JPS63215002A - Voltage-dependent nonlinear resistor porcelain compound - Google Patents

Voltage-dependent nonlinear resistor porcelain compound

Info

Publication number
JPS63215002A
JPS63215002A JP62049223A JP4922387A JPS63215002A JP S63215002 A JPS63215002 A JP S63215002A JP 62049223 A JP62049223 A JP 62049223A JP 4922387 A JP4922387 A JP 4922387A JP S63215002 A JPS63215002 A JP S63215002A
Authority
JP
Japan
Prior art keywords
voltage
mol
component
nonlinear resistor
dependent nonlinear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62049223A
Other languages
Japanese (ja)
Inventor
野井 慶一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62049223A priority Critical patent/JPS63215002A/en
Publication of JPS63215002A publication Critical patent/JPS63215002A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Thermistors And Varistors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電気機器、電子機器で発生する異常高電圧、ノ
イズ、静電気から半導体及び回路を保護するためのコン
デンサ特性とバリスタ特性を有する電圧依存性非直線抵
抗体磁器組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a voltage-independent non-voltage device having capacitor characteristics and varistor characteristics for protecting semiconductors and circuits from abnormal high voltages, noise, and static electricity generated in electrical equipment and electronic equipment. The present invention relates to a linear resistor ceramic composition.

従来の技術 従来、各種電気機器、電子機器における異常高電圧の吸
収、ノイズの除去、火花消去、静電気対策のために電圧
依存性非直線抵抗特性を有するSiCバリスタや、Zn
O系バリスタなどが使用されていた。このようなバリス
タの電圧−電流特性は近似的に次式のように表すことが
できる。
Conventional technology Conventionally, SiC varistors and Zn varistors, which have voltage-dependent nonlinear resistance characteristics, have been used to absorb abnormally high voltages, remove noise, eliminate sparks, and counter static electricity in various electrical and electronic devices.
O-type varistors were used. The voltage-current characteristics of such a varistor can be approximately expressed as in the following equation.

1=(V/C)a ここで、■は電流、■は電圧、Cはバリスタ固有の定数
、αは電圧非直線指数である。
1=(V/C)a Here, ■ is a current, ■ is a voltage, C is a constant specific to the varistor, and α is a voltage nonlinear index.

SiCバリスタのαは2〜7程度、ZnO系バリスタで
はαが50にもおよぶものがある。このようなバリスタ
は比較的高い電圧の吸収には優れた性能を有しているが
、誘電率が低く、固有の静電容量が小さいためバリスタ
電圧以下の比較的低い電圧の吸収に対してはほとんど効
果を示さず、また誘電損失tanδが5〜10%と大き
い。
The α of SiC varistors is about 2 to 7, and the α of some ZnO-based varistors is as high as 50. Although such varistors have excellent performance in absorbing relatively high voltages, they have a low dielectric constant and small inherent capacitance, so they are difficult to absorb relatively low voltages below the varistor voltage. It shows almost no effect, and the dielectric loss tan δ is as large as 5 to 10%.

一方、これらの低電圧のノイズなどの除去には見かけの
誘電率が5X10’程度で、tanδが1%前後の半導
体コンデンサが利用されている。しかし、このような半
導体コンデンサはサージなどによりある限度以上の電圧
または電流が印加されると、破壊したりしてコンデンサ
としての機能を果たさなくなったりする。
On the other hand, semiconductor capacitors with an apparent dielectric constant of about 5×10' and a tan δ of about 1% are used to remove these low voltage noises. However, if a voltage or current exceeding a certain limit is applied to such a semiconductor capacitor due to a surge or the like, it may break down and no longer function as a capacitor.

そこで最近になって、5rTi(hを主成分とし、バリ
スタ特性とコンデンサ特性の両方の機能を有するものが
開発され、マイクロコンピュータなどの電子機器におけ
るIC,LSIなどの半導体素子の保護に使用されてい
る。
Recently, a product containing 5rTi (h) as a main component and having both varistor and capacitor properties has been developed and is used to protect semiconductor elements such as ICs and LSIs in electronic devices such as microcomputers. There is.

