JPS63213678A - Electroless copper plating method - Google Patents

Electroless copper plating method

Info

Publication number
JPS63213678A
JPS63213678A JP4410587A JP4410587A JPS63213678A JP S63213678 A JPS63213678 A JP S63213678A JP 4410587 A JP4410587 A JP 4410587A JP 4410587 A JP4410587 A JP 4410587A JP S63213678 A JPS63213678 A JP S63213678A
Authority
JP
Japan
Prior art keywords
copper
plating
time
consumption
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4410587A
Other languages
Japanese (ja)
Inventor
Akio Takatsu
明郎 高津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP4410587A priority Critical patent/JPS63213678A/en
Publication of JPS63213678A publication Critical patent/JPS63213678A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1617Purification and regeneration of coating baths
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • C23C18/1683Control of electrolyte composition, e.g. measurement, adjustment

Abstract

PURPOSE:To accurately control the concn. of each component in a plating bath within a certain range, by calculating the amts. of a metal component and a reducing agent to be supplied from reaction rate constants related to the consumptions of the metal component and the reducing agent according to the progress of a plating reaction and by supplying them. CONSTITUTION:Reaction rate constants related to the consumptions of a metal component (copper) and a reducing agent (formaldehyde) according to the progress of a plating reaction during electroless copper plating are represented by KM and KR, respectively. When the constants KM, KR are used, a rate equation for the consumption of copper is represented by CM=Co-KM.t and that for the consumption of formaldehyde by CR=Co.exp(KR.t) (where Co is initial concn. and t is time). The amts. of the components consumed during the time from analysis to supply are estimated by reaction kinetics and the components are supplied by the estimated amts. added to the conventional amts. supplied. Thus, the concn. of each of the components is accurately controlled within a set range.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は無電解消めっき方法に関し、特に消費された浴
成分の補給方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for electroless plating, and more particularly to a method for replenishing consumed bath components.

(従来の技術) プリント配線板の表裏の回路をスルーホールを介して接
続するための表面処理技術として、無電解銅めっき方法
が広く用いられている。さらに近年はプリント配線板上
の回路の細密化に伴いスルーホール径が小さくなる傾向
にあり、このような小径のスルーホールは従来、最初に
無電解消めっきで薄く導電層を形成せしめ、次に電気銅
めっきで所定の厚さまで銅被膜を電着せしめる方法が用
いられてきた。しかしながらこの方法ではスルーホール
端部に銅が不必要に電着したり、一方向部には電着しに
くいなどの不都合が生じている。このため径の小さいス
ルーホールには均一電着性の良い無電解銅めっきのみで
導電層を形成することが好都合であり、銅源として硫酸
銅、錯化剤としてEDTA、還元剤としてホルマリン、
pl+調整剤として水酸化アルカリ、さらにジピリジル
、界面活性剤等の添加剤を含む厚付用無電解銅めっき浴
が用いられてきた。しかしこのめっき浴の析出速度は通
常2μm/Hr以下なので目標とする35μmの被膜を
得るためには15〜20時間の操業が必要である。この
間めっき反応の進行に伴い銅、還元剤、水酸化アルカリ
等の成分が消費されるため、15〜20分毎にこれらの
成分を定量し、消費分を補給して各成分濃度を一定範囲
に調整する自動制御を行っており、ここでいう一定範囲
とは各成分の設定濃度に対して土5%の範囲である。前
述した浴成分を常に一定範囲内に制御することば得られ
る銅被膜の析出速度を一定に保つだけでなく、銅被膜自
身の物性に影づを与えることが認められているためこの
浴成分の濃度管理は極めて重要である。
(Prior Art) Electroless copper plating is widely used as a surface treatment technique for connecting circuits on the front and back sides of a printed wiring board via through holes. Furthermore, in recent years, as circuits on printed wiring boards have become more compact, the diameter of through holes has tended to become smaller. Conventionally, such small diameter through holes were first formed by electroless plating to form a thin conductive layer, and then electroplated. A method of electrodepositing a copper film to a predetermined thickness using copper plating has been used. However, this method has disadvantages such as unnecessary electrodeposition of copper at the ends of the through holes and difficulty in electrodeposition in one direction. For this reason, it is convenient to form a conductive layer in small-diameter through holes using only electroless copper plating, which has good uniform electrodeposition properties, using copper sulfate as the copper source, EDTA as the complexing agent, and formalin as the reducing agent.
Thick electroless copper plating baths containing alkali hydroxide as a pl+ adjuster and additives such as dipyridyl and surfactants have been used. However, since the deposition rate of this plating bath is usually less than 2 .mu.m/Hr, operation for 15 to 20 hours is required to obtain the targeted 35 .mu.m coating. During this time, components such as copper, reducing agent, and alkali hydroxide are consumed as the plating reaction progresses, so these components are quantified every 15 to 20 minutes and the consumed amount is replenished to keep the concentration of each component within a certain range. Automatic control is performed to adjust the concentration, and the fixed range here is a range of 5% soil relative to the set concentration of each component. By always controlling the bath components mentioned above within a certain range, it is possible to not only keep the deposition rate of the resulting copper film constant, but also to influence the physical properties of the copper film itself. Management is extremely important.

