an etching gas into the C1 reaction chamber (733) from the sixth tank C706'), and high frequency power with a frequency of 13.56 MHz was applied from the high frequency power source (739) to the power application electrode (736) to generate 50 W. 10 with the power of
Plasma etching was performed for 1 minute and development was performed. The surface of the obtained developer and '3 material was measured using a surface roughness meter (Surfcom 5).
5OA Tokyo Seimitsu Bag), the film thickness of the convex portion was 100 μm, the maximum diameter of the concave portion was approximately 100 μm, and the difference in film thickness between the concave portion and the convex portion was approximately 18 μm.

得られた現像剤供与部材の性能を評価するために、本実
施例1で得られた現像剤供与部材を搭載した第2図に示
す如き二成分用現像装置を備えたEP470Z Cミ)
ルタカ;dy (株)TA)を用いて、常用のカールソ
ンプロセス内にて、いわゆるバイアス落ちに関する実写
評価を行なった。感光体としては感光層に意図的にピン
ホールを設け、その部分の基板を露出させた有n感光体
を用い、現像方式は正規現像とした。
In order to evaluate the performance of the obtained developer donor member, an EP470Z C Mi) equipped with a two-component developing device as shown in FIG. 2 and equipped with the developer donor member obtained in Example 1 was used.
An evaluation of the so-called bias drop was performed using a commonly used Carlson process using TA Co., Ltd. The photoreceptor used was an n-containing photoreceptor in which a pinhole was intentionally provided in the photosensitive layer to expose the substrate in that area, and regular development was used as the development method.

まず、常用のコロナ放電により感光体表面を一700V
に帯電した後、感光体全面に露光を行ない表面電位を一
50Vにまで減衰させた。次いで、本実施例1で得られ
た現像剤供与部材を搭載した現像装置により一150V
のバイアス電位を印加しながら感光体表面を現像した後
、トナー像を転写紙上に転写、定若した。感光体の除電
、清掃を行なフた後、本プロセスを1000回繰り返し
た。
First, the surface of the photoreceptor was heated to -700V using a common corona discharge.
After the photoreceptor was charged, the entire surface of the photoreceptor was exposed to light, and the surface potential was attenuated to -50V. Next, a developing device equipped with the developer supplying member obtained in Example 1 was applied with a voltage of -150V.
After developing the surface of the photoreceptor while applying a bias potential of , the toner image was transferred onto transfer paper and fixed. After the photoreceptor was neutralized and cleaned, this process was repeated 1000 times.

この実写評価中、転写紙上には前記電位設定通りトナー
像は形成されず、また、いわゆるバイアス落ちによる帯
状のカブリも現れなかった。しかし、弗素含有非晶質炭
素膜を設けない現像剤供与部材について同様の評価を行
なったところ、帯状のカブリが発生した。このことから
、本実施例1による現像剤供与部材がいわゆるバイアス
f!rちを効果的に防止することが確認された。
During this actual copying evaluation, no toner image was formed on the transfer paper according to the potential setting, and no band-shaped fog due to so-called bias drop appeared. However, when a similar evaluation was performed on a developer donor member not provided with a fluorine-containing amorphous carbon film, band-shaped fogging occurred. From this, it can be seen that the developer supplying member according to the first embodiment has a so-called bias f! It was confirmed that it effectively prevents damage.

次に、バイアス電位を一450Vに変え、反転現像にお
ける1000回繰り返しの実写評filliを行なった
。この実写評価中、転写紙上にLよ前記電位設定通りい
わゆるベタ黒画像が形成され、また、′正規現像におけ
るカブリに対応するいわゆる帯状の白抜けも現れなかっ
た。しかし、弗素含有非晶質炭素膜を設けない現像剤供
与部材について同様の評価を行なったところ、帯状の白
抜けが発生した。このことから、本実施例1による現像
剤供与部材がいわゆるバイアス落ちを効果的に防止する
ことが確認された。
Next, the bias potential was changed to -450 V, and a live evaluation filli was repeated 1000 times in reversal development. During this actual evaluation, a so-called solid black image was formed on the transfer paper in accordance with the above-mentioned potential setting, and no so-called band-like white spots corresponding to fog in regular development did not appear. However, when a similar evaluation was performed on a developer donor member not provided with a fluorine-containing amorphous carbon film, band-like white spots occurred. From this, it was confirmed that the developer supply member according to Example 1 effectively prevents so-called bias drop.