発明が解決しようとする問題点 上記の5rTi03を主成分とするバリスタはZnO系
バリスタに比べ誘電率が約10倍と大きいが、電圧非直
線指数(α)やサージ耐量が小さく、粒内抵抗が高いた
め、高周波のノイズなどを十分に吸収できないといった
欠点を有していた。
Problems to be Solved by the Invention Although the above-mentioned 5rTi03-based varistor has a dielectric constant about 10 times higher than that of the ZnO-based varistor, the voltage nonlinearity index (α) and surge resistance are small, and the intragranular resistance is low. Because of its high cost, it had the disadvantage of not being able to sufficiently absorb high-frequency noise.

そこで本発明では、誘電率が大きくαが大きいと共に、
サージ耐量が大きく、粒内抵抗が低い電圧依存性非直線
抵抗体磁器組成物を提供することを目的とする。
Therefore, in the present invention, in addition to having a large dielectric constant and a large α,
It is an object of the present invention to provide a voltage-dependent nonlinear resistor ceramic composition that has a large surge resistance and a low intragranular resistance.

問題点を解決するための手段 上記の問題点を解決するために本発明では、Sr、Ti
O3,(2)SraTiO3、(CaxSr1−x)b
Tio 3(0,001≦x≦0.5)。
Means for Solving the Problems In order to solve the above problems, in the present invention, Sr, Ti
O3, (2) SraTiO3, (CaxSr1-x)b
Tio 3 (0,001≦x≦0.5).

(Ba、Sr I−y )cTio3(0.001≦y
≦0.5)。
(Ba, Sr I-y)cTio3(0.001≦y
≦0.5).

(MgzSr+−z)dTiQ3(0,001≦z≦0
.5)(0,950≦a、b、c、d<1.000)(
以下第一成分と呼ぶ)のうち少なくとも1種類以上を9
0.000−99.998ioIJ、 Nb2O5,T
atOs、 WO3゜[1y203. Y2O3,La
2O5,Cen2. Sm2O3,PraO目*Nd2
03(以下第二成分と呼ぶ)のうち少なくとも1種類以
上を0.001−5.000mol零、TiN (以下
第三成分と呼ぶ)を0.001−5.000sol$含
有してなるか、または第一成分を80.000−99.
997mol$、第二成分を0.001−5.000n
o1g、第三成分を0.001−5.000a+ol*
 。
(MgzSr+-z)dTiQ3(0,001≦z≦0
.. 5) (0,950≦a, b, c, d<1.000) (
(hereinafter referred to as the first component)
0.000-99.998ioIJ, Nb2O5,T
atOs, WO3゜[1y203. Y2O3, La
2O5,Cen2. Sm2O3, PraO*Nd2
0.001-5.000 mol of at least one of 0.03 (hereinafter referred to as the second component) and 0.001-5.000 sol$ of TiN (hereinafter referred to as the third component), or The first component is 80.000-99.
997mol$, second component 0.001-5.000n
o1g, third component 0.001-5.000a+ol*
.

Al2O3,5b203、Y2O3、 BaOt Be
O* PbO+ has y CeF rCr203.
 Fe2O3,CdO,K2O,Cab、 Co2O3
,Cub。
Al2O3,5b203, Y2O3, BaOtBe
O* PbO+ has y CeF rCr203.
Fe2O3, CdO, K2O, Cab, Co2O3
,Cub.

Cu2O,Li2O,MgO,MnO2,MoO3,N
a2O,Nip。
Cu2O, Li2O, MgO, MnO2, MoO3, N
a2O, Nip.

Rh203r 5e02+ Ag2O+ 5iOz p
 StC* SrO+ Tl2O+Th02 、 Ti
O2、V2O5、Bi2O3、WO3,ZnO、ZrO
2、5n02(以下第四成分と呼ぶ)のうち少なくとも
1種類以上を0.001−10.000sol$含有し
てなる電圧依存性非直線抵抗体磁器組成物を得ることに
より、問題を解決しようとするものである。
Rh203r 5e02+ Ag2O+ 5iOz p
StC* SrO+ Tl2O+Th02, Ti
O2, V2O5, Bi2O3, WO3, ZnO, ZrO
We attempted to solve the problem by obtaining a voltage-dependent nonlinear resistor ceramic composition containing 0.001-10.000 sol$ of at least one of 2.5n02 (hereinafter referred to as the fourth component). It is something to do.