(発明が解決しようとする問題点) この浴成分を一定範囲内に管理する方法は前述したよう
にめっき浴中の各成分を一定時間毎に定量分析し、各成
分の設定値からの消費分を各成分の濃縮液を用いて浴中
に添加すれば良い。ところが実際には、各成分の濃度は
めっき浴からの分析用めっき液の採取、各成分の定量分
析、消費分の補給の順に行われるため、めっき液の採取
時刻と?;縮液の補給時刻とに時間差(以下タイムラグ
と記述する)が生じている。めっき浴中ではその間にも
各成分は消費され続けているため液採取時刻における各
成分の設定濃度からの不足分として求められた補給量は
補給時刻においては真の補給量より少なくなるため分析
時刻での補給量を補給しても各成分の濃度は設定値には
戻らない。そのため各成分の濃度を所定の濃度範囲内に
保つことば困難である。
(Problem to be Solved by the Invention) As mentioned above, the method of controlling the bath components within a certain range is to quantitatively analyze each component in the plating bath at fixed intervals, and calculate the amount consumed from the set value of each component. may be added to the bath using concentrated solutions of each component. However, in reality, the concentration of each component is determined in the following order: collection of the plating solution for analysis from the plating bath, quantitative analysis of each component, and replenishment of the consumed amount. ; There is a time difference (hereinafter referred to as a time lag) between the replenishment time of the contracted liquid and the replenishment time. In the plating bath, each component continues to be consumed during that time, so the amount of replenishment calculated as the shortfall from the set concentration of each component at the time of liquid collection will be less than the true amount of replenishment at the time of replenishment, so the analysis time The concentration of each component does not return to the set value even if the replenishment amount is replenished. Therefore, it is difficult to maintain the concentration of each component within a predetermined concentration range.

以上述べた不具合点を解消するために、本発明は浴成分
のタイムラグ間の消費分を考慮した補給量を用いて浴成
分の濃度を精度良く一定範囲内に管理する方法を提供す
るものである。
In order to solve the above-mentioned problems, the present invention provides a method for accurately controlling the concentration of bath components within a certain range by using replenishment amounts that take into account the consumption of bath components during the time lag. .

(問題点を解決するための手段) 上記目的を達成するために本発明は、めっき反応進行に
伴う金属成分、還元剤の消費に係わるそれぞれの反応速
度定数kW 、 kRから、金属成分、還元剤の補給量
を算出して補給することに特徴がある。
(Means for Solving the Problems) In order to achieve the above object, the present invention calculates the consumption of metal components and reducing agent from the respective reaction rate constants kW and kR related to the consumption of metal components and reducing agent as the plating reaction progresses. It is characterized by calculating and replenishing the amount of replenishment.

(作 用) 無電解銅めっき浴中で起こる反応は下記(1)式で表わ
される銅の還元析出反応と(2)式で表わされる還元剤
の副反応が主なものである。
(Function) The reactions that occur in the electroless copper plating bath are mainly the copper reduction-precipitation reaction represented by the following formula (1) and the side reaction of the reducing agent represented by the following formula (2).