得られた現像剤供与部材の性能を評価するために、本実
施例1で得られた現像剤供与部材を搭載した第3図に示
す如き一成分用現像装置を用いて、トナー・帯M皿に関
する試験を行なった。 まず、所定のトナーを前記−成
分用現像装置に入れ、本実施例1で得られた現像剤供与
部材を1100rpで5秒間回転させた。回転終了後、
この現像剤供与部材上に付着したトナーにつき帯電量を
」す定したところ18μC/gの帯電量が得られた。し
かし、弗素含有非晶質炭素膜を設けない現像剤供与部材
について同様の評価を行なったところ、7μC/gの帯
電量しか得られなかった。このことから、本実施例1に
よる現像剤供与部材が=成分現住用トナーを好適に帯電
することが?@′認された。
In order to evaluate the performance of the obtained developer donor member, a single component developing device as shown in FIG. We conducted a test regarding. First, a predetermined toner was placed in the -component developing device, and the developer supplying member obtained in Example 1 was rotated at 1100 rpm for 5 seconds. After the rotation is complete,
When the charge amount of the toner adhering to this developer donor member was determined, a charge amount of 18 μC/g was obtained. However, when a similar evaluation was performed on a developer donor member not provided with a fluorine-containing amorphous carbon film, a charge amount of only 7 μC/g was obtained. From this, it is clear that the developer supplying member according to Example 1 can suitably charge the component-containing toner. @'It has been certified.

得られた現像剤供与部材の性能を評価するために、本実
施例1で得られた現像剤供与部材を搭載した第2図に示
す如ぎ二成分用現像装置を用いて、常用の複写機内にて
耐刷試験を行なった。A4紙3万枚の耐刷試験後、現像
剤供与部材の表面を観察したところ、弗素含有非晶質炭
素膜の膜剥菊は無く、また、トナー付着、傷の発生等も
認められなかった。しかし、弗素含有非晶質炭素膜を設
けない現像剤供与部材について同様の評価を行なったと
ころ、トナーがいわゆるフィルミング状に付着し、トナ
ーの搬送性低下による画像濃度の低下が認められた。こ
のことから、本実施例1による現像剤供与部材が耐刷性
に優れたものであることが確認された。
In order to evaluate the performance of the obtained developer-donating member, a two-component developing device as shown in FIG. 2 equipped with the developer-donating member obtained in Example 1 was used. A printing durability test was conducted. After a durability test of 30,000 sheets of A4 paper, the surface of the developer donor member was observed and found that there was no peeling of the fluorine-containing amorphous carbon film, and no toner adhesion or scratches were observed. . However, when a similar evaluation was performed on a developer donor member not provided with a fluorine-containing amorphous carbon film, it was found that toner adhered in a so-called filming manner and image density decreased due to decreased toner transportability. From this, it was confirmed that the developer supplying member according to Example 1 had excellent printing durability.

また、上記試験中、ベタ黒部の画像濃度は1゜1乃至1
.4であった。しかし、弗素含有非晶質炭素膜は設ける
が斑点状凹凸を設けない現像剤供与部材について同様の
試験を行なったところ、ベタ黒部の画像濃度は0.8乃
至1.0であり現像剤搬送性能が低いことによる画像濃
度の低下が認められた。このことから、本実施例1によ
る現像剤供与部材が現像剤搬送性能に優れたものである
ことが確認きれた。
Also, during the above test, the image density of the solid black area was 1°1 to 1.
.. It was 4. However, when similar tests were conducted on a developer donor member provided with a fluorine-containing amorphous carbon film but without speckled irregularities, the image density of the solid black area was 0.8 to 1.0, and the developer transport performance was A decrease in image density was observed due to the low image density. From this, it was confirmed that the developer supplying member according to Example 1 had excellent developer transport performance.

衷施鑓旦 弗素含有非晶質炭素膜形成用プラズマCVD装置を用い
て、第1図に示す現像剤供与部材を作製した。斑点状凹
凸としては、いわゆる円形状パターンを凸部に用いた。
A developer donor member shown in FIG. 1 was prepared using a plasma CVD apparatus for forming a fluorine-containing amorphous carbon film. As the spotted unevenness, a so-called circular pattern was used for the convex portion.