作用 上記発明において第一成分は主成分であり、第二成分は
主に半導体化を促進する金属酸化物である。また、第三
成分は誘電率及び粒内抵抗の改善に寄与するものであり
、第四成分は誘電率、α。
Function: In the above invention, the first component is the main component, and the second component is mainly a metal oxide that promotes semiconductor formation. Further, the third component contributes to improving the dielectric constant and intragranular resistance, and the fourth component is the dielectric constant, α.

サージ耐量の改善に寄与する。特に、第三成分は素子全
体に均一に分散し、添加時点ではTiは3価であるが、
還元焼成後に空気中で熱処理することにより4価に変わ
り、電子を放出する反応がおこる。すなわち、粒界部分
では拡散してきた多量の酸素によりTiO2が形成され
、放出された電子は酸素イオンに捕獲され粒界は絶縁化
される。一方、粒子内部は酸素の拡散が起こりにくいた
め大部分のTiNのTiが3価のままで存在し、仮に粒
子内部まで酸素が拡散してきても3価のTiが4価に変
わることによって電子を放出するため、酸化による高抵
抗化を抑制する作用をする。このため、粒子内部を低抵
抗にすることができる。
Contributes to improving surge resistance. In particular, the third component is uniformly dispersed throughout the device, and although Ti is trivalent at the time of addition,
After reduction firing, heat treatment in air causes a reaction to change to tetravalent and release electrons. That is, TiO2 is formed by a large amount of oxygen that has diffused in the grain boundary portion, and the emitted electrons are captured by oxygen ions and the grain boundary is insulated. On the other hand, most of the Ti in TiN remains trivalent because it is difficult for oxygen to diffuse inside the particles, and even if oxygen diffuses into the inside of the particles, the trivalent Ti changes to tetravalent Ti and loses electrons. Since it is released, it has the effect of suppressing the increase in resistance due to oxidation. Therefore, the internal resistance of the particles can be made low.

実施例 以下に本発明の実施例を上げて具体的に説明する。Example EXAMPLES The present invention will be described in detail below using examples.

まず、5rC(h、 CaCO5,BaCO3,MgC
O5,Ti(hを下記の第1表の組成比になるように秤
量し、ボールミルなどで40時間混合し、乾燥した後、
1000℃で15時間仮焼する。こうして得られた仮焼
物にZrNと添加物を下記の第1表の組成比になるよう
に秤量し、ボールミルなどで24時間混合し、乾燥した
後、ポリビニルアルコールなどのバインダーを10wt
$添加して造粒した後、l (t/c+J ’)のプレ
ス圧力で10φXlt(mm)の円板状に成形する。そ
の後、空気中で1100℃、1時間仮焼脱バインダーを
行った後、N2: H2=9 : 1の混合ガス中で1
520℃、3時間焼成する。さらに、空気中で1100
℃、12時間焼成し、このようにして得られた第1図、
第2図に示す焼結体1の両手面に外周を残すようにして
Agなどの導電性ペーストをスクリーン印刷などにより
塗布し、600℃、5分間焼成し、電極2,3を形成す
る。
First, 5rC (h, CaCO5, BaCO3, MgC
Weigh O5, Ti (h) so that the composition ratio is as shown in Table 1 below, mix in a ball mill etc. for 40 hours, and after drying,
Calcinate at 1000°C for 15 hours. ZrN and additives were weighed to the thus obtained calcined product so that the composition ratio was as shown in Table 1 below, mixed for 24 hours using a ball mill, dried, and then 10 wt of a binder such as polyvinyl alcohol was added.
After adding $ and granulating it, it is molded into a disk shape of 10φXlt (mm) with a press pressure of l (t/c+J'). After that, the binder was removed by calcination in air at 1100°C for 1 hour, and then the binder was removed by calcination in a mixed gas of N2:H2=9:1.
Bake at 520°C for 3 hours. Furthermore, 1100 in the air
℃ for 12 hours, thus obtained Fig. 1,
A conductive paste such as Ag is applied by screen printing or the like so as to leave the outer periphery on both sides of the sintered body 1 shown in FIG. 2, and is fired at 600° C. for 5 minutes to form electrodes 2 and 3.

