JPH0247550B2 - MUDENKAIDOMETSUKIEKINOKANRIHOHO - Google Patents

MUDENKAIDOMETSUKIEKINOKANRIHOHO

Info

Publication number
JPH0247550B2
JPH0247550B2 JP14578082A JP14578082A JPH0247550B2 JP H0247550 B2 JPH0247550 B2 JP H0247550B2 JP 14578082 A JP14578082 A JP 14578082A JP 14578082 A JP14578082 A JP 14578082A JP H0247550 B2 JPH0247550 B2 JP H0247550B2
Authority
JP
Japan
Prior art keywords
ion concentration
plating solution
formalin
copper plating
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14578082A
Other languages
Japanese (ja)
Other versions
JPS5935666A (en
Inventor
Yoshuki Tsuru
Toshiro Okamura
Akishi Nakaso
Kazumi Kojima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Small Business Corp
Original Assignee
Small Business Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Small Business Corp filed Critical Small Business Corp
Priority to JP14578082A priority Critical patent/JPH0247550B2/en
Publication of JPS5935666A publication Critical patent/JPS5935666A/en
Publication of JPH0247550B2 publication Critical patent/JPH0247550B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • C23C18/1683Control of electrolyte composition, e.g. measurement, adjustment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • C23C18/405Formaldehyde

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemically Coating (AREA)

Description

【発明の詳細な説明】 本発明は無電解銅めつき液を安定に連続的に運
転し、安定した析出銅を得るための無電解銅めつ
き液の管理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for managing an electroless copper plating solution for stably and continuously operating the electroless copper plating solution to obtain stable deposited copper.

プリント配線板の製造工程で使用される無電解
銅めつき液は、安定した品質の析出銅を得るため
に厳密な組成コントロールが必要である。このた
め、めつき液の組成を分析し消費された成分を補
充するのに使われるのが自動コントローラであ
る。
Electroless copper plating solutions used in the manufacturing process of printed wiring boards require strict composition control in order to obtain deposited copper of stable quality. For this reason, automatic controllers are used to analyze the composition of the plating solution and replenish the consumed components.

一般的に自動コントローラは無電解銅めつき液
の主要成分である銅イオン濃度、水酸イオン濃
度、ホルマリン濃度を測定、補充するものであり
それぞれ吸光々度法、ガラス電極法、亜硫酸ソー
ダ添加ガラス電極法で測定している。しかし、ホ
ルマリンに関しては、測定精度が悪い、高pH域
では測定が困難である。反応速度が遅いために測
定の時間遅れが大きくコントロール精度を低くさ
せるなどの問題がある。また、ホルマリン分析の
困難さを避けるために開発された方法として、無
電解銅めつき液の析出速度を連続的に或いは一定
の間隔をもつて間欠的に測定し、測定に従つてホ
ルマリンを補充する方法があるが、この方法では
必ずしもホルマリン濃度を一定に保つことはでき
ない。
Generally, automatic controllers measure and replenish the copper ion concentration, hydroxide ion concentration, and formalin concentration, which are the main components of electroless copper plating solution, and are used for the absorbance measurement method, glass electrode method, and sodium sulfite added glass, respectively. Measured using the electrode method. However, for formalin, measurement accuracy is poor and measurement is difficult in the high pH range. Because the reaction speed is slow, there are problems such as a large time delay in measurement and a decrease in control accuracy. In addition, as a method developed to avoid the difficulties of formalin analysis, the deposition rate of electroless copper plating solution is measured continuously or intermittently at regular intervals, and formalin is replenished according to the measurements. There is a method to do this, but this method does not necessarily keep the formalin concentration constant.

本発明はこのような点に鑑みてなされたもの
で、ホルマリンを分析する必要がなく、信頼性の
高い銅イオン濃度および水酸イオン濃度の2つの
測定値から、カニツアロ反応として知られる副反
応による消費をも含めたホルマリンの全消費量を
計算によつて求め、補充することを特徴とするも
のである。
The present invention was made in view of these points, and it is not necessary to analyze formalin, and it is possible to detect the effect of a side reaction known as the Cannitzaro reaction by using two highly reliable measurements of copper ion concentration and hydroxide ion concentration. This method is characterized in that the total amount of formalin consumed, including consumption, is calculated and replenished.