第4図に示す弗素含有非晶質炭素膜形成用プラズマCV
D装置において、まず、反応室(733)の内部を1O
−6Torr程度の高真空にした後、第1、第2、およ
び、第3調節弁を解放し、第1タンク(701)より水
素ガス、第2タンク(702)よりブタジェンガス、お
よび、第3タンク(703)より四弗化炭素ガスを第1
、第2、および、第3流量制御器(713,714、お
よび、715)内へ流入させた。そして流量制御器の目
盛を調整して、水素ガスの流量を300secm、ブタ
ジェンガスの流量を60sccm、およ・び、四弗化炭
素ガスの流量を120secmとなるように設定して、
主管(732)より反応室(733)内へ流入した。流
量が安定した後に、反応室(733)内の圧力が1.0
Torrとなるように圧力調節弁(745)を調整した
。一方、基板(752)としては、直径22X長き33
0mmの円筒形アルミニウム基板を用いて予め200℃
に加熱しておき、ガス流量および圧力が安定した状態で
、予め接続選択スイッチ(744)により接続しておい
た低周波電源(741)を投入し、電力印加電極(73
6)に160Wattの電力を周波数200KHzの下
で印加して約2時間プラズマ重合反応を行ない、基板(
752)上に厚ざ1mmの弗素含有非晶質炭素膜を形成
した。成膜完了後は、電力印加を停止し、調節弁を閉じ
、反応室(733)内を充分に排気した。
Plasma CV for forming fluorine-containing amorphous carbon film shown in Figure 4
In apparatus D, first, the inside of the reaction chamber (733) is heated to 10
After creating a high vacuum of approximately -6 Torr, the first, second, and third control valves are released, and hydrogen gas is supplied from the first tank (701), butadiene gas is supplied from the second tank (702), and the third tank is supplied with hydrogen gas. (703), carbon tetrafluoride gas is first added.
, second, and third flow rate controllers (713, 714, and 715). Then, adjust the scale of the flow rate controller to set the flow rate of hydrogen gas to 300 seconds, the flow rate of butadiene gas to 60 sccm, and the flow rate of carbon tetrafluoride gas to 120 seconds.
It flowed into the reaction chamber (733) from the main pipe (732). After the flow rate stabilizes, the pressure inside the reaction chamber (733) becomes 1.0.
The pressure control valve (745) was adjusted so that the pressure was Torr. On the other hand, the substrate (752) has a diameter of 22 x a length of 33 mm.
Preheated to 200℃ using a 0mm cylindrical aluminum substrate.
When the gas flow rate and pressure are stable, turn on the low frequency power supply (741) that has been connected in advance using the connection selection switch (744), and connect the power application electrode (73).
6) was applied with a power of 160 Watts at a frequency of 200 KHz to carry out a plasma polymerization reaction for about 2 hours, and the substrate (
752) A fluorine-containing amorphous carbon film having a thickness of 1 mm was formed thereon. After the film formation was completed, power application was stopped, the control valve was closed, and the inside of the reaction chamber (733) was sufficiently evacuated.

以上のようにして得られた弗素含有非晶質炭素膜につき
元素分析を行なったところ、全構成原子に対し含有され
る水素原子の量は42原子%、弗素原子の量は2.5原
子%であった。また、−J IS−に−5400規格に
準拠して鉛筆硬度を測定したところ7H以上の硬度を有
し、通常の有機合成反応より得られる重合膜に比べては
るかに高硬度であった。
Elemental analysis of the fluorine-containing amorphous carbon film obtained as above revealed that the amount of hydrogen atoms contained was 42 at% and the amount of fluorine atoms was 2.5 at% with respect to all constituent atoms. Met. Further, when the pencil hardness was measured in accordance with the -JIS-5400 standard, it was found to have a hardness of 7H or more, which is much higher than that of a polymer film obtained by a normal organic synthesis reaction.

次いで、第4調節弁(710)を解放し、第4タンク(
704)より四弗化炭素ガスを第4流量制御器(716
)内へ流入させた。そして流量制御器の目盛を調整して
四弗化炭素ガスの流量を3Osccmとなるように設定
して、主!(732)より反応室(733)内へ流入し
た。流量が安定した後に、反応室(733)内の圧力が
1.0Torrとなるように圧力調節弁(745)を調
整した。基板温度を130℃に保ち、ガス流量および圧
力が安定した状態で、予め接続選択スイッチ(744)
により接続しておいた高周波電源(739)を投入し、
電力印加電極(736)に150Wattの電力を周波
数13.56MHzの下で印加して約1o分間ネガポジ
反転のためのプラズマ処理を行なった後、電力印加を停
止し、調節弁を閉じ、反応室(733)内を充分に排気
した。
Next, the fourth control valve (710) is released and the fourth tank (
704) to the fourth flow rate controller (716).
). Then, adjust the scale of the flow rate controller to set the flow rate of carbon tetrafluoride gas to 3Osccm. (732) into the reaction chamber (733). After the flow rate became stable, the pressure control valve (745) was adjusted so that the pressure inside the reaction chamber (733) was 1.0 Torr. While keeping the substrate temperature at 130°C and the gas flow rate and pressure stable, press the connection selection switch (744) in advance.
Turn on the high frequency power supply (739) connected by
After applying 150 Watt power to the power application electrode (736) at a frequency of 13.56 MHz and performing plasma treatment for negative/positive reversal for about 1 minute, power application was stopped, the control valve was closed, and the reaction chamber ( 733) was sufficiently evacuated.