次に、半田などによりリード線(図示せず)を取付け、
エポキシなどの樹脂(図示せず)を塗装する。このよう
にして得られた素子の特性を以下の第2表に示す。なお
、誘電率はIKHzでの静電容量から計算したものであ
り、粒内紙−抗(ESR)は共振周波数でのインピーダ
ンスにより評価し、αは a = 1 / Log (V l0IIA/ V I
IIA >(ただし、VIO,A+ VlmAはそれぞ
れ10mA。
Next, attach the lead wire (not shown) with solder etc.
Apply a resin such as epoxy (not shown). The characteristics of the device thus obtained are shown in Table 2 below. Note that the dielectric constant is calculated from the capacitance at IKHz, the intragranular paper-resistance (ESR) is evaluated by the impedance at the resonant frequency, and α is a = 1 / Log (V l0IIA / VI
IIA > (However, VIO, A+ VlmA are each 10 mA.

1mAの電流を流した時に素子の両端にかかる電圧であ
る。)で評価した。また、サージ耐量はパルス性の電流
を印加した後のVlmAの変化が±10零以内である時
の最大のパルス性電流値により評価している。
This is the voltage applied across the device when a current of 1 mA is applied. ) was evaluated. Further, the surge resistance is evaluated based on the maximum pulse current value when the change in VlmA after applying the pulse current is within ±10 zero.

(以  下  余  白  ) また、第一成分の5raTiO3゜ (2)SraTiO3、(CaxSr1−x)bTi0
3(0,001≦x≦0.5)。
(Margin below) Also, the first component 5raTiO3゜(2)SraTiO3, (CaxSr1-x)bTi0
3 (0,001≦x≦0.5).

(BaySr l−y )cTlo3(0.001≦y
≦0.5)。
(BaySr l-y)cTlo3(0.001≦y
≦0.5).

(MgzSr+−z )dTiO3(0.0OL≦i≦
0.5)(0,950≦a、b、c、d<1.000)
のx、y、zの範囲を規定したのは、0.001未満で
は効果を示さず、0.5を越えると粒成長及び半導体化
が抑制され特性が劣化するためである。また、a * 
b * C* dの範囲を規定したのは、1.0では格
子欠陥が発生しにくいため半導体化が促進されず、0.
95より小さくなるとTiが過剰となりすぎてTiO2
の結晶が生成し、組織が不均一になり特性が劣化するた
めである。また、第二成分は0.001mo1を未満で
は効果を示さず、5.000mol$を越えると粒界に
偏析して粒界の高抵抗化を抑制し、粒界に第二相を形成
するため特性が劣化するものである。さらに第三成分は
0.001mol$未満では効果を示さず、5.OOO
mol零を越えると粒界に第二相を形成するため特性が
劣化するものである。そして第四成分はO,OO1mo
l$未満では効果を示さず、5.000s+o1gを越
えると粒界に第二相を形成し粒成長が抑制され、粒界の
抵抗は高(なるが粒界の幅が厚(なるため、静電容量が
小さくなり、バリスタ電圧が高くなり、サージに対して
弱くなるものである。
(MgzSr+-z)dTiO3(0.0OL≦i≦
0.5) (0,950≦a, b, c, d<1.000)
The range of x, y, and z is specified because if it is less than 0.001, no effect will be shown, and if it exceeds 0.5, grain growth and semiconducting will be suppressed and the characteristics will deteriorate. Also, a*
The reason why the range of b*C*d was defined is that 1.0 is difficult to generate lattice defects, so semiconductor formation is not promoted, and 0.
If it is less than 95, Ti is too much and TiO2
This is because crystals are formed, the structure becomes non-uniform, and the properties deteriorate. In addition, the second component has no effect if it is less than 0.001 mol, and if it exceeds 5.000 mol, it segregates at the grain boundaries, suppresses the increase in resistance of the grain boundaries, and forms a second phase at the grain boundaries. The characteristics deteriorate. Furthermore, the third component does not show any effect at less than 0.001 mol$, and 5. OOO
If the mol exceeds zero, a second phase is formed at grain boundaries, resulting in deterioration of properties. And the fourth component is O, OO1mo
If it is less than l$, no effect is shown, and if it exceeds 5.000s+o1g, a second phase is formed at the grain boundaries, grain growth is suppressed, and the resistance of the grain boundaries becomes high (although the width of the grain boundaries becomes thick). The capacitance is small, the varistor voltage is high, and it is vulnerable to surges.