Cu”’+2HCHO+40tl−−” Cu+2HC
OO−+ 211zO+Hz  (1)211CIIO
+OH−−4tlCOO−+ CHsOH(2)(11
,(21式から分かるようにホルマリンの消費は銅の還
元以外にホルマリン自身の自己縮合反応によっても進む
Cu"'+2HCHO+40tl--"Cu+2HC
OO-+ 211zO+Hz (1) 211CIIO
+OH−−4tlCOO−+ CHsOH(2)(11
, (As can be seen from Equation 21, consumption of formalin proceeds not only by the reduction of copper but also by the self-condensation reaction of formalin itself.

本発明の補給方法は上記した銅、ホルマリンの消費反応
からそれぞれの反応速度定数kH,にえを求め、両成分
のタイムラグ間における消費量を分析時刻における補給
量に加味して補給時刻における真の補給量を算出するも
のである。この銅、ホルマリンの消費に係わる反応速度
定数を求めるには銅、ホルマリンの消費反応がそれぞれ
零次反応、−次反応であることを利用しており、より定
量的に述べると銅、ホルマリンの反応速度定数をそれぞ
れkW 、 kR(M:金属、R:還元剤)とした場合
、銅の消費反応速度式はC,= Co −kイ・t、ホ
ルマリンの消費反応速度式はC,1=Co−exp(−
kR−t)(Coは初期濃度、tは時間)と表わせる。
The replenishment method of the present invention calculates the reaction rate constants kHz and Ny from the above-described consumption reactions of copper and formalin, and adds the consumption amount of both components during the time lag to the replenishment amount at the analysis time to calculate the true value at the replenishment time. This is to calculate the supply amount. To find the reaction rate constants related to the consumption of copper and formalin, we utilize the fact that the consumption reactions of copper and formalin are zero-order and -order reactions, respectively.More quantitatively speaking, the reaction of copper and formalin is When the rate constants are kW and kR (M: metal, R: reducing agent), the consumption reaction rate equation for copper is C, = Co - k i t, and the consumption reaction rate equation for formalin is C, 1 = Co -exp(-
kR-t) (Co is the initial concentration, t is time).

実際にはめっき反応進行に伴う各成分の消費に対する補
給があるため銅成分、ホルマリンの消費反応速度式は以
下のようになる。
In reality, since there is replenishment for the consumption of each component as the plating reaction progresses, the consumption reaction rate equation for the copper component and formalin is as follows.

まず銅成分に関してはn回目の測定値をCn、 n+1
回目の測定値をCn。3、補給量をCs、測定間隔をT
とすれば、C11+i =Cn + Cs  kH・T
と表わされるので、実測値、補強量、時間を代入してk
Mの値を算出する。タイムラグの時間をT、とすればタ
イムラグ間での銅成分の消費量はkM −TIとなるの
で定量分析によって求めた補給量にタイムラグ間の消費
ff1k、・T、を加味してめっき槽内へ補給する。
First, regarding the copper component, the nth measurement value is Cn, n+1
The second measurement value is Cn. 3. Supply amount is Cs, measurement interval is T
Then, C11+i = Cn + Cs kH・T
Therefore, by substituting the actual measured value, amount of reinforcement, and time, k
Calculate the value of M. If the time lag time is T, the consumption amount of copper components during the time lag is kM - TI, so the consumption during the time lag ff1k, T is added to the replenishment amount determined by quantitative analysis, and the amount is transferred into the plating bath. Replenish.

一方ホルマリンに関してはn回目の測定値をC’n、n
+1回目の測定値をC’g+1、補給量をC’s、測定
間隔をT、補給時刻をtとすれば C’、、+、 −C’n−exp(−T =に、) +
C’5exp(−(T−t) ・kR)と表わされるの
で、両式に実測値、補給量、時間を代入してkRO値を
算出する。タイムラグの時間T2とすればタイムラグ間
のホルマリンの消費量はC′・exp(−T、・kR)
となるので定量分析によって求めた補強量にタイムラグ
間の消費mC゛・exp(−Tz・k+t)を加味して
めっき槽内へ補給する。
On the other hand, for formalin, the nth measurement value is C'n, n
+If the first measurement value is C'g+1, the replenishment amount is C's, the measurement interval is T, and the replenishment time is t, then C',, +, -C'n-exp(-T =,) +
Since it is expressed as C'5exp(-(T-t) ·kR), the kRO value is calculated by substituting the actual measurement value, supply amount, and time into both equations. If the time lag time is T2, the consumption amount of formalin during the time lag is C′・exp(−T,・kR)
Therefore, the amount of reinforcement determined by quantitative analysis is added to the amount of reinforcement consumed during the time lag (-Tz.k+t) and then replenished into the plating tank.