次いで、弗素含有非晶質炭素膜が形成された円筒形基板
を、ゲートバルブを介して、電子ビーム蒸着装置(JE
BE−48No、41006  日本電子社製)に移し
、電子ビームを200μmにフォーカシングし、円筒形
基板を回転させ、電子ビームを基板一回転につき500
umの割合で基板長手方向に走査しながら潜像形成を行
なった。
Next, the cylindrical substrate on which the fluorine-containing amorphous carbon film was formed was placed in an electron beam evaporator (JE) through a gate valve.
BE-48No, 41006 manufactured by JEOL Ltd.), focused the electron beam at 200 μm, rotated the cylindrical substrate, and focused the electron beam at 500 μm per rotation of the substrate.
A latent image was formed while scanning in the longitudinal direction of the substrate at a rate of .mu.m.

ここで、基板回転は円周方向に500μm毎に停止し、
停止した状態で電子ビーム照射を行なった。
Here, the substrate rotation is stopped every 500 μm in the circumferential direction,
Electron beam irradiation was performed in a stopped state.

このとき、真空度は2.6X10−5Torr以下とし
た。電子ビーム照射は、電子照射量が1mC/cm2と
なるまで行なった。次いで、再び基板を第4図に示す弗
素含有非晶質炭素膜形成用プラズマCVD装置にゲート
バルブを介して移し、弗素含有非晶質炭素膜形成時と同
様の操作にて、反応室(733)内に第6タンク(70
6)よりエツチングガスとして酸素ガスを導入し、高周
波電源(739)より周波数13.56MHzの高周波
電力を電力印加電極(736)に印加し、200Wの電
力で20分間プラズマエツチングを行ない現像した。得
られた現像剤供与部材の表面を、表面粗ざ計(サーフコ
ム550A 東京精密製)にて測定したところ、凸部の
膜厚は約500μm1凹部の最大径は約200μmであ
り、凹部と凸部との膜厚差は約100μmであった。
At this time, the degree of vacuum was set to 2.6×10 −5 Torr or less. Electron beam irradiation was performed until the electron irradiation amount reached 1 mC/cm2. Next, the substrate was again transferred to the plasma CVD apparatus for forming the fluorine-containing amorphous carbon film shown in FIG. 4 via the gate valve, and the reaction chamber (733 ) in the 6th tank (70
6) Oxygen gas was introduced as an etching gas, and high frequency power with a frequency of 13.56 MHz was applied from a high frequency power source (739) to the power application electrode (736), and plasma etching was performed for 20 minutes with a power of 200 W for development. When the surface of the obtained developer donor member was measured using a surface roughness meter (Surfcom 550A manufactured by Tokyo Seimitsu), the film thickness of the convex portion was approximately 500 μm, the maximum diameter of the concave portion was approximately 200 μm, and the thickness of the convex portion was approximately 500 μm. The difference in film thickness was about 100 μm.

得られた現像剤供与部材の性能を実施例1と同様にして
評価したところ、−成分用現像装置による帯電量に関す
る試験で14μC/gと若干帯電性能の低下が認められ
たが、他は実施例1とほぼ同等の結果が得られた。この
ことから、本実施例2による現像剤供与部材がいわゆる
バイアス落ち、トナー帯電性、耐刷性、並びに、現像剤
搬送性能に優れたものであることが確認された。
When the performance of the obtained developer donor member was evaluated in the same manner as in Example 1, a slight decrease in charging performance was observed at 14 μC/g in the test regarding the amount of charge using the -component developing device, but other tests were conducted. Almost the same results as Example 1 were obtained. From this, it was confirmed that the developer supplying member according to Example 2 was excellent in so-called bias drop, toner charging property, printing durability, and developer transport performance.

進皿Ω効里 本発明の現像剤供与部材は、バイアス落ち、帯電量不足
あるいは過大な電極効果による画像品位の低減を解決で
き、かつ耐刷性、現像剤搬送性にも優れている。
The developer supplying member of the present invention can solve the problem of image quality reduction due to bias drop, insufficient charge amount, or excessive electrode effect, and is also excellent in printing durability and developer transportability.