なお、本実施例では一部の添加物の組み合わせについて
のみ示したが、その他の添加物の組み合わせについても
同様の効果があることを確認した。
In this example, only some combinations of additives were shown, but it was confirmed that other combinations of additives had similar effects.

発明の効果 以上に示したように本発明によれば誘電率、αが太き(
、粒内抵抗が小さいため、サージ電流が印加された後の
発熱が少ないため、素子の劣化が小さく、サージ耐量が
大きくなるという効果が得られる。
Effects of the Invention As shown above, according to the present invention, the dielectric constant α is large (
Since the intragranular resistance is small, there is less heat generation after a surge current is applied, so that the effect of reducing element deterioration and increasing surge resistance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による素子を示す上面図、第2図は本発
明による素子の断面図である。 1・・・・・・焼結体、2,3・・・・・・電極。 代理人の氏名 弁理士 中尾敏男 ほか1名1−焼紹体 2.3=t   極 第1図 第2図
FIG. 1 is a top view showing an element according to the invention, and FIG. 2 is a sectional view of the element according to the invention. 1... Sintered body, 2, 3... Electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person 1 - 2.3 = t Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)Sr_aTiO_3、(Ca_xSr_1_−_
x)_bTiO_3(0.001≦x≦0.5)、(B
a_ySr_1_−_y)_cTiO_3(0.001
≦y≦0.5)、(Mg_zSr_1_−_z)_dT
iO_3(0.001≦z≦0.5)(0.950≦a
、b、c、d<1.000)のうち少なくとも1種類以
上を90.000〜99.998mol%、Nb_2O
_5、Ta_2O_5、WO_3、Dy_2O_3、Y
_2O_3、La_2O_3、CeO_2、Sm_2O
_3、Pr_6O_1_1、Nd_2O_3のうち少な
くとも1種類以上を0.001〜5.000mol%、
TiNを0.001〜5.000mol%含有してなる
電圧依存性非直線抵抗体磁器組成物。
(1) Sr_aTiO_3, (Ca_xSr_1_-_
x)_bTiO_3 (0.001≦x≦0.5), (B
a_ySr_1_-_y)_cTiO_3(0.001
≦y≦0.5), (Mg_zSr_1_−_z)_dT
iO_3 (0.001≦z≦0.5) (0.950≦a
, b, c, d<1.000) at 90.000 to 99.998 mol%, Nb_2O
_5, Ta_2O_5, WO_3, Dy_2O_3, Y
_2O_3, La_2O_3, CeO_2, Sm_2O
0.001 to 5.000 mol% of at least one of _3, Pr_6O_1_1, and Nd_2O_3;
A voltage-dependent nonlinear resistor ceramic composition containing 0.001 to 5.000 mol% of TiN.
(2)Sr_aTiO_3、(Ca_xSr_1_−_
x)_bTiO_3(0.001≦x≦0.5)、(B
a_ySr_1_−_y)_cTiO_3(0.001
≦y≦0.5)、(Mg_zSr_1_−_z)_dT
iO_3(0.001≦z≦0.5)(0.950≦a
、b、c、d<1.000)のうち少なくとも1種類以
上を80.000〜99.997mol%、Nb_2O
_5、Ta_2O_5、WO_3、Dy_2O_3、Y
_2O_3、La_2O_3、CeO_2、Sm_2O
_3、Pr_6O_1_1、Nd_2O_3のうち少な
くとも1種類以上を0.001〜5.000mol%、
TiNを0.001〜5.000mol%、Al_2O
_3、Sb_2O_3、BaO、BeO、PbO、B_
2O_3、CeO_2、Cr_2O_3、Fe_2O_
3、CdO、K_2O、CaO、Co_2O_3、Cu
O、Cu_2O、Li_2O、MgO、MnO_2、M
oO_3、Na_2O、NiO、Rh_2O_3、Se
O_2、Ag_2O、SiO_2、SiC、SrO、T
l_2O、ThO_2、TiO_2、V_2O_5、B
i_2O_3、WO_3、ZnO、ZrO_2、SnO
_2のうち少なくとも1種類以上を0.001〜10.
000mol%含有してなる電圧依存性非直線抵抗体磁
器組成物。
(2) Sr_aTiO_3, (Ca_xSr_1_-_
x)_bTiO_3 (0.001≦x≦0.5), (B
a_ySr_1_-_y)_cTiO_3(0.001
≦y≦0.5), (Mg_zSr_1_−_z)_dT
iO_3 (0.001≦z≦0.5) (0.950≦a
, b, c, d<1.000) at 80.000 to 99.997 mol%, Nb_2O
_5, Ta_2O_5, WO_3, Dy_2O_3, Y
_2O_3, La_2O_3, CeO_2, Sm_2O
0.001 to 5.000 mol% of at least one of _3, Pr_6O_1_1, and Nd_2O_3;
0.001 to 5.000 mol% TiN, Al_2O
_3, Sb_2O_3, BaO, BeO, PbO, B_
2O_3, CeO_2, Cr_2O_3, Fe_2O_
3, CdO, K_2O, CaO, Co_2O_3, Cu
O, Cu_2O, Li_2O, MgO, MnO_2, M
oO_3, Na_2O, NiO, Rh_2O_3, Se
O_2, Ag_2O, SiO_2, SiC, SrO, T
l_2O, ThO_2, TiO_2, V_2O_5, B
i_2O_3, WO_3, ZnO, ZrO_2, SnO
At least one type of _2 from 0.001 to 10.
A voltage-dependent nonlinear resistor ceramic composition containing 000 mol%.
JP62049223A 1987-03-04 1987-03-04 Voltage-dependent nonlinear resistor porcelain compound Pending JPS63215002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62049223A JPS63215002A (en) 1987-03-04 1987-03-04 Voltage-dependent nonlinear resistor porcelain compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62049223A JPS63215002A (en) 1987-03-04 1987-03-04 Voltage-dependent nonlinear resistor porcelain compound