(実施例) 以下に本発明の一実施例を示す。(Example) An example of the present invention is shown below.

硫酸銅2.5 g / I!、EDTA60g/l、ホ
ルマリン2.−Og / l 、ジピリジル30曙/1
2.ポリエチレングリコール0.5 g / I!であ
る無電解銅めっき浴を用いて浴温度65°C1浴負荷1
.5 dm2/ lで試験を行なった。また、用いため
っき槽は100X80X80 (印)で、液量は120
Eである。
Copper sulfate 2.5 g/I! , EDTA 60g/l, formalin 2. -Og/l, dipyridyl 30 Akebono/1
2. Polyethylene glycol 0.5 g/I! Using an electroless copper plating bath with a bath temperature of 65°C and a bath load of 1
.. Tests were conducted at 5 dm2/l. In addition, the plating tank used was 100X80X80 (marked), and the liquid volume was 120
It is E.

本実施例においては、銅、ホルマリンの濃度測定は20
分毎に行ない、両成分の測定手段として、銅については
可視部(740nm)における吸光光度法、ホルマリン
については亜硫酸ナトリウムを用いる中和滴定法を用い
た。
In this example, the concentration of copper and formalin was measured at 20
The measurement was carried out every minute, and as means for measuring both components, an absorption photometry method in the visible region (740 nm) was used for copper, and a neutralization titration method using sodium sulfite was used for formalin.

上記条件のもと補給液として、銅補給液(硫酸銅50 
g/e、 EDTA450 g/ff) 、ホルマリン
として37%水溶液を用いて連続処理を行ない、20分
毎に5 mEのめっき液を採取し、水酸化アルカリ濃度
、ホルマリン濃度、銅濃度の順に測定を行った。銅及び
ホルマリンについては上記作用の項で示した方法を用い
て測定値をコンピューターで処理して分析時刻での補給
量に補給時刻までの消費量を加味した補給量をめっき槽
内に補給した。その結果、第1図に示すようにホルマリ
ン濃度、銅濃度ともに管理濃度範囲内に収っていた。
Under the above conditions, copper replenishment solution (copper sulfate 50%
g/e, EDTA450 g/ff), 37% aqueous solution as formalin was used for continuous treatment, 5 mE of plating solution was collected every 20 minutes, and the alkali hydroxide concentration, formalin concentration, and copper concentration were measured in this order. went. As for copper and formalin, the measured values were processed by a computer using the method shown in the section on the effects above, and the amount of replenishment was added to the amount of replenishment at the time of analysis and the amount consumed up to the time of replenishment, and the amount was replenished into the plating tank. As a result, as shown in FIG. 1, both formalin concentration and copper concentration were within the controlled concentration range.

また、比較のために従来通り分析によって求めだ補給量
だけで補給した場合には第2図に示すようにポルマリン
濃度、銅濃度は管理濃度範囲には収らなかった。
Furthermore, for comparison, when replenishing only the amount determined by analysis as in the past, the polymerin concentration and copper concentration did not fall within the control concentration range, as shown in Figure 2.

(発明の効果) 以上説明したように本発明の無電解銅めっき方法によれ
ば、分析時刻と補給時刻の時間差内に消費される浴成分
の債を反応速度論的に予測し、時間差内の消費量を従来
用いられてきた補給量に加味して補給することでめっき
浴中の金属成分濃度、還元剤濃度を各設定濃度範囲内で
正確に管理することができるようになった。また、これ
に伴い得られる銅被膜の特性、特に延性が向上すること
ができる効果大なることは明らかである。
(Effects of the Invention) As explained above, according to the electroless copper plating method of the present invention, the amount of bath components consumed within the time difference between the analysis time and the replenishment time is predicted from reaction kinetics, and By adding the consumption amount to the conventionally used replenishment amount and replenishing, it is now possible to accurately control the metal component concentration and reducing agent concentration in the plating bath within each set concentration range. Further, it is clear that the properties of the resulting copper coating, especially the ductility, can be greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による補給方法を用いた場合のめっき浴
中の銅及びホルマリンの濃度変化である。 第2図は従来の補給方法を用いた場合のめっき浴中の銅
及びホルマリンの濃度変化である。 1・・・管理濃度範囲上限、2・・・管理濃度範囲下限
。 第1図 (時間) 1、η浬濃度ρi云L」−眼 2、   同下限 第2図 (時間) 1、管理濃度範囲上限 2、  同下限
FIG. 1 shows changes in the concentrations of copper and formalin in the plating bath when the replenishment method according to the present invention is used. FIG. 2 shows the changes in the concentration of copper and formalin in the plating bath when using the conventional replenishment method. 1... upper limit of the control concentration range, 2... lower limit of the control concentration range. Figure 1 (time) 1. η浬浓率ρi云L”-Eye 2, lower limit of the same Figure 2 (time) 1. Upper limit of the controlled concentration range 2, lower limit of the same