を示す図面、第2図および第3図は本発明における現像
剤供与部材を搭載した現像装置の一例を示す図面、およ
び、第4図は本発明に係わる弗素含有非晶質炭素膜形成
用プラズマCVD装置を示す図面である。
2 and 3 are drawings showing an example of a developing device equipped with a developer supplying member according to the present invention, and FIG. 4 is a drawing showing a plasma for forming a fluorine-containing amorphous carbon film according to the present invention. It is a drawing showing a CVD apparatus.

出願人 ミノルタカメラ株式会社 第2図 l 第3 図 IApplicant: Minolta Camera Co., Ltd. Figure 2 l Figure 3 I

Claims (3)

【特許請求の範囲】[Claims] (1)真空中グロー放電分解法から生成される弗素含有
非晶質炭素膜により被覆され、かつ、この弗素含有非晶
質炭素膜が斑点状凹凸を有することを特徴とする現像剤
供与部材。
(1) A developer donor member coated with a fluorine-containing amorphous carbon film produced by a vacuum glow discharge decomposition method, and characterized in that the fluorine-containing amorphous carbon film has speckled irregularities.
(2)前記弗素含有非晶質炭素膜が四弗化炭素プラズマ
照射処理されることを特徴とする特許請求の範囲第1項
記載の現像剤供与部材。
(2) The developer supplying member according to claim 1, wherein the fluorine-containing amorphous carbon film is subjected to carbon tetrafluoride plasma irradiation treatment.
(3)真空中グロー放電分解法から生成される弗素含有
非晶質炭素膜により被覆する工程と、この弗素含有非晶
質炭素膜に電子ビームを照射して潜像を形成する工程と
、この潜像をプラズマエッチングにより現像する工程と
を含むことを特徴とする現像剤供与部材の製造方法。
(3) A step of coating with a fluorine-containing amorphous carbon film produced by a vacuum glow discharge decomposition method, a step of irradiating the fluorine-containing amorphous carbon film with an electron beam to form a latent image, and A method for manufacturing a developer donor member, comprising the step of developing the latent image by plasma etching.
JP5179787A 1987-03-05 1987-03-05 Developer supplying member and its production Pending JPS63217381A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP5179787A JPS63217381A (en) 1987-03-05 1987-03-05 Developer supplying member and its production
US07/164,448 US4836136A (en) 1987-03-05 1988-03-04 Developer supplying member
DE3807112A DE3807112C2 (en) 1987-03-05 1988-03-04 Developer feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5179787A JPS63217381A (en) 1987-03-05 1987-03-05 Developer supplying member and its production

Publications (1)

Publication Number Publication Date
JPS63217381A true JPS63217381A (en) 1988-09-09

Family

ID=12896923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5179787A Pending JPS63217381A (en) 1987-03-05 1987-03-05 Developer supplying member and its production

Country Status (1)

Country Link
JP (1) JPS63217381A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292671A (en) * 2005-04-14 2006-10-26 Ricoh Co Ltd Method of measuring surface potential distribution, and for measuring device surface potential distribution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292671A (en) * 2005-04-14 2006-10-26 Ricoh Co Ltd Method of measuring surface potential distribution, and for measuring device surface potential distribution

Similar Documents

Publication Publication Date Title
US4836136A (en) Developer supplying member
US4847653A (en) Triboelectrically charging member
US4824753A (en) Carrier coated with plasma-polymerized film and apparatus for preparing same
US5125644A (en) Separating device for sheet-like member including separating pawl coated with amorphous carbon layer
JPS63217381A (en) Developer supplying member and its production
JPS63217383A (en) Developer supplying member and its production
JP2599642B2 (en) Copier
JPS63217377A (en) Developer supplying member
US4891292A (en) Photosensitive member having an amorphous carbon overcoat layer
US4851313A (en) Photosensitive member comprising charge generating layer and charge transporting layer and process for preparing same
JP2536518B2 (en) Electrophotographic developing carrier
JP2536519B2 (en) Electrophotographic developing carrier
JPS63217379A (en) Developer supplying member and its production
JPH01214890A (en) Cleaner blade
JPS6381481A (en) Photosensitive body
JPH01214891A (en) Cleaner blade
US4876168A (en) Photosensitive member comprising charge generating layer and charge transporting layer comprising amorphous carbon containing chalogen or transition metal
JPS63217376A (en) Developer supplying member
JPS63217382A (en) Developer supplying member and its production
JP2536520B2 (en) Electrophotographic developing carrier
JP2636261B2 (en) Photoconductor
JPS63169655A (en) Photosensitive body
JPS6373261A (en) Photosensitive body
JPS63217375A (en) Developer supplying member
JPH02214869A (en) Photosensitive body