Publications (1)

Publication Number Publication Date
JPS63215002A true JPS63215002A (en) 1988-09-07

Family

ID=12824932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62049223A Pending JPS63215002A (en) 1987-03-04 1987-03-04 Voltage-dependent nonlinear resistor porcelain compound

Country Status (1)

Country Link
JP (1) JPS63215002A (en)

Similar Documents

Publication Publication Date Title
JP2830322B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JPH03109261A (en) Production of porcelain composition for nonlinear resistor having voltage dependency and varistor
JP2727693B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JPS63215002A (en) Voltage-dependent nonlinear resistor porcelain compound
JPS63215019A (en) Voltage-dependent nonlinear resistor porcelain compound
JP2822612B2 (en) Varistor manufacturing method
JP2808777B2 (en) Varistor manufacturing method
JPS63215017A (en) Voltage-dependent nonlinear resistor porcelain compound
JPH01226115A (en) Voltage-dependent non-linearity resistor ceramic composition
JPS63215012A (en) Voltage-dependent nonlinear resistor porcelain compound
JP2808778B2 (en) Varistor manufacturing method
JPS63215001A (en) Voltage-dependent nonlinear resistor porcelain compound
JPS63215006A (en) Voltage-dependent nonlinear resistor porcelain compound
JPS63215007A (en) Voltage-dependent nonlinear resistor porcelain compound
JPS63215003A (en) Voltage-dependent nonlinear resistor porcelain compound
JPS63215011A (en) Voltage-dependent nonlinear resistor porcelain compound
JPS63215008A (en) Voltage-dependent nonlinear resistor porcelain compound
JPS63215004A (en) Voltage-dependent nonlinear resistor porcelain compound
JPS63215018A (en) Voltage-dependent nonlinear resistor porcelain compound
JPS63215013A (en) Voltage-dependent nonlinear resistor porcelain compound
JPS63215014A (en) Voltage-dependent nonlinear resistor porcelain compound
JPH038760A (en) Production of voltage-dependent nonlinear resistor porcelain composition and varistor
JPH01226120A (en) Voltage-dependent non-linear resistor ceramic composition
JPS62179103A (en) Voltage-dependant nonlinear resistance porcelain compound
JPS63215009A (en) Voltage-dependent nonlinear resistor porcelain compound