本発明は必要な組成、パラメーターを分析、測
定し消費された成分に見合う補充を行う無電解銅
めつき液の管理方法に於て、銅イオン濃度および
水酸イオン濃度の減少量、△CCu 2+、および△
COH-を測定し、 △CHCHO=2△COH-−6△CCu 2+ なる関係式に従つて、ホルマリンを補充すること
を特徴とするものである。
The present invention provides a method for managing an electroless copper plating solution that analyzes and measures the necessary composition and parameters and replenishes them in proportion to the consumed components . 2+ , and △
The method is characterized in that C OH- is measured and formalin is replenished according to the relational expression ΔC HCHO =2ΔC OH- −6ΔC Cu 2+ .

すなわち本発明は A ホルマリンを除いた組成を必要に応じて分
析、補充して無電解銅めつき液をコントロール
する。
That is, the present invention controls the electroless copper plating solution by analyzing and replenishing the composition excluding A formalin as necessary.

B 測定した銅イオンおよび水酸イオンの減少量
(△CCu 2+、△COH-)から △CHCHO=2△COH-−6△CCu 2+ なる関係式によつてホルマリンの減少量△
CHCHOを計算しホルマリンを補充することによ
つて無電解銅めつき液をコントロールするもの
である。銅イオン濃度と水酸イオン濃度とから
なるホルマリンの減少量を計算する原理は次の
通りである。
B From the measured reduction in copper ions and hydroxide ions (△C Cu 2+ , △C OH- ), the reduction in formalin is determined by the relational expression △C HCHO = 2△C OH- −6△C Cu 2+ Amount△
The electroless copper plating solution is controlled by calculating C HCHO and replenishing formalin. The principle of calculating the formalin reduction amount, which is based on the copper ion concentration and the hydroxide ion concentration, is as follows.

無電解銅めつき液の反応には Cu 2++2HCHO+4OH- →Cu 0+2HCOO-+2H2O+H2↑ (1) なる主反応と 2HCHO+OH-→HCOO-+CH3OH (2) なる主反応とは別個に進行する副反応(カニツア
ロ反応)とがあることが知られている。(1)、(2)式
より各成分の減少量を濃度変化△Cで表わせば、 △CCu 2+=△CCu 2+ (3) △COH-=4△CCu 2++△C OH- (4) △CHCHO=2△CCu 2++2△C OH- (5) となる。△C OH-は副反応による水酸イオンの
減少量である。(5)式に(4)式を代入すれば、 △CHCHO=2△COH-−6△CCu 2+ (6) となり、副反応を含むホルマリンの全減少量が精
度の高い2測定値、即ち、銅イオン濃度と水酸イ
オン濃度の減少量から計算できる。
The reactions of electroless copper plating solution include the following main reactions: C u 2+ +2HCHO+4OH - →C u 0 +2HCOO - +2H 2 O+H 2 ↑ (1) and 2HCHO+OH - →HCOO - +CH 3 OH (2) It is known that there is a side reaction (Cannitzaro reaction) that proceeds separately. From equations (1) and (2), if the amount of decrease in each component is expressed as concentration change △C, then △C Cu 2+ = △C Cu 2+ (3) △C OH- = 4△C Cu 2+ + △ C OH- (4) △C HCHO =2△C Cu 2+ +2△C OH- (5). ΔC OH- is the amount of decrease in hydroxide ions due to side reactions. Substituting equation (4) into equation (5), we get △C HCHO = 2△C OH- −6△C Cu 2+ (6), and the total reduction of formalin including side reactions can be determined by two highly accurate measurements. It can be calculated from the amount of decrease in copper ion concentration and hydroxide ion concentration.

本発明における銅イオン濃度の測定には吸光々
度法、水酸イオンの測定にはガラス電極法による
pH測定もしくは中和滴定による方法などがそれ
ぞれ使用される。また、測定値の記憶、ホルマリ
ン消費量の計算などにはマイコンが使用される。
本発明に於ては、ホルマリン減少量は、銅イオン
濃度、水酸イオン濃度により(6)式により計算によ
り求められるので、マイコンの使用が必要とな
る。
In the present invention, the copper ion concentration is measured by the absorbance measurement method, and the hydroxyl ion concentration is measured by the glass electrode method.
Methods such as pH measurement or neutralization titration are used. A microcomputer is also used to store measured values and calculate formalin consumption.
In the present invention, since the amount of formalin reduction is calculated by equation (6) using the copper ion concentration and the hydroxide ion concentration, it is necessary to use a microcomputer.

本発明による無電解銅めつき液のコントロール
方法では、ホルマリンは計算によつてのみ補充コ
ントロールされ、他の成分のように設定値を越え
た場合に補充が停止されることがない。したがつ
て、計算の基礎となる△CCu 2+と△COH-の精度が
非常に重要となる。第1,2図は、測定間隔1
分、サンプリングから測定までに5分の時間遅れ
を有するシステムにおける銅イオン濃度および水
酸イオン濃度の減少量△CCu 2+および△COH-の計
算法の違いによるコントロール精度の差を概念的
に示したものである。
In the method for controlling an electroless copper plating solution according to the present invention, replenishment of formalin is controlled only by calculation, and replenishment is not stopped when a set value is exceeded, unlike other components. Therefore, the accuracy of △C Cu 2+ and △C OH-, which are the basis of calculation, is very important. Figures 1 and 2 show measurement intervals of 1
Conceptually, the difference in control accuracy due to the difference in the calculation method of △C Cu 2+ and △C OH- is the decrease in copper ion concentration and hydroxyl ion concentration in a system with a 5-minute time delay from sampling to measurement. This is shown in .

第1図は、設定した濃度からの銅イオン濃度お
よび水酸イオン濃度のズレをそれぞれ銅イオン濃
度および水酸イオン濃度の減少量△CCu 2+、△
COH-とした場合の〔Cu 2+〕あるいは〔OH-〕の
変化に対応したホルマリンの補充を示したもので
あり、第2図は、一定時間間隔内における消費量
を△CCu 2+、△COH-としている。第1図、第2図
から明らかなようにシステムに遅れがある場合、
第1図の方法ではホルマリンが過剰に補充され、
次第に蓄積されて行くので不適当な方法であるの
に対し、第2図では実際に消費した〔Cu 2+〕(あ
るいは〔OH-〕)にのみ対応してホルマリンが補
充されている。
Figure 1 shows the deviation of the copper ion concentration and hydroxyl ion concentration from the set concentration by the amount of decrease in the copper ion concentration and hydroxide ion concentration, respectively △C Cu 2+ , △
This figure shows the replenishment of formalin in response to changes in [C u 2+ ] or [OH - ] when C OH- is used. Figure 2 shows the consumption amount within a certain time interval as △C Cu 2 + , △C OH- . As is clear from Figures 1 and 2, if there is a delay in the system,
In the method shown in Figure 1, formalin is excessively replenished,
This is an inappropriate method because it gradually accumulates, whereas in Figure 2, formalin is replenished only in response to the actually consumed [C u 2+ ] (or [OH - ]).

システムの時間遅れと同様に銅イオン濃度およ
び水酸イオン濃度の減少量△CCu 2+、△COH-に影
響を与えるものとして外部ノイズがある。これ
は、吸光々度測定時に偶然気泡が吸光度セル中を
通過する、あるいは外部機器の動作等によるノイ
ズが信号線にのるなどによつて生ずるものであ
る。このような原因によつて補充されたホルマリ
ンは長時間の無電解銅めつき液運転時にはやはり
蓄積され、コントロール精度を低下させる要因と
なる。このような一過性のノイズの影響を低減ま
たは実質的消去するために、一定時間間隔(測定
間隔)内に2回以上測定した測定値の平均値から
求めた△CCu 2+、△COH-を使用する必要がある。
As well as the time delay of the system, external noise affects the amount of decrease in copper ion concentration and hydroxyl ion concentration △C Cu 2+ and △C OH- . This is caused by air bubbles accidentally passing through the absorbance cell during absorbance measurement, or by noise caused by the operation of external equipment getting onto the signal line. Formalin replenished due to such causes still accumulates during long-term operation of the electroless copper plating solution, causing a decrease in control accuracy. In order to reduce or substantially eliminate the effects of such transient noise, △C Cu 2+ , △C was calculated from the average value of measurements taken two or more times within a certain time interval (measurement interval). OH- must be used.

本発明に於ては、△CCu 2+、△COH-がマイナス
の値となる場合はOとして取扱い、又(6)式による
計算される△CHCHOがマイナスの値となる場合も
Oとして取扱う。
In the present invention, when △C Cu 2+ and △C OH- take a negative value, they are treated as O, and when △C HCHO calculated by equation (6) takes a negative value, it is also treated as O. shall be treated as such.

また、無電解銅めつき液のpHが高い場合には、
ガラス電極法によるpH測定法では、アルカリ誤
差が生ずる。pH値がシフトするなどの問題が生
じ、計算の基礎となる△COH-の精度が低下する。
したがつて、中和滴定法により△COH-を求める必
要がある。
In addition, if the pH of the electroless copper plating solution is high,
pH measurement using the glass electrode method causes an alkaline error. Problems such as a shift in the pH value occur, reducing the accuracy of △C OH- , which is the basis of calculation.
Therefore, it is necessary to determine ΔC OH- by neutralization titration.

測定誤差あるいはノイズなどによるホルマリン
の過剰補充あるいは蓄積を防止する方法として無
電解銅めつき液の析出速度を例えば重量法等によ
り連続的或いは一定の間隔をもつて間欠的に測定
し、測定値が定められた範囲を逸脱した場合にホ
ルマリンの補充を停止する方法がある。
As a method to prevent excessive replenishment or accumulation of formalin due to measurement errors or noise, the deposition rate of the electroless copper plating solution is measured, for example, by a gravimetric method, continuously or intermittently at regular intervals, and the measured value is There is a method to stop formalin replenishment if it deviates from a defined range.

本発明に於て、分析、測定される必要な組成、
パラメータとしては、それぞれ、銅イオン濃度、
水酸イオン濃度、シアン濃度等が、又温度、混成
電位、析出速度等がある。
In the present invention, the necessary composition to be analyzed and measured,
The parameters are copper ion concentration,
There are hydroxide ion concentration, cyanide concentration, etc., as well as temperature, mixed potential, precipitation rate, etc.

銅めつき液としては、硫酸第2銅などの銅塩、
ロツセル塩などの錯化剤、ホルマリンなどの還元
剤、水酸化アルカリなどのpH調整剤から成る一
般のめつき液が使用される。
Copper plating solutions include copper salts such as cupric sulfate,
A general plating solution is used, which consists of a complexing agent such as Lotusel's salt, a reducing agent such as formalin, and a pH adjusting agent such as alkali hydroxide.

実施例 CuSO4・5H2O 10g/ HCHO(37%) 3ml/ EDTA・4Na 45g/ ポリエチレングリコール(分子量600)
20g/ α,α′−ジピリジル 30mg/ pH 13.0 温 度 70℃ ロード 1.5dm2/ のめつき液を第3図に示したコントローラーによ
り4時間連続運転を行つた。
Example C u SO 4・5H 2 O 10g/HCHO (37%) 3ml/EDTA・4Na 45g/Polyethylene glycol (molecular weight 600)
20g/α,α'-dipyridyl 30mg/pH 13.0 Temperature 70°C Load 1.5dm 2 /Plating solution was operated continuously for 4 hours using the controller shown in Figure 3.

第3図に於て、1はめつき液槽、2は恒温水
槽、3は分光々度計(銅イオン濃度測定)、4は
pH計(水酸イオン濃度測定)、5は析出速度計、
6,7は記録計、8はタイピユーター、9はマイ
コン、10はメータリレー、11は補充液タンク
である。
In Figure 3, 1 is a plating liquid tank, 2 is a constant temperature water bath, 3 is a spectrophotometer (copper ion concentration measurement), and 4 is a
pH meter (hydroxide ion concentration measurement), 5 is a precipitation rate meter,
6 and 7 are recorders, 8 is a typewriter, 9 is a microcomputer, 10 is a meter relay, and 11 is a replenisher tank.

コントロールは、第1図のグラフで示された方
法(実施例1)および第2図のグラフで示された
方法(実施例2)の2つの方法で行なつた。
Controls were carried out using two methods: the method shown in the graph of FIG. 1 (Example 1) and the method shown in the graph of FIG. 2 (Example 2).

実施例 1 (1) 測定:〔Cu 2+〕濃度 吸光光度法により吸光度を1回/1分測定。Example 1 (1) Measurement: [C u 2+ ] Concentration Absorbance was measured once per minute by spectrophotometry.

〔OH-〕濃度 ガラス電極法により1回/1分測定。 [OH - ] Concentration Measured once per minute using the glass electrode method.

(2) 計算方法:上記めつき液における吸光度及び
pHの設定値と測定値との差を、それぞれ銅イ
オン濃度の減少量(△CCu 2+)と水酸イオン濃
度の減少量(△COH-)として、上記(6)式により
△CHCHOを求めた。なお、上記めつき液におけ
るpHの設定値は13、吸光度の設定値は0.36、
pH0.01の変化をNaOH消費量で表わすと約
0.33ml、吸光度0.01の変化をCuSO4消費量で表
わすと約2.71mlである。
(2) Calculation method: Absorbance and
The difference between the set pH value and the measured value is defined as the amount of decrease in copper ion concentration (△C Cu 2+ ) and the amount of decrease in hydroxide ion concentration (△C OH- ), respectively, and △C is determined by equation (6) above. Asked for HCHO . In addition, the pH setting value of the above plating solution is 13, the absorbance setting value is 0.36,
When a change in pH 0.01 is expressed as NaOH consumption, it is approximately
0.33 ml, and the change in absorbance of 0.01 is approximately 2.71 ml when expressed as CuSO 4 consumption.

結果を第4図に示す。第4図において横軸は測
定中の任意の90分間を示す。図から明らかなよう
にpH、CuSO4のコントロール性は、pHが13.00
±0.07、吸光度が安定状態において0.36±0.01、
の範囲でコントロールされており、一般的な自動
コントローラと同等もしくはそれ以上の精度で行
なわれた。また、ホルマリン濃度は3〜7ml/
の範囲でコントロールされた。
The results are shown in Figure 4. In FIG. 4, the horizontal axis indicates an arbitrary 90 minutes during measurement. As is clear from the figure, the controllability of pH and CuSO 4 is as follows: pH 13.00
±0.07, absorbance at steady state 0.36±0.01,
It was controlled within a range of , with accuracy equal to or greater than that of general automatic controllers. In addition, the formalin concentration is 3 to 7 ml/
controlled within the range.

なお、第4図から明らかなように、ホルマリン
濃度は漸増傾向を示している。これは、第1図の
概念図を用いて説明したように、システムの時間
遅れによるホルマリンの過剰補充と、外部ノイズ
によるpH値および吸光度の測定誤差の影響と考
えられる。そこで実施例2では、△CCu 2+と△
COH-を前回測定値と今回測定値の差(一定時間間
隔内における消費量)とするとともに、各測定値
は、複数回測定した測定値の平均値を用いた。
Note that, as is clear from FIG. 4, the formalin concentration shows a gradual increasing tendency. As explained using the conceptual diagram of FIG. 1, this is considered to be due to excessive replenishment of formalin due to a time delay in the system and measurement errors in pH value and absorbance due to external noise. Therefore, in Example 2, △C Cu 2+ and △
C OH- was defined as the difference between the previous measurement value and the current measurement value (consumption amount within a certain time interval), and each measurement value was the average value of the measurement values measured multiple times.

実施例 2 (1) 測定:〔△CCu 2+〕濃度 吸光光度法により吸光度を1回/1分測定。Example 2 (1) Measurement: [△C Cu 2+ ] Concentration Absorbance was measured once per minute by spectrophotometry.

〔OH-〕濃度 ガラス電極法により1分間に8回測定した値
の平均値。
[OH - ] Concentration Average value of values measured 8 times per minute using the glass electrode method.

(2) 計算方法:一定時間間隔内における消費量
(前回測定値−今回測定値)を、それぞれ銅イ
オン濃度の減少量(△CCu 2+)と水酸イオン濃
度の減少量(△COH-)として、上記(6)式により
△CHCHOを求めた。なお、上記めつき液におけ
る各設定値、pH0.01の変化に対するNaOH消
費量および吸光度0.01の変化に対するCuSO4
費量は上記実施例1と同様である。
(2) Calculation method: The consumption amount (previous measurement value - current measurement value) within a certain time interval is calculated as the amount of decrease in copper ion concentration (△C Cu 2+ ) and the amount of decrease in hydroxide ion concentration (△C OH ) , △C HCHO was calculated using the above equation (6). The set values of the plating solution, the amount of NaOH consumed with respect to a change in pH of 0.01, and the amount of CuSO 4 consumed with respect to a change in absorbance of 0.01 are the same as in Example 1 above.

(3) pH補正:CuSO4及びホルマリン補充時には、
該補充に伴うpHが低下する。そこで本実施例
ではめつき反応による消費分のNaOH補充に
加えて、該低下分を補正する量のNaOHを
CuSO4及びホルマリン補充時に同時に添加す
る。但し、pH補正分のNaOH量はホルマリン
消費量の計算には使用しない。
(3) pH correction: When replenishing CuSO 4 and formalin,
The pH associated with the replenishment decreases. Therefore, in this example, in addition to replenishing the amount of NaOH consumed by the plating reaction, an amount of NaOH to compensate for the decrease was added.
Add CuSO4 and formalin at the same time when supplementing. However, the amount of NaOH for pH correction is not used in calculating formalin consumption.

結果を第5図及び第6図に示す。ここで、第5
図及び第6図における時間「0」は測定開始時を
示す。また、第5図はpH変化とホルマリン投入
量、濃度との関係を示し、第6図は測定時間全体
に亘るpH変化と吸光度変化を示す。
The results are shown in FIGS. 5 and 6. Here, the fifth
Time "0" in the figures and FIG. 6 indicates the time at which the measurement starts. Moreover, FIG. 5 shows the relationship between pH change, amount of formalin input, and concentration, and FIG. 6 shows pH change and absorbance change over the entire measurement time.

図から明らかなように、pH、CuSO4のコント
ロール性は、pHが13.00±0.07、吸光度が0.36±
0.02、の範囲でコントロールされており、また、
ホルマリン濃度は3〜4ml/の範囲にコントロ
ールされた。
As is clear from the figure, the controllability of pH and CuSO 4 is as follows: pH is 13.00±0.07, absorbance is 0.36±
It is controlled in the range of 0.02, and
Formalin concentration was controlled within the range of 3-4 ml/ml.

本実施例では、一定時間間隔内における消費量
を、銅イオン濃度の減少量(△CCu 2+)と水酸イ
オン濃度の減少量(△COH-)としており、しかも
外部ノイズの影響除去及びpH補正を行なつてい
るので、第2図の概念図で説明したようにホルマ
リンが過剰補充されない。したがつて、実施例1
よりも高い精度でホルマリンの補充が行なわれ
た。
In this example, the amount consumed within a certain time interval is the amount of decrease in copper ion concentration (△C Cu 2+ ) and the amount of decrease in hydroxide ion concentration (△C OH- ), and the influence of external noise is removed. and pH correction, formalin is not excessively replenished as explained in the conceptual diagram of FIG. Therefore, Example 1
Formalin replenishment was carried out with higher precision.

従来の自動コントローラでは、ホルマリンを分
析しなければならず、さらにホルマリンに関して
測定精度が悪い高pH域では測定が困難である。
反応速度が遅く測定の時間遅れが大きくコントロ
ール精度を低下させるなどの問題があつた。
Conventional automatic controllers must analyze formalin, and furthermore, measurement is difficult in the high pH range where formalin measurement accuracy is poor.
There were problems such as slow reaction speed, large measurement time delay, and reduced control accuracy.

しかしながら、以上説明したように本発明の方
法によればホルマリンを分析しなくてもコントロ
ールできるようになつた。
However, as explained above, according to the method of the present invention, it has become possible to control formalin without analyzing it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は、銅イオン濃度、水酸イオン
濃度の減少量の異なる計算法によるホルマリン補
充量を示すグラフ、第3図はコントローラーの系
統図である。第4図は設定値からの銅イオン濃度
および水酸イオン濃度の差をそれぞれ銅イオン濃
度の減少量および水酸イオン濃度の減少量とした
場合のpH、NaOH投入量、吸光度、CuSO4投入
量、ホルマリン投入量、濃度の関係を示すグラ
フ、第5図は銅イオンと水酸イオンの一定時間間
隔内における消費量を銅イオン濃度と水酸イオン
濃度の減少量とした場合のpH変化とホルマリン
投入量、濃度の関係を示すグラフ、第6図はpH
と吸光度の変化を示すグラフ、である。 符号の説明、1はめつき液槽、2は恒温水槽、
3は分光々度計、4はpH計、5は析出速度計、
6,7は記録計、8はタイピユーター、9はマイ
コン、10はメータリレー、11は補充液タン
ク。
FIGS. 1 and 2 are graphs showing formalin replenishment amounts based on different calculation methods for the decrease in copper ion concentration and hydroxide ion concentration, and FIG. 3 is a system diagram of the controller. Figure 4 shows pH, NaOH input amount, absorbance, and CuSO 4 input amount when the difference in copper ion concentration and hydroxide ion concentration from the set value is defined as the decrease in copper ion concentration and the decrease in hydroxide ion concentration, respectively. , a graph showing the relationship between formalin input amount and concentration. Figure 5 shows the pH change and formalin when the consumption amount of copper ion and hydroxide ion within a certain time interval is taken as the decrease in copper ion concentration and hydroxide ion concentration. Graph showing the relationship between input amount and concentration, Figure 6 is pH
and a graph showing changes in absorbance. Explanation of symbols, 1 is a plating liquid tank, 2 is a constant temperature water tank,
3 is a spectrophotometer, 4 is a pH meter, 5 is a precipitation rate meter,
6 and 7 are recorders, 8 is a typewriter, 9 is a microcomputer, 10 is a meter relay, and 11 is a replenisher tank.

Claims (1)

【特許請求の範囲】 1 必要な組成、パラメータを分析、測定し、消
費された成分に見合う補充を行なう無電解銅めつ
き液の管理方法において、銅イオン濃度及び水酸
イオン濃度の減少量ΔCCu 2+、およびΔCOH-を測定
し、 ΔCHCHO=2ΔCOH-−6ΔCCu 2+ なる関係式に従つて、ホルマリンを補充すること
を特徴とする無電解銅めつき液の管理方法。 2 測定する銅イオン濃度および水酸イオン濃度
の減少量ΔCCu 2+およびΔCOH-が、一定時間間隔内
における銅イオンおよび水酸イオンの消費量であ
る特許請求の範囲第1項記載の無電解銅めつき液
の管理方法。 3 銅イオン濃度および水酸イオン濃度の減少量
ΔCCu 2+およびΔCOH-が、一定時間間隔内に2回以
上測定した測定値の平均値である特許請求の範囲
第2項記載の無電解銅めつき液の管理方法。 4 水酸イオン濃度の減少量ΔCOH-を中和滴定法
により測定することを特徴とする特許請求の範囲
第1項、第2項または第3項記載の無電解銅めつ
き液の管理方法。 5 無電解銅めつき液の析出速度を連続的にある
いは一定の間隔をもつて間欠的に測定し、測定値
が定められた範囲を逸脱した場合にホルマリンの
補充を停止することを特徴とする特許請求の範囲
第1項〜第4項いずれか1項に記載の無電解銅め
つき液の管理方法。
[Claims] 1. A method for managing an electroless copper plating solution in which necessary compositions and parameters are analyzed and measured, and replenishment is performed in accordance with consumed components, in which the amount of decrease ΔC in copper ion concentration and hydroxide ion concentration is A method for managing an electroless copper plating solution, which comprises measuring Cu 2+ and ΔC OH- and replenishing formalin according to the relational expression ΔC HCHO =2ΔC OH- −6ΔC Cu 2+ . 2. The method according to claim 1, wherein the measured reduction amounts ΔC Cu 2+ and ΔC OH− in the copper ion concentration and hydroxide ion concentration are the consumption amounts of copper ions and hydroxide ions within a certain time interval. How to manage electrolytic copper plating solution. 3. The electroless method according to claim 2, wherein the decrease amounts ΔC Cu 2+ and ΔC OH− in the copper ion concentration and the hydroxide ion concentration are average values of measured values measured two or more times within a certain time interval. How to manage copper plating solution. 4. A method for managing an electroless copper plating solution according to claim 1, 2, or 3, characterized in that the amount of decrease in hydroxide ion concentration ΔC OH- is measured by a neutralization titration method. . 5. Measuring the deposition rate of the electroless copper plating solution continuously or intermittently at regular intervals, and stopping formalin replenishment when the measured value deviates from a predetermined range. A method for managing an electroless copper plating solution according to any one of claims 1 to 4.
JP14578082A 1982-08-23 1982-08-23 MUDENKAIDOMETSUKIEKINOKANRIHOHO Expired - Lifetime JPH0247550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14578082A JPH0247550B2 (en) 1982-08-23 1982-08-23 MUDENKAIDOMETSUKIEKINOKANRIHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14578082A JPH0247550B2 (en) 1982-08-23 1982-08-23 MUDENKAIDOMETSUKIEKINOKANRIHOHO

Publications (2)

Publication Number Publication Date
JPS5935666A JPS5935666A (en) 1984-02-27
JPH0247550B2 true JPH0247550B2 (en) 1990-10-22

Family

ID=15392992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14578082A Expired - Lifetime JPH0247550B2 (en) 1982-08-23 1982-08-23 MUDENKAIDOMETSUKIEKINOKANRIHOHO

Country Status (1)

Country Link
JP (1) JPH0247550B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63201658U (en) * 1987-03-13 1988-12-26
AU3304389A (en) * 1988-04-29 1989-11-02 Kollmorgen Corporation Method of consistently producing a copper deposit on a substrate by electroless deposition which deposit is essentially free of fissures
DE4391640T1 (en) * 1992-04-17 1994-05-05 Nippon Denso Co Method and device for detecting a concentration of a chemical treatment solution and automatic control device therefor

Also Published As

Publication number Publication date
JPS5935666A (en) 1984-02-27

Similar Documents

Publication Publication Date Title
US4406250A (en) Apparatus for controlling electroless plating bath
US4096301A (en) Apparatus and method for automatically maintaining an electroless copper plating bath
JP2787142B2 (en) Electroless tin, lead or their alloy plating method
US5484626A (en) Methods and apparatus for maintaining electroless plating solutions
US5182131A (en) Plating solution automatic control
GB2064827A (en) Method and apparatus for controlling electroless plating bath
US4565575A (en) Apparatus and method for automatically maintaining an electroless plating bath
US3951602A (en) Spectrophotometric formaldehyde-copper monitor
GB1588758A (en) Method and apparatus for control of electroless plating solutions
JPH0247550B2 (en) MUDENKAIDOMETSUKIEKINOKANRIHOHO
US5450870A (en) Method and an apparatus for detecting concentration of a chemical treating solution and an automatic control apparatus thereof
US4674440A (en) Apparatus for automatically replenishing an electroless plating bath
JPH0317909B2 (en)
US5200047A (en) Plating solution automatic control
JP2001049448A (en) Electroless nickel plating method
JP2697544B2 (en) Analysis method for electroless tin, lead or their alloy plating bath
JPS63195274A (en) Method for controlling electroless plating
JP3099531B2 (en) Electroless copper plating bath automatic management system
JPS63213678A (en) Electroless copper plating method
JPS5921386B2 (en) Automatic plating speed control method for electroless plating
JPS5989756A (en) Automatic control device for plating solution
JPH0331789B2 (en)
JPH04276082A (en) Analysis of copper ion concentration in bath for electroless plating of tin, lead, or those alloy
JP3834701B2 (en) Method for measuring dissolved amount of metal ion and method for controlling concentration of plating bath using insoluble anode
JPH0336281A (en) Electroless copper plating method