Claims (1)

【特許請求の範囲】[Claims] めっき反応進行に伴う金属成分、還元剤の消費に係わる
それぞれの反応速度定数K_M,K_Rから、金属成分
、還元剤の補給量を算出して補給することを特徴とする
無電解銅めっき方法。
An electroless copper plating method characterized in that the amounts of metal components and reducing agents are calculated and replenished from reaction rate constants K_M and K_R relating to the consumption of metal components and reducing agents as the plating reaction progresses.
JP4410587A 1987-02-28 1987-02-28 Electroless copper plating method Pending JPS63213678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4410587A JPS63213678A (en) 1987-02-28 1987-02-28 Electroless copper plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4410587A JPS63213678A (en) 1987-02-28 1987-02-28 Electroless copper plating method

Publications (1)

Publication Number Publication Date
JPS63213678A true JPS63213678A (en) 1988-09-06

Family

ID=12682332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4410587A Pending JPS63213678A (en) 1987-02-28 1987-02-28 Electroless copper plating method

Country Status (1)

Country Link
JP (1) JPS63213678A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5106413A (en) * 1990-02-01 1992-04-21 Hitachi, Ltd. Measurement method, adjustment method and adjustment system for the concentrations of ingredients in electroless plating solution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5106413A (en) * 1990-02-01 1992-04-21 Hitachi, Ltd. Measurement method, adjustment method and adjustment system for the concentrations of ingredients in electroless plating solution

Similar Documents

Publication Publication Date Title
JP2787142B2 (en) Electroless tin, lead or their alloy plating method
US5484626A (en) Methods and apparatus for maintaining electroless plating solutions
US5182131A (en) Plating solution automatic control
EP0787835A1 (en) Method of controlling component concentration of plating solution in continuous elektroplating
JPS63213678A (en) Electroless copper plating method
US5200047A (en) Plating solution automatic control
JP2001049448A (en) Electroless nickel plating method
Ramasubramanian et al. Solution equilibrium characteristics of electroless copper deposition on thermally-activated palladium-catalysed polyimide substrates
JPH0565661A (en) Production of electroless nickel plating film
JP2822840B2 (en) Plating method and plating apparatus for electroless tin, lead or their alloys
US3060059A (en) Electroless nickel-phosphorous alloy plating bath and method
JP2757673B2 (en) Continuous plating method of electroless Ni-P-Mo
JPH0830274B2 (en) Method for analyzing copper ion concentration in electroless tin, lead or their alloy plating bath
JP3099531B2 (en) Electroless copper plating bath automatic management system
JP2697544B2 (en) Analysis method for electroless tin, lead or their alloy plating bath
JP2002194573A (en) Surface treatment agent for copper and copper alloy
JPH0247550B2 (en) MUDENKAIDOMETSUKIEKINOKANRIHOHO
JPS583999A (en) Electric alloy plating method
JP2757708B2 (en) Electroless tin / lead alloy plating method
JP3188859B2 (en) Copper ion supply method to electroless copper plating solution
JPS5921386B2 (en) Automatic plating speed control method for electroless plating
JPH0633251A (en) System for automatically controlling copper electroless-plating bath
JP4642268B2 (en) How to replenish chemical plating solution components
JPS63195274A (en) Method for controlling electroless plating
JPH10267918A (en) Solution for chemical analysis of zinc-iron alloy group 2-layer plated steel board, and chemical analysis method using it