JPH10267918A - Solution for chemical analysis of zinc-iron alloy group 2-layer plated steel board, and chemical analysis method using it - Google Patents

Solution for chemical analysis of zinc-iron alloy group 2-layer plated steel board, and chemical analysis method using it

Info

Publication number
JPH10267918A
JPH10267918A JP9095324A JP9532497A JPH10267918A JP H10267918 A JPH10267918 A JP H10267918A JP 9095324 A JP9095324 A JP 9095324A JP 9532497 A JP9532497 A JP 9532497A JP H10267918 A JPH10267918 A JP H10267918A
Authority
JP
Japan
Prior art keywords
layer
zinc
solution
chemical analysis
plated steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9095324A
Other languages
Japanese (ja)
Inventor
Yoshimi Yamazaki
好美 山崎
Takeshi Kuroiwa
猛 黒岩
Tsugio Kawamoto
次夫 川本
Koji Kawakami
康志 川上
Koichi Kuwabara
孝一 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9095324A priority Critical patent/JPH10267918A/en
Publication of JPH10267918A publication Critical patent/JPH10267918A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solution for chemical analysis of a zinc-iron alloy group 2-layer plated steel board, and the chemical analysis method using it wherein a sticking amount of each plated layer and composition are accurately measured by selectively melting lower plated layers in a short time. SOLUTION: In a solution for chemical analysis of a zinc-iron alloy group 2-layer plated steel board, a base material plated layer 12 of a zinc-iron alloy group 2-layer plated steel board 10 which comprises a base metal plated layer 12 with low iron content and a surface part plated layer 11, with high iron content, allocated on the base material plated layer 12 is selectively melted, so that the surface part plated layer 11 is separated from the zinc-iron alloy group 2-layer plated steel board 10. The chemical analysis solution comprises such neutral salt for eluting zinc in the base material plated layer 12, an oxidizer for oxidizing eluted iron ion, and a chelating agent for stabilizing an oxidized iron ion as chelate compound.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は亜鉛−鉄合金系二層
めっき鋼板の二層めっき部分を分離して、各めっきの付
着量(目付量ともいう)、及びその化学組成を精密に測
定するための亜鉛−鉄合金系二層めっき鋼板の化学分析
用溶解液、及びこれを用いる化学分析方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention separates a double-layer plated portion of a zinc-iron alloy-based double-layer plated steel plate and precisely measures the amount of adhesion (also called basis weight) of each plating and its chemical composition. For a chemical analysis of a zinc-iron alloy-based double-layer plated steel sheet and a chemical analysis method using the same.

【0002】[0002]

【従来の技術】亜鉛−鉄合金系めっきの施された鋼板
は、耐食性、耐水密着性に優れるために自動車用防錆鋼
板として広く使用されている。近年、これらに加えて化
成処理性や、溶接性を向上させるために、これらの電気
めっき層、あるいは溶融めっき層等の下地めっき層の上
に、鉄含有率の高い表部めっき層を施す二層型めっきの
技術が開発され、自動車用外板として実用化されてい
る。そして、これら各めっき層の付着量、及び組成の相
違によって、めっき鋼板の溶接性、耐食性等の製品特性
が左右されるために、これらの値を正確に把握すること
が重要である。このような亜鉛−鉄合金系二層めっき鋼
板における各めっき層の付着量及び組成を評価する際に
用いられる分析方法として、例えば以下に示すような方
法が知られている。特公平6−99825号公報には、
鉄含有率が60%以上の上層と鉄含有率が25%以下の
下層を有する亜鉛系二層めっき鋼板のめっき層を上層と
下層に分別してめっき層の分析を行うにあたり、該鋼板
を1〜50重量%のアルカリ金属の水酸化物、0.1〜
90容積%のトリエタノールアミン及び酸化剤を含有す
る溶液(溶解液)中に浸漬して、めっき層の下層を溶解
し、下層及び上層をそれぞれ溶解分及び未溶解分として
回収して上層と下層とを分別するめっき層の分析方法が
示されている。
2. Description of the Related Art Steel sheets coated with a zinc-iron alloy are widely used as rust-preventive steel sheets for automobiles because of their excellent corrosion resistance and water resistance. In recent years, in addition to these, in order to improve the chemical conversion property and the weldability, a surface plating layer having a high iron content is formed on the underlying plating layer such as the electroplating layer or the hot-dip plating layer. The technology of layered plating has been developed and put to practical use as an automotive outer panel. Since the product properties such as the weldability and corrosion resistance of the plated steel sheet are affected by the difference in the adhesion amount and composition of each of the plating layers, it is important to accurately grasp these values. As an analysis method used for evaluating the adhesion amount and composition of each plating layer in such a zinc-iron alloy-based double-layer plated steel sheet, for example, the following methods are known. In Japanese Patent Publication No. 6-99825,
In performing the analysis of the plated layer by separating the plated layer of a zinc-based double-layer plated steel sheet having an upper layer having an iron content of 60% or more and a lower layer having an iron content of 25% or less into an upper layer and a lower layer, 50% by weight of alkali metal hydroxide, 0.1 to
Immersion in a solution (solution) containing 90% by volume of triethanolamine and an oxidizing agent dissolves the lower layer of the plating layer, and recovers the lower and upper layers as dissolved and undissolved components, respectively. 2 shows a method of analyzing a plating layer for separating the above.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記特
公平6−99825号公報に記載のめっき層の分析方法
では以下の〜に示すような問題点があった。 前記溶解液中の亜鉛及び/又は鉄の濃度を原子吸光分
析法あるいは発光分光分析法等により測定する際には、
試料液となる前記溶解液をノズルの先端から噴出、噴霧
して気化させることにより測定を行う。しかし、アルカ
リ性の溶解液を用いる場合には、溶解液の粘性が大きく
なると共に、このようなノズルの先端部に塩が析出し易
くなるために、ノズルから吐出する溶解液の流量を安定
させて測定を行うことが困難となる。そして、測定値の
変動が大きいために、めっき層の付着量、及びその組成
の測定精度が低くなる。 溶解液のめっき層中の鉄に対する溶解作用が充分でな
いために、測定に長時間を要し測定を効率的に行うこと
ができない。 溶解液の水素イオン濃度指数pHが高くなるために、
取り扱いには注意を必要とすると共に、設備面及びコス
ト面での負荷が大きい。 アルカリ金属の水酸化物を用いるために亜鉛含有率の
相違によるめっき層の溶解性の差が小さく、場合によっ
ては上層、及び鋼板の部分が溶解されて測定誤差の要因
となる。 本発明はこのような事情に鑑みてなされたもので、下層
のめっき層を選択的に短時間で溶解させて、各めっき層
の付着量、組成を正確に測定することができる亜鉛−鉄
合金系二層めっき鋼板の化学分析用溶解液、及びこれを
用いる化学分析方法を提供することを目的とする。
However, the method for analyzing a plating layer described in Japanese Patent Publication No. 6-99825 has the following problems. When measuring the concentration of zinc and / or iron in the solution by atomic absorption spectrometry or emission spectrometry,
The measurement is performed by ejecting the above-mentioned solution as a sample solution from the tip of the nozzle, spraying and vaporizing the solution. However, when an alkaline solution is used, the viscosity of the solution increases, and salt tends to precipitate at the tip of such a nozzle, so that the flow rate of the solution discharged from the nozzle is stabilized. It is difficult to make measurements. And since the fluctuation of a measured value is large, the measuring accuracy of the adhesion amount of a plating layer and its composition will fall. Since the dissolving solution does not sufficiently dissolve the iron in the plating layer, the measurement takes a long time and the measurement cannot be performed efficiently. Since the pH value of the pH value of the solution becomes higher,
Care is required in handling, and the load on facilities and costs is great. Since the alkali metal hydroxide is used, the difference in the solubility of the plating layer due to the difference in the zinc content is small, and in some cases, the upper layer and the portion of the steel sheet are dissolved, which causes a measurement error. The present invention has been made in view of such circumstances, and a zinc-iron alloy that can selectively dissolve a lower plating layer in a short time and accurately measure the amount of adhesion and composition of each plating layer. It is an object of the present invention to provide a solution for chemical analysis of a system double-layer plated steel sheet and a chemical analysis method using the same.

【0004】[0004]

【課題を解決するための手段】前記目的に沿う請求項1
記載の亜鉛−鉄合金系二層めっき鋼板の化学分析用溶解
液は、鉄含有率の低い下地めっき層と、該下地めっき層
の上に配置される鉄含有率の高い表部めっき層とを有す
る亜鉛−鉄合金系二層めっき鋼板の前記下地めっき層を
選択的に溶解させて、該亜鉛−鉄合金系二層めっき鋼板
から前記表部めっき層を分離するための亜鉛−鉄合金系
二層めっき鋼板の化学分析用溶解液であって、前記化学
分析用溶解液が、前記下地めっき層中の亜鉛を溶出させ
る中性塩と、溶出する鉄イオンを酸化させる酸化剤、及
び酸化された該鉄イオンをキレート化合物として安定化
させるキレート化剤とを有する。下地めっき層とは、耐
食性、耐水密着性等を鋼板に付与するために直接的に原
鋼板に被覆されるめっき層をいう。表部めっき層とは、
溶接性、化成処理性等を付与する目的で下地めっき層の
上に重ねて被覆される表層部をいう。中性塩とは、水溶
液中に溶解した時に、その水溶液が中性を示す酸と塩基
との中和反応によって生成するような塩をいい、酢酸ア
ンモニウム、硝酸アンモニウム等が含まれる。酸化剤と
は、主に第1鉄イオン(Fe2+)を酸化させて第2鉄イ
オン(Fe3+)とするための物質をいい、過酸化水素
(H2 2 )の他に、通常の原子価より高い原子価を有
する元素の酸化物(MnO2 、CeO2 、PbO2 )、
酸素酸(亜硝酸、硝酸、過マンガン酸、クロム酸、塩素
酸、次亜塩素酸、過塩素酸)及びその塩類、熱濃硫酸、
ハロゲン、高原子価金属イオンを含む塩等が含まれる。
キレート化剤とは、第2鉄イオンとキレート化合物を生
成するような有機化合物であって、例えばトリエタノー
ルアミン(TEA)、エチレンジアミン四酢酸(EDT
A)、ニトリロトリ酢酸(NTA)、ジメチルグリオキ
シム、アセチルアセトン、オキシン、グリシン、エチレ
ンジアミン、ピピリジン、フェナントロリン等が含まれ
る。
According to the present invention, there is provided a semiconductor device comprising:
The solution for chemical analysis of the zinc-iron alloy-based double-layer plated steel sheet according to the present invention includes a base plating layer having a low iron content and a surface plating layer having a high iron content disposed on the base plating layer. A zinc-iron alloy-based steel sheet for separating the surface plating layer from the zinc-iron alloy-based double-layer steel sheet by selectively dissolving the base plating layer of the zinc-iron alloy-based two-layer steel sheet. A solution for chemical analysis of a layer-plated steel sheet, wherein the solution for chemical analysis is a neutral salt that elutes zinc in the base plating layer, an oxidizing agent that oxidizes iron ions that elute, and has been oxidized. A chelating agent for stabilizing the iron ion as a chelating compound. The base plating layer refers to a plating layer that is directly coated on an original steel sheet in order to impart corrosion resistance, water resistance, and the like to the steel sheet. The surface plating layer is
It refers to a surface layer that is overlaid and coated on the base plating layer for the purpose of imparting weldability, chemical conversion treatment, and the like. Neutral salts refer to salts that, when dissolved in an aqueous solution, are formed by the neutralization reaction of the aqueous solution with a neutral acid and base, and include ammonium acetate, ammonium nitrate, and the like. The oxidizing agent refers to a substance for mainly oxidizing ferrous ions (Fe 2+ ) to produce ferric ions (Fe 3+ ). In addition to hydrogen peroxide (H 2 O 2 ), Oxides of elements having higher valences than normal (MnO 2 , CeO 2 , PbO 2 ),
Oxygen acids (nitrite, nitric acid, permanganic acid, chromic acid, chloric acid, hypochlorous acid, perchloric acid) and their salts, hot concentrated sulfuric acid,
Halogen and salts containing high valent metal ions are included.
The chelating agent is an organic compound that forms a chelating compound with ferric ion, such as triethanolamine (TEA) and ethylenediaminetetraacetic acid (EDT).
A), nitrilotriacetic acid (NTA), dimethylglyoxime, acetylacetone, oxine, glycine, ethylenediamine, piperidine, phenanthroline and the like.

【0005】請求項2記載の亜鉛−鉄合金系二層めっき
鋼板の化学分析用溶解液は、請求項1記載の亜鉛−鉄合
金系二層めっき鋼板の化学分析用溶解液において、前記
中性塩が酢酸アンモニウム、硝酸アンモニウムのいずれ
かである。
A solution for chemical analysis of a zinc-iron alloy-based double-layer plated steel sheet according to claim 2 is the solution for chemical analysis of a zinc-iron alloy-based double-layer plated steel sheet according to claim 1, wherein The salt is either ammonium acetate or ammonium nitrate.

【0006】請求項3記載の亜鉛−鉄合金系二層めっき
鋼板の化学分析用溶解液は、請求項1又は2記載の亜鉛
−鉄合金系二層めっき鋼板の化学分析用溶解液におい
て、前記中性塩、前記キレート化剤の含有率がそれぞれ
1〜50重量%、0.1〜90容積%である。中性塩の
含有率が1重量%より少ないと、下地めっき層中の亜鉛
の溶出効果が極端に低下して、実用上表部めっき層を鋼
板から分離することができなくなる。また、中性塩の含
有率が50重量%を越えても、亜鉛の溶解速度はそれ程
速くならず、中性塩の溶解度を越えるために析出してし
まい反応に寄与させることができない。キレート化剤の
含有率が0.1容積%より少ないと、第2鉄イオンを取
り込んでキレート化合物を生成することができず、鉄イ
オンが水酸化物として沈着してしまい、下地めっき層の
溶解が阻止される。また、キレート化剤の含有率が90
容積%を越えると、溶解液中の中性塩の溶解度が著しく
低下し、キレート化剤と中性塩との相乗効果による下地
めっき層の溶解効率が低くなる。
The solution for chemical analysis of a zinc-iron alloy-based double-layer plated steel sheet according to claim 3 is the solution for chemical analysis of a zinc-iron alloy-based double-layer plated steel sheet according to claim 1 or 2. The contents of the neutral salt and the chelating agent are 1 to 50% by weight and 0.1 to 90% by volume, respectively. When the content of the neutral salt is less than 1% by weight, the effect of dissolving zinc in the base plating layer is extremely reduced, so that the surface plating layer cannot be practically separated from the steel sheet. Further, even if the content of the neutral salt exceeds 50% by weight, the dissolution rate of zinc is not so high, and the solubility exceeds the solubility of the neutral salt, so that zinc is precipitated and cannot contribute to the reaction. If the content of the chelating agent is less than 0.1% by volume, the chelate compound cannot be produced by taking in ferric ions, and the iron ions are deposited as hydroxides to dissolve the underlying plating layer. Is blocked. Further, the content of the chelating agent is 90%.
If the content exceeds the volume%, the solubility of the neutral salt in the solution is significantly reduced, and the dissolution efficiency of the base plating layer is reduced due to the synergistic effect of the chelating agent and the neutral salt.

【0007】請求項4記載の亜鉛−鉄合金系二層めっき
鋼板の化学分析用溶解液は、請求項1〜3のいずれか1
項に記載の亜鉛−鉄合金系二層めっき鋼板の化学分析用
溶解液において、前記化学分析用溶解液の水素イオン濃
度指数pHが8〜10である。水素イオン濃度指数pH
が8より小さいと、中性塩による下地めっき層の溶解効
果が著しく低下するので好ましくない。逆に、水素イオ
ン濃度指数pHが10を越えると、選択溶解効果が低下
し、表部めっき層のみならず鋼板そのものが溶解して、
測定精度を損なう要因となる。
[0007] The solution for chemical analysis of a zinc-iron alloy-based double-layer plated steel sheet according to claim 4 is provided by any one of claims 1 to 3.
In the solution for chemical analysis of the zinc-iron alloy-based double-layer plated steel sheet described in the paragraph, the pH value of the hydrogen ion concentration index of the solution for chemical analysis is 8 to 10. PH value of pH value
Is less than 8, it is not preferable because the effect of dissolving the underlying plating layer by the neutral salt is significantly reduced. Conversely, if the hydrogen ion concentration index pH exceeds 10, the selective dissolution effect decreases, and not only the surface plating layer but also the steel sheet itself dissolves,
This is a factor that impairs measurement accuracy.

【0008】請求項5記載の亜鉛−鉄合金系二層めっき
鋼板の化学分析用溶解液は、請求項1〜4のいずれか1
項に記載の亜鉛−鉄合金系二層めっき鋼板の化学分析用
溶解液において、前記下地めっき層の鉄含有率が35重
量%以下、前記表部めっき層の鉄含有率が70重量%以
上である。下地めっき層の鉄含有率が35重量%を越
え、かつ表部めっき層の鉄含有率が70重量%より小さ
くなると、溶解液による選択溶解効果が少なくなり、各
めっき層の付着量、及び化学組成を精密に測定すること
が困難となる。
[0008] The solution for chemical analysis of a zinc-iron alloy-based double-layer plated steel sheet according to claim 5 is provided by any one of claims 1-4.
In the solution for chemical analysis of a zinc-iron alloy-based double-layer plated steel sheet according to the above item, the iron content of the base plating layer is 35% by weight or less, and the iron content of the front plating layer is 70% by weight or more. is there. When the iron content of the base plating layer exceeds 35% by weight and the iron content of the surface plating layer is less than 70% by weight, the selective dissolving effect of the dissolving solution is reduced, and the adhesion amount of each plating layer and the chemical amount It becomes difficult to measure the composition precisely.

【0009】請求項6記載の亜鉛−鉄合金系二層めっき
鋼板の化学分析用溶解液を用いる化学分析方法は、鉄含
有率の低い下地めっき層と鉄含有率の高い表部めっき層
とを有する亜鉛−鉄合金系二層めっき鋼板を、中性塩と
酸化剤及びキレート化剤とを有する水素イオン濃度指数
pHが8〜10の化学分析用溶解液に浸漬して、前記下
地めっき層を溶解して前記亜鉛−鉄合金系二層めっき鋼
板から前記表部めっき層を分離する。
A chemical analysis method using a solution for chemical analysis of a zinc-iron alloy-based double-layer plated steel sheet according to claim 6 is characterized in that a base plating layer having a low iron content and a surface plating layer having a high iron content are formed. The zinc-iron alloy-based double-layer plated steel sheet having a neutral salt, an oxidizing agent and a chelating agent is immersed in a solution for chemical analysis having a hydrogen ion concentration index pH of 8 to 10 to form the base plating layer. The surface plating layer is separated from the zinc-iron alloy-based double-layer plated steel sheet by melting.

【0010】[0010]

【発明の実施の形態】続いて、添付した図面を参照しつ
つ、本発明を具体化した実施の形態につき説明し、本発
明の理解に供する。ここに図1(a)、(b)、(c)
はそれぞれ下層溶解液中における試験片の初期状態、中
間状態、末期状態を示す模式図、図2は本発明の実施例
1における付着量と浸漬時間との関係を示す図、図3は
本発明の実施例2における付着量と浸漬時間との関係を
示す図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention. Here, FIGS. 1 (a), (b), (c)
Is a schematic diagram showing an initial state, an intermediate state, and a terminal state of a test piece in a lower layer solution, respectively. FIG. 2 is a diagram showing the relationship between the amount of adhesion and the immersion time in Example 1 of the present invention, and FIG. FIG. 6 is a diagram showing the relationship between the amount of adhesion and the immersion time in Example 2 of FIG.

【0011】亜鉛は両性金属であり酸にもアルカリにも
溶解する。一方、鉄は水素イオン濃度指数pHが10以
上のアルカリ性溶液中で安定な不働態被膜を形成する。
このため、亜鉛−鉄合金系めっき層をアルカリ溶液中に
浸漬すると、めっき層中の亜鉛(Zn)はZnO2 2-
オンとなり溶解するが、鉄(Fe)は水酸化鉄となって
表面に沈着して、めっき層の溶解が妨げられ溶解時間が
長くなる等の問題が生じる。そこで、本発明者らは鋭意
研究の結果、鉄を溶解させるための成分として中性塩を
用いて、下地めっき層中の鉄の不働態被膜を生成させる
ことのない条件下において、中性塩と酸化剤及びキレー
ト化剤を含む水溶液を化学分析用溶解液(以下、下層溶
解液という)として用いれば、特定組成のめっき層を選
択的に効率良く溶解できることを知見し、本発明を完成
させるに至ったものである。
Zinc is an amphoteric metal and is soluble in both acids and alkalis. On the other hand, iron forms a stable passive film in an alkaline solution having a hydrogen ion concentration index pH of 10 or more.
For this reason, when the zinc-iron alloy plating layer is immersed in an alkaline solution, zinc (Zn) in the plating layer dissolves as ZnO 2 2- ions, but iron (Fe) becomes iron hydroxide and becomes iron hydroxide. The deposition causes problems such as dissolution of the plating layer being hindered and prolonging the dissolution time. Thus, the present inventors have conducted intensive studies and found that, using a neutral salt as a component for dissolving iron, under conditions that do not generate a passive film of iron in the base plating layer, the neutral salt It was found that a plating solution having a specific composition can be selectively and efficiently dissolved by using an aqueous solution containing an oxidizing agent and a chelating agent as a dissolving solution for chemical analysis (hereinafter, referred to as a lower layer dissolving solution), thereby completing the present invention. It has been reached.

【0012】まず、本発明の実施の形態に係る亜鉛−鉄
合金系二層めっき鋼板の化学分析用溶解液を用いる化学
分析方法について説明する。まず、亜鉛−鉄合金系二層
めっき鋼板の下地めっき層(以下、単に下層12とい
う)を溶解させるための下層溶解液を保持する溶解槽
に、亜鉛−鉄合金系二層めっき鋼板から所定の大きさに
切り出された試験片10が投入される。下層溶解液は、
亜鉛等の溶出剤として用いる中性塩の水溶液、キレ
ート化剤の水溶液、酸化剤の水溶液をそれぞれ所定濃
度に調整し、これら〜の所定量を混合して、全体が
所定の水素イオン濃度指数pH、重量比率あるいは容積
比率となるように調整したものを用いる。亜鉛−鉄合金
系二層めっき鋼板の基板となる原鋼板13は鉄含有率が
99重量%の鋼板であり、原鋼板13の上に形成される
下層12は鉄含有率が5〜20重量%であり、下層12
の上に形成される表部めっき層(以下、単に上層11と
いう)における鉄含有率は70〜90重量%である。な
お、下層12、及び上層11を原鋼板13に形成させる
に際しては、溶融めっき法、電気めっき法等を必要に応
じてそれぞれ選択して適用することができる。また、本
実施の形態においては、下層12及び上層11を電気め
っき法により形成した亜鉛−鉄合金系二層めっき鋼板を
ELめっき鋼板、下層12を溶融めっき法、上層11を
電気めっき法で形成した亜鉛−鉄合金系二層めっき鋼板
をAS−Eめっき鋼板と称する。そして、図1(a)に
示すように形成した試験片10を脱脂して、その試験片
10の重量W0 を測定した後、下層溶解液中に所定温度
で浸漬させて、図1(b)に示すようにめっき層の下層
12の部分を選択的に溶解させる。
First, a chemical analysis method using a solution for chemical analysis of a zinc-iron alloy-based double-layer plated steel sheet according to an embodiment of the present invention will be described. First, a zinc-iron alloy double-layer plated steel sheet is supplied to a dissolution tank holding a lower layer solution for dissolving a base plating layer (hereinafter, simply referred to as a lower layer 12) of the zinc-iron alloy double-layer plated steel sheet. A test piece 10 cut out to a size is supplied. The lower layer solution is
An aqueous solution of a neutral salt, an aqueous solution of a chelating agent, and an aqueous solution of an oxidizing agent used as an eluent for zinc or the like are each adjusted to a predetermined concentration, and a predetermined amount of these is mixed to form a whole with a predetermined hydrogen ion concentration index pH. The weight ratio or the volume ratio is adjusted. The raw steel plate 13 serving as the substrate of the zinc-iron alloy-based double-layer plated steel plate is a steel plate having an iron content of 99% by weight, and the lower layer 12 formed on the raw steel plate 13 has an iron content of 5 to 20% by weight. And the lower layer 12
The iron content in the surface plating layer (hereinafter, simply referred to as the upper layer 11) formed thereon is 70 to 90% by weight. When forming the lower layer 12 and the upper layer 11 on the raw steel sheet 13, a hot-dip plating method, an electroplating method, or the like can be selected and applied as necessary. Further, in the present embodiment, a zinc-iron alloy-based double-layer plated steel sheet in which the lower layer 12 and the upper layer 11 are formed by an electroplating method is an EL plated steel sheet, the lower layer 12 is formed by a hot-dip plating method, and the upper layer 11 is formed by an electroplating method. The zinc-iron alloy-based two-layer plated steel sheet is referred to as an AS-E plated steel sheet. Then, the test piece 10 formed as shown in FIG. 1A was degreased, and the weight W 0 of the test piece 10 was measured. 2), the lower layer 12 of the plating layer is selectively dissolved.

【0013】所定の浸漬時間Tの経過後に、溶解槽から
下層溶解液の所定量を抽出して、これを希釈した後、下
層溶解液中のFe、Znの濃度を原子吸光分析法によっ
て測定し、この濃度の測定値を基にして下層12におけ
る組成及び付着量WL を算出することができる。このよ
うな原子吸光分析法においては、水素、アセチレン等の
可燃性ガスと空気又は酸素ガス等の支燃ガスがつくる火
炎(フレーム)中に希釈した下層溶解液(試料液)を直
接噴霧し火炎を発生させるか、予めこれらの混合ガス中
に試料液を噴霧したガスをバーナーで燃焼させて火炎を
発生させる。そして、この火炎中に光源からの光を通過
させ、この透過光のスペクトルから、目的元素毎に設定
される特定の単色共鳴線領域を波長選別器で選別し、こ
の単色共鳴線領域における吸光指数(吸光度)を測定す
る。吸光指数は火炎中の目的元素の原子密度に比例する
から、これにより試料中の濃度を求めることができる。
前記試料液を混合ガス中又は火炎中に噴霧する際に、従
来のように試料液にアルカリ金属の水酸化物が存在して
水素イオン濃度指数が高い場合には、試料液の粘性が高
く、しかも塩化ナトリウム等の塩が析出し易いために、
噴霧ノズルの先端部に塩が堆積して、試料液の流量を安
定に維持することが困難になる。しかし、酢酸アンモニ
ウム、硝酸アンモニウム等の中性塩を主体とする試料液
の場合にはこのような塩の析出が少ないため、測定値の
変動が抑制され誤差(標準偏差σ)の少ない測定を行う
ことができると共に、試料液の流量を安定化させるため
の中和処理を最低限に抑えることができる。
After a predetermined immersion time T has elapsed, a predetermined amount of the lower layer solution is extracted from the dissolving tank and diluted, and then the concentrations of Fe and Zn in the lower layer solution are measured by atomic absorption spectrometry. , it can be calculated composition and coating weight W L in the lower layer 12 based on the measured value of the concentration. In such an atomic absorption spectrometry, a diluted lower layer solution (sample liquid) is directly sprayed into a flame (flame) formed by a combustible gas such as hydrogen or acetylene and a supporting gas such as air or oxygen gas. Or a gas in which a sample liquid has been sprayed into the mixed gas in advance is burned by a burner to generate a flame. Then, light from a light source is allowed to pass through the flame, a specific monochromatic resonance line region set for each target element is selected by a wavelength selector from the spectrum of the transmitted light, and an extinction index in the monochromatic resonance line region is determined. (Absorbance) is measured. Since the extinction index is proportional to the atomic density of the target element in the flame, the concentration in the sample can be determined from this.
When spraying the sample liquid in a mixed gas or flame, when the alkali metal hydroxide is present in the sample liquid and the hydrogen ion concentration index is high as in the related art, the viscosity of the sample liquid is high, Moreover, since salts such as sodium chloride are easily precipitated,
Salt accumulates at the tip of the spray nozzle, making it difficult to stably maintain the flow rate of the sample liquid. However, in the case of a sample solution mainly composed of a neutral salt such as ammonium acetate and ammonium nitrate, such a salt precipitates little, so that fluctuations in the measured value are suppressed and measurement with a small error (standard deviation σ) should be performed. And a neutralization process for stabilizing the flow rate of the sample liquid can be minimized.

【0014】さらに、下層12を溶解した後の試験片1
0は、これを溶解槽から取り出して、原鋼板13中の鉄
の溶出を抑止するインヒビター(抑止剤)を含む塩酸溶
液(以下、上層溶解液という)に浸漬する。そして、図
1(c)に示すように試験片10の表面に付着している
上層11を擦り落として、原鋼板13と上層11とを完
全に分離する。上層11を擦り落とした後の試験片10
(原鋼板13)の重量W1 を秤量して、前記試験片の重
量W0 との差から全付着量WA (=W0 −W1 )を求め
る。次に、擦り落とした上層11及び一部溶解した上層
11を含む上層溶解液を加熱して、液中の固形分を完全
に溶解する。この上層溶解液を希釈して、液中の鉄、亜
鉛の濃度を原子吸光分析法によって測定して、上層11
における組成及び付着量WU を求める。なお、前記付着
量WL 、WU 、WA (単位:g)はそれぞれ試験片10
の全めっき付着面積Sを測定して、単位面積当たりの付
着量(単位:g/m2 )に換算して用いることもでき
る。
Further, the test piece 1 after dissolving the lower layer 12
No. 0 is taken out of the dissolving tank and immersed in a hydrochloric acid solution (hereinafter referred to as an upper layer solution) containing an inhibitor (deterrent agent) for suppressing the elution of iron in the raw steel sheet 13. Then, as shown in FIG. 1 (c), the upper layer 11 attached to the surface of the test piece 10 is scraped off to completely separate the original steel plate 13 and the upper layer 11. Test piece 10 after upper layer 11 was scraped off
Were weighed weight W 1 of the (original steel plate 13), obtaining the total coating weight W A (= W 0 -W 1) the difference between the weight W 0 of the test piece. Next, the upper layer solution including the scraped upper layer 11 and the partially dissolved upper layer 11 is heated to completely dissolve the solid content in the solution. This upper layer solution was diluted, and the concentrations of iron and zinc in the solution were measured by atomic absorption spectrometry.
And the amount W U of the composition are determined. Incidentally, the adhesion amount W L, W U, W A ( unit: g) of each test piece 10
Can be used by measuring the total plating adhesion area S of the above and converting it to the adhesion amount per unit area (unit: g / m 2 ).

【0015】ここで、表1は本発明の実施の形態に係る
亜鉛−鉄合金系二層めっき鋼板の化学分析用溶解液(下
層溶解液)の選択溶解性を示すデータである。即ち、そ
れぞれ異なる鉄含有率のめっき層を、下層溶解液に12
0分間浸漬させて、めっき層からの鉄溶出量を化学分析
法で測定したものである。
Here, Table 1 shows data indicating the selective solubility of the solution for chemical analysis (lower layer solution) of the zinc-iron alloy-based double-layer plated steel sheet according to the embodiment of the present invention. That is, plating layers having different iron contents were added to the lower layer solution for 12 hours.
It was immersed for 0 minutes, and the amount of iron eluted from the plating layer was measured by a chemical analysis method.

【0016】[0016]

【表1】 [Table 1]

【0017】表1に示されるように、めっき層中の鉄含
有率が100〜80重量%の範囲では鉄溶出量が0.0
10〜0.033g/m2 と極めて少なく、鉄含有率が
65重量%〜40重量%の範囲で徐々に鉄溶出量が増加
し、鉄含有率が35重量%を下まわると急激に溶出量が
増えることが分かる。なお表1において、記号(△)は
めっき層の一部が溶解したものであることを示し、記号
(○)はめっき層の全部が溶解したものであることを示
している。このように、本発明の下層溶解液において
は、鉄含有率が約99重量%である原鋼板13を殆ど溶
解させることなく、しかも、鉄含有率が35重量%以下
のめっき層を選択的に溶解させることができる。
As shown in Table 1, when the iron content in the plating layer is in the range of 100 to 80% by weight, the iron elution amount is 0.0%.
10 to 0.033 g / m 2, which is extremely small, and the amount of iron eluted gradually increases when the iron content is in the range of 65% to 40% by weight, and rapidly elutes when the iron content falls below 35% by weight. You can see that the number increases. In Table 1, the symbol (△) indicates that a part of the plating layer was dissolved, and the symbol (○) indicates that the entire plating layer was dissolved. Thus, in the lower layer solution of the present invention, the steel sheet 13 having an iron content of about 99% by weight is hardly dissolved, and the plating layer having an iron content of 35% by weight or less is selectively formed. Can be dissolved.

【0018】[0018]

【実施例】表2、図2及び図3はそれぞれ実施例1及び
実施例2における処理条件とその結果のデータを示す。
ここでは、まず、ELめっき鋼板及び、AS−Eめっき
鋼板からなる試験片10をそれぞれ多数準備して、これ
らの試験片10の下層溶解液への浸漬時間Tを0〜18
0分の間に種々設定する。その設定される浸漬時間T毎
に試験片10を下層溶解液中から取り出して前述の測定
方法をそのまま適用して、実施例1及び実施例2におけ
る下層12の付着量WL (記号:○)、上層11の付着
量WU (記号:△)、及び全付着量WA (記号:●)を
求めることができる。また、図4及び図5は、下層溶解
液の組成が実施例1及び実施例2とはそれぞれ異なる比
較例1及び比較例2を示すグラフであり、それぞれ実施
例1及び実施例2に対応する比較データを示している。
以下、表2及び図2〜5を参照しながら、実施例1及び
実施例2について説明する。
EXAMPLE 2 Table 2, FIG. 2 and FIG. 3 show the processing conditions and the data of the results in Examples 1 and 2, respectively.
Here, first, a large number of test pieces 10 each made of an EL-plated steel sheet and an AS-E-plated steel sheet are prepared, and the immersion time T of these test pieces 10 in the lower layer solution is 0 to 18;
Various settings are made during 0 minutes. The test piece 10 for each immersion time T, which is the set is removed from the lower lysate applied directly to the above-mentioned measurement method, the adhesion amount W L (symbol: ○) of the lower layer 12 in Example 1 and Example 2 , The amount of adhesion W U of the upper layer 11 (symbol: Δ) and the total amount of adhesion W A (symbol: ●) can be obtained. FIGS. 4 and 5 are graphs showing Comparative Examples 1 and 2 in which the composition of the lower layer solution is different from Examples 1 and 2, respectively, and correspond to Examples 1 and 2, respectively. The comparison data is shown.
Hereinafter, Example 1 and Example 2 will be described with reference to Table 2 and FIGS.

【0019】[0019]

【表2】 [Table 2]

【0020】実施例1に使用する下層溶解液としては、
表2に示すように亜鉛等の溶出剤としての中性塩の一例
である硝酸アンモニウムを13重量%、キレート化剤の
一例であるトリエタノールアミンを26容量%、酸化剤
の一例である過酸化水素を5重量%をそれぞれ含むよう
に調整された水溶液を用いた。この時の水素イオン濃度
指数pHは8.5〜9.5であった。そして、試験片1
0には上層11及び下層12がそれぞれ電気めっき法で
形成された表3に示す成分範囲のELめっき鋼板を使用
して実験を行った。
The lower layer solution used in Example 1 was
As shown in Table 2, 13% by weight of ammonium nitrate as an example of a neutral salt as an eluent for zinc and the like, 26% by volume of triethanolamine as an example of a chelating agent, and hydrogen peroxide as an example of an oxidizing agent Was used so as to contain 5% by weight. At this time, the hydrogen ion concentration index pH was 8.5 to 9.5. And test piece 1
For 0, an experiment was performed using an EL-plated steel sheet having the component ranges shown in Table 3 in which the upper layer 11 and the lower layer 12 were each formed by electroplating.

【0021】[0021]

【表3】 [Table 3]

【0022】図2に示すように、浸漬時間T毎に試験片
10を取り出して計算される下層12の付着量WL 、上
層11の付着量WU 、及び全付着量WA は、浸漬時間T
が60分を越えるとほぼ一定となることが分かる。従っ
て、この場合の飽和浸漬時間T0 は60分である。これ
に対して、下層溶解液中の溶出剤を水酸化ナトリウムと
する比較例1の場合には、図4に示すように付着量
L 、WU の一定化に要する飽和浸漬時間T0は約12
0分となり、実施例1に較べて2倍かかることが分か
る。
As shown in FIG. 2, the adhesion amount W L of the lower layer 12, the adhesion amount W U of the upper layer 11, and the total adhesion amount W A calculated by taking out the test piece 10 at every immersion time T are determined by the immersion time. T
It can be seen that becomes substantially constant after 60 minutes. Therefore, the saturation immersion time T 0 in this case is 60 minutes. On the other hand, in the case of Comparative Example 1 in which the eluent in the lower layer solution was sodium hydroxide, as shown in FIG. 4, the saturated immersion time T 0 required to stabilize the adhesion amounts W L and W U was About 12
It is 0 minutes, which is twice as long as that of Example 1.

【0023】また、表2に示す分析処理の結果からも明
らかなように、前記飽和浸漬時間T0 以降で最終的に測
定される実施例1における上層11及び下層12の鉄含
有率の標準偏差σはそれぞれ0.11wt%(重量
%)、0.06wt%であり、これに対応する比較例1
の0.38wt%、0.08wt%に較べて少なく精度
に優れたデータが得られる。
As is apparent from the results of the analysis shown in Table 2, the standard deviation of the iron content of the upper layer 11 and the lower layer 12 in Example 1 finally measured after the saturation immersion time T 0. σ is 0.11 wt% (% by weight) and 0.06 wt%, respectively.
0.38% by weight and 0.08% by weight, data with less precision and excellent accuracy can be obtained.

【0024】実施例2は、下層溶解液として表2に示す
ように、亜鉛等の溶出剤としての中性塩の一例である酢
酸アンモニウムを12重量%、キレート化剤の一例であ
るトリエタノールアミンを25容量%、酸化剤の一例で
ある過酸化水素を10重量%それぞれ含むように調整さ
れた水溶液を用いた。この時の水素イオン濃度指数pH
は8.5〜9.5であった。そして、試験片10には表
4に示す組成範囲のAS−Eめっき鋼板を使用して実験
を行った。
In Example 2, as shown in Table 2, as a lower layer solution, 12% by weight of ammonium acetate as an example of a neutral salt as an eluent of zinc and the like, and triethanolamine as an example of a chelating agent were used. And an aqueous solution adjusted to contain 25% by volume of hydrogen peroxide and 10% by weight of hydrogen peroxide as an example of the oxidizing agent. PH value of pH value
Was 8.5 to 9.5. An experiment was performed using an AS-E plated steel sheet having a composition range shown in Table 4 for the test piece 10.

【0025】[0025]

【表4】 [Table 4]

【0026】図3に示すように、浸漬時間T毎に試験片
10を取り出して計算される下層12の付着量WL 、上
層11の付着量WU 、及び全付着量WA は、浸漬時間T
が30分を越えるとほぼ一定となることが分かる。従っ
て、この場合の飽和浸漬時間T0 は30分である。これ
に対して、下層溶解液中の溶出剤を水酸化ナトリウムと
する比較例2の場合には、図5に示すように付着量
L 、WU の一定化に要する飽和浸漬時間T0は約90
分となり、実施例2に較べて長時間を要することが分か
る。なお、図3及び図5において全付着量(記号:
●)、及び下層12の付着量WL (記号:○)は左側の
目盛りによって表され、一方、上層11の付着量W
U (記号:△)は右側の目盛りによって表示されてい
る。また、表2に示す分析処理の結果から明らかなよう
に、前記飽和浸漬時間T0以降で最終的に測定される実
施例2における上層11及び下層12の鉄含有率の標準
偏差σはそれぞれ0.23wt%、0.08wt%であ
り、これに対応する比較例2における鉄含有率の標準偏
差σがそれぞれ0.41wt%、0.09wt%である
ので、実施例2の方がばらつきが小さく良好な結果が得
られることが分かる。
As shown in FIG. 3, the weight W L of the lower layer 12, the weight W U of the upper layer 11, and the total weight W A of the lower layer 12, which are calculated by taking out the test piece 10 at every immersion time T, are calculated based on the immersion time. T
It turns out that it becomes almost constant after 30 minutes. Therefore, the saturation immersion time T 0 in this case is 30 minutes. In contrast, when the elution agent in the lower layer solution of Comparative Example 2, sodium hydroxide, coating weight W L as shown in FIG. 5, W saturated immersion time T 0 required for certain of the U is About 90
Minutes, which means that it takes a longer time than in Example 2. In FIGS. 3 and 5, the total adhesion amount (symbol:
●) and the adhesion amount W L (symbol: ○) of the lower layer 12 are represented by the scale on the left side, while the adhesion amount W of the upper layer 11
U (symbol: △) is indicated by the scale on the right. Further, as is clear from the results of the analysis treatment shown in Table 2, the standard deviations σ of the iron contents of the upper layer 11 and the lower layer 12 in Example 2 finally measured after the saturation immersion time T 0 are 0, respectively. .23 wt% and 0.08 wt%, and the corresponding standard deviations σ of the iron contents in Comparative Example 2 were 0.41 wt% and 0.09 wt%, respectively. It can be seen that good results are obtained.

【0027】ここで、表5は実施例1、2と比較例1、
2とにおける上層11及び下層12の付着量を各成分毎
に計算して両者の差を示したデータである。
Here, Table 5 shows Examples 1 and 2 and Comparative Example 1.
2 is data showing the difference between the two by calculating the adhesion amounts of the upper layer 11 and the lower layer 12 for each component.

【0028】[0028]

【表5】 [Table 5]

【0029】表5に示すように、実施例1、2と、それ
ぞれに対応する比較例1、2とにおける各付着量の測定
値の差は極めて小さくなることを示している。即ち、各
付着量の測定値の平均値は、ほぼ同等となることが分か
る。なお、亜鉛(Zn)、鉄(Fe)成分は共に単位面
積当たりの質量(g/m2)によって示される。また、
総付着量は上層11の付着量WU と下層12の付着量W
L との和であり、全付着量WA は下層溶解液の処理の前
後における試験片10の重量差を測定して得られる測定
値である。
As shown in Table 5, the difference between the measured values of the amounts of adhesion between Examples 1 and 2 and Comparative Examples 1 and 2 corresponding thereto is extremely small. That is, it can be seen that the average value of the measured values of the respective adhesion amounts is substantially equal. Note that both zinc (Zn) and iron (Fe) components are represented by mass per unit area (g / m 2 ). Also,
The total adhesion amount is the adhesion amount W U of the upper layer 11 and the adhesion amount W of the lower layer 12.
The sum of L, the total coating weight W A is a measured value obtained by measuring the difference in weight of the test piece 10 before and after the treatment of the underlying solution.

【0030】以上、本発明の実施の形態を説明したが、
本発明はこれらの実施の形態に限定されるものではな
く、要旨を逸脱しない条件の変更等は全て本発明の適用
範囲である。
The embodiment of the present invention has been described above.
The present invention is not limited to these embodiments, and all changes in conditions without departing from the gist are within the scope of the present invention.

【0031】[0031]

【発明の効果】請求項1〜5記載の亜鉛−鉄合金系二層
めっき鋼板の化学分析用溶解液においては、化学分析用
溶解液が、下地めっき層中の亜鉛を特定の水素イオン濃
度の下で溶出させる中性塩を含んでいるので、下地めっ
き層中の鉄の存在する部分に不働態被膜を形成させるこ
とがなく、下地めっき層中の亜鉛及び鉄を効率的に溶解
することができる。そして、、溶出する鉄イオンを酸化
させる酸化剤、及び酸化された鉄イオンをキレート化合
物として安定化させるキレート化剤とを有するので、溶
出した鉄イオンが水酸化物等として析出することがな
く、飽和浸漬時間を短縮することができる。また、下地
めっき層の溶出成分を含む化学分析用溶解液は中性塩を
含む水溶液であるので、原子吸光分析、発光分光分析等
に際して、塩を析出するようなことがなく、安定した条
件で測定を行え精度の高い測定データが得られる。この
ように、本発明の化学分析用溶解液はめっき層の被覆さ
れる原鋼板及び表部めっき層からの溶出を抑制する条件
の下で下地めっき層を選択的に短時間で溶解させると共
に、その付着量及び組成を正確に測定することができ
る。
In the solution for chemical analysis of a zinc-iron alloy-based double-layer plated steel sheet according to any one of claims 1 to 5, the chemical analysis solution is capable of converting zinc in the base plating layer to a specific hydrogen ion concentration. Since it contains a neutral salt to be eluted below, it is possible to efficiently dissolve zinc and iron in the base plating layer without forming a passivation film on the portion of the base plating layer where iron exists. it can. And since it has an oxidizing agent that oxidizes the eluted iron ions and a chelating agent that stabilizes the oxidized iron ions as a chelate compound, the eluted iron ions do not precipitate as hydroxides or the like, The saturation immersion time can be reduced. In addition, since the solution for chemical analysis containing the elution component of the base plating layer is an aqueous solution containing a neutral salt, it does not precipitate salts during atomic absorption analysis, emission spectroscopy, etc. under stable conditions. Measurement can be performed and highly accurate measurement data can be obtained. As described above, the dissolution solution for chemical analysis of the present invention selectively dissolves the base plating layer in a short time under conditions that suppress elution from the raw steel sheet and the surface plating layer coated with the plating layer, The adhesion amount and composition can be accurately measured.

【0032】特に、請求項2記載の亜鉛−鉄合金系二層
めっき鋼板の化学分析用溶解液においては、中性塩が酢
酸アンモニウム、硝酸アンモニウムのいずれかであるの
で、化学分析用溶解液中の成分濃度の測定の際に障害と
なる塩を生成することがなく、さらに精密な分析を行う
ことができる。特に、中性塩として硝酸アンモニウムを
用いた場合には、化学分析用溶解液中の成分濃度の測定
の際に障害となる塩を生成することがなく、精密な分析
結果が得られると共に、化学分析用溶解液中の水素イオ
ン濃度指数の調整が容易である。
In particular, in the solution for chemical analysis of the zinc-iron alloy-based double-layer plated steel sheet according to claim 2, the neutral salt is either ammonium acetate or ammonium nitrate. A more precise analysis can be performed without generating a salt that hinders the measurement of the component concentration. In particular, when ammonium nitrate is used as a neutral salt, a precise analysis result can be obtained without producing a salt that hinders the measurement of the component concentration in the solution for chemical analysis. It is easy to adjust the hydrogen ion concentration index in the solution for use.

【0033】請求項3記載の亜鉛−鉄合金系二層めっき
鋼板の化学分析用溶解液においては、中性塩、キレート
化剤の含有率をそれぞれ特定範囲としているので、これ
によって溶解される下地めっき層の溶出量を増大させる
と共に、表部めっき層及び原鋼板の溶出量を実質的に無
視できるレベルとして、化学分析用溶解液の選択溶解性
を確保することができる。また、請求項4記載の亜鉛−
鉄合金系二層めっき鋼板の化学分析用溶解液において
は、化学分析用溶解液の水素イオン濃度指数pHを特定
範囲としているので、化学分析用溶解液の選択溶解性を
さらに高めて測定精度を向上させることができ、また測
定装置を過剰に腐食させるようなこともない。
In the solution for chemical analysis of the zinc-iron alloy-based double-layer plated steel sheet according to the third aspect, the content of the neutral salt and the content of the chelating agent are each in a specific range. In addition to increasing the elution amount of the plating layer, the elution amount of the surface plating layer and the raw steel sheet can be made substantially negligible, thereby ensuring the selective solubility of the solution for chemical analysis. Further, the zinc of claim 4-
In the solution for chemical analysis of iron alloy-based double-layer plated steel sheets, the pH value of the hydrogen ion concentration index of the solution for chemical analysis is in a specific range, so the selective solubility of the solution for chemical analysis is further enhanced to improve the measurement accuracy. It can be improved and does not cause excessive corrosion of the measuring device.

【0034】請求項5記載の亜鉛−鉄合金系二層めっき
鋼板の化学分析用溶解液においては、下地めっき層の鉄
含有率、及び表部めっき層の鉄含有率をそれぞれ特定範
囲としているので、化学分析用溶解液の下地めっき層に
対する選択溶解性をさらに高めることができ、高精度の
測定データが得られる。
In the solution for chemical analysis of the zinc-iron alloy-based double-layer plated steel sheet according to the fifth aspect, the iron content of the base plating layer and the iron content of the surface plating layer are specified ranges. In addition, the selective solubility of the solution for chemical analysis with respect to the underlying plating layer can be further enhanced, and highly accurate measurement data can be obtained.

【0035】請求項6記載の亜鉛−鉄合金系二層めっき
鋼板の化学分析用溶解液を用いる化学分析方法において
は、鉄含有率の低い下地めっき層と鉄含有率の高い表部
めっき層とを有する亜鉛−鉄合金系二層めっき鋼板を、
中性塩と酸化剤及びキレート化剤とを有する特定範囲の
水素イオン濃度指数の化学分析用溶解液に浸漬して、下
地めっき層を溶解して亜鉛−鉄合金系二層めっき鋼板か
ら表部めっき層を分離するので、下地めっき層に不働態
被膜を形成させることがなく、下地めっき層中の亜鉛及
び鉄を効率的に溶解し、酸化剤によって酸化された鉄イ
オンをキレート化合物として安定化させることにより溶
出の際の飽和浸漬時間を短縮することができる。また、
下地めっき層の溶出した化学分析用溶解液は中性塩を含
む水溶液であるので、原子吸光分析法、あるいは発光分
光分析法等の処理操作に際して、塩を析出することが少
なく、安定した条件で各成分の分析を行え精度の高い測
定データが得られる。
According to a sixth aspect of the present invention, there is provided a chemical analysis method using a solution for chemical analysis of a zinc-iron alloy-based double-layer plated steel sheet, comprising: a base plating layer having a low iron content and a surface plating layer having a high iron content. A zinc-iron alloy-based double-layer plated steel sheet having
Immerse in a solution for chemical analysis of a specific range of hydrogen ion concentration index having a neutral salt, an oxidizing agent and a chelating agent, dissolve the base plating layer, and remove the surface part from the zinc-iron alloy double-layer plated steel sheet. Since the plating layer is separated, no passivation film is formed on the underlying plating layer, zinc and iron in the underlying plating layer are efficiently dissolved, and iron ions oxidized by the oxidizing agent are stabilized as a chelate compound. By doing so, the saturation immersion time during elution can be shortened. Also,
Since the solution for chemical analysis in which the base plating layer is eluted is an aqueous solution containing a neutral salt, salts are less precipitated during processing operations such as atomic absorption spectroscopy or emission spectroscopy, and are performed under stable conditions. Each component can be analyzed and highly accurate measurement data can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)、(b)、(c)はそれぞれ、下層溶解
液中における試験片の初期状態、中間状態、末期状態を
示す模式図である。
FIGS. 1A, 1B, and 1C are schematic diagrams respectively showing an initial state, an intermediate state, and a terminal state of a test piece in a lower layer solution.

【図2】本発明の実施の形態に係る亜鉛−鉄合金系二層
めっき鋼板の化学分析用溶解液に関する実施例1におけ
る付着量の測定値と浸漬時間との関係を示す図である。
FIG. 2 is a diagram showing the relationship between the measured value of the amount of adhesion and the immersion time in Example 1 concerning the solution for chemical analysis of the zinc-iron alloy-based double-layer plated steel sheet according to the embodiment of the present invention.

【図3】同実施例2における付着量の測定値と浸漬時間
との関係を示す図である。
FIG. 3 is a view showing a relationship between a measured value of an attached amount and an immersion time in Example 2;

【図4】比較例1における付着量の測定値と浸漬時間と
の関係を示す図である。
FIG. 4 is a diagram showing a relationship between a measured value of an attached amount and an immersion time in Comparative Example 1.

【図5】比較例2における付着量の測定値と浸漬時間と
の関係を示す図である。
FIG. 5 is a diagram showing a relationship between a measured value of an attached amount and an immersion time in Comparative Example 2.

【符号の説明】[Explanation of symbols]

10 試験片(亜鉛−鉄合金系二層めっき鋼板) 11 上層(表部めっき層) 12 下層(下
地めっき層) 13 原鋼板
Reference Signs List 10 Test piece (Zinc-iron alloy-based double-layer plated steel sheet) 11 Upper layer (surface plating layer) 12 Lower layer (base plating layer) 13 Original steel sheet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川上 康志 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 (72)発明者 桑原 孝一 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yasushi Kawakami 1-1, Tobata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka New Nippon Steel Corporation Yawata Works (72) Inventor Koichi Kuwahara Tobata-ku, Kitakyushu-shi, Fukuoka No. 1 town New Nippon Steel Corporation Yawata Works

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 鉄含有率の低い下地めっき層と、該下地
めっき層の上に配置される鉄含有率の高い表部めっき層
とを有する亜鉛−鉄合金系二層めっき鋼板の前記下地め
っき層を選択的に溶解させて、該亜鉛−鉄合金系二層め
っき鋼板から前記表部めっき層を分離するための亜鉛−
鉄合金系二層めっき鋼板の化学分析用溶解液であって、 前記化学分析用溶解液が、前記下地めっき層中の亜鉛を
溶出させる中性塩と、溶出する鉄イオンを酸化させる酸
化剤、及び酸化された該鉄イオンをキレート化合物とし
て安定化させるキレート化剤とを有することを特徴とす
る亜鉛−鉄合金系二層めっき鋼板の化学分析用溶解液。
1. The undercoating of a zinc-iron alloy-based double-layer plated steel sheet having an undercoat plating layer having a low iron content and a surface plating layer having a high iron content disposed on the undercoat layer. Layer for selectively dissolving the layer, and a zinc-
A solution for chemical analysis of an iron alloy-based double-layer plated steel sheet, wherein the solution for chemical analysis is a neutral salt that elutes zinc in the base plating layer, and an oxidizing agent that oxidizes iron ions that elute, And a chelating agent for stabilizing the oxidized iron ions as a chelate compound. A solution for chemical analysis of a zinc-iron alloy-based double-layer plated steel sheet.
【請求項2】 前記中性塩が酢酸アンモニウム、硝酸ア
ンモニウムのいずれかであることを特徴とする請求項1
記載の亜鉛−鉄合金系二層めっき鋼板の化学分析用溶解
液。
2. The method according to claim 1, wherein the neutral salt is one of ammonium acetate and ammonium nitrate.
A solution for chemical analysis of the zinc-iron alloy-based double-layer plated steel sheet according to the above.
【請求項3】 前記中性塩、前記キレート化剤の含有率
がそれぞれ1〜50重量%、0.1〜90容積%である
ことを特徴とする請求項1又は2記載の亜鉛−鉄合金系
二層めっき鋼板の化学分析用溶解液。
3. The zinc-iron alloy according to claim 1, wherein the contents of the neutral salt and the chelating agent are 1 to 50% by weight and 0.1 to 90% by volume, respectively. Solution for chemical analysis of non-galvanized steel sheet.
【請求項4】 前記化学分析用溶解液の水素イオン濃度
指数pHが8〜10であることを特徴とする請求項1〜
3のいずれか1項に記載の亜鉛−鉄合金系二層めっき鋼
板の化学分析用溶解液。
4. The chemical analysis solution according to claim 1, wherein the pH value of the hydrogen ion concentration index is 8 to 10.
4. The solution for chemical analysis of the zinc-iron alloy-based double-layer plated steel sheet according to any one of the above items 3.
【請求項5】 前記下地めっき層の鉄含有率が35重量
%以下、前記表部めっき層の鉄含有率が70重量%以上
であることを特徴とする請求項1〜4のいずれか1項に
記載の亜鉛−鉄合金系二層めっき鋼板の化学分析用溶解
液。
5. The method according to claim 1, wherein an iron content of the undercoating layer is 35% by weight or less, and an iron content of the surface plating layer is 70% by weight or more. The solution for chemical analysis of a zinc-iron alloy-based double-layer plated steel sheet according to item 1.
【請求項6】 鉄含有率の低い下地めっき層と鉄含有率
の高い表部めっき層とを有する亜鉛−鉄合金系二層めっ
き鋼板を、中性塩と酸化剤及びキレート化剤とを有する
水素イオン濃度指数pHが8〜10の化学分析用溶解液
に浸漬して、前記下地めっき層を溶解して前記亜鉛−鉄
合金系二層めっき鋼板から前記表部めっき層を分離する
ことを特徴とする亜鉛−鉄合金系二層めっき鋼板の化学
分析方法。
6. A zinc-iron alloy-based double-layer plated steel sheet having a base plating layer having a low iron content and a surface plating layer having a high iron content, comprising a neutral salt, an oxidizing agent and a chelating agent. By immersing in a solution for chemical analysis having a hydrogen ion concentration index pH of 8 to 10 to dissolve the base plating layer and separate the surface plating layer from the zinc-iron alloy-based double-layer plated steel sheet, Chemical analysis method of zinc-iron alloy-based double-layer plated steel sheet.
JP9095324A 1997-03-27 1997-03-27 Solution for chemical analysis of zinc-iron alloy group 2-layer plated steel board, and chemical analysis method using it Withdrawn JPH10267918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9095324A JPH10267918A (en) 1997-03-27 1997-03-27 Solution for chemical analysis of zinc-iron alloy group 2-layer plated steel board, and chemical analysis method using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9095324A JPH10267918A (en) 1997-03-27 1997-03-27 Solution for chemical analysis of zinc-iron alloy group 2-layer plated steel board, and chemical analysis method using it

Publications (1)

Publication Number Publication Date
JPH10267918A true JPH10267918A (en) 1998-10-09

Family

ID=14134564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9095324A Withdrawn JPH10267918A (en) 1997-03-27 1997-03-27 Solution for chemical analysis of zinc-iron alloy group 2-layer plated steel board, and chemical analysis method using it

Country Status (1)

Country Link
JP (1) JPH10267918A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101677384B1 (en) * 2015-08-11 2016-11-18 주식회사 포스코 Method of Analyzing Anti-Fingerprinting Resin Coated Galvanized Steel Sheet
KR20200054550A (en) * 2018-11-12 2020-05-20 주식회사 포스코 Liquefaction reagent composition for plating layer of nickel plated steel sheet, and analyzing method of plating layer of nickel plated steel sheet using thereof
CN112946055A (en) * 2021-02-08 2021-06-11 北京首钢股份有限公司 Method for measuring content of trace elements in galvanized steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101677384B1 (en) * 2015-08-11 2016-11-18 주식회사 포스코 Method of Analyzing Anti-Fingerprinting Resin Coated Galvanized Steel Sheet
KR20200054550A (en) * 2018-11-12 2020-05-20 주식회사 포스코 Liquefaction reagent composition for plating layer of nickel plated steel sheet, and analyzing method of plating layer of nickel plated steel sheet using thereof
CN112946055A (en) * 2021-02-08 2021-06-11 北京首钢股份有限公司 Method for measuring content of trace elements in galvanized steel

Similar Documents

Publication Publication Date Title
EP0797690B1 (en) Printed circuit board manufacture
US6869637B2 (en) Bath and method of electroless plating of silver on metal surfaces
US10731257B2 (en) Plating bath solutions
JPS59501751A (en) Solder stripping solution
ES2735221T3 (en) Replacement compositions and replacement methods of pretreatment compositions
EP2343399B1 (en) Treatment solution for chemical conversion of metal material and method for treatment
US9175400B2 (en) Immersion tin silver plating in electronics manufacture
Mu et al. Corrosion behavior and composition analysis of chromate passive film on electroless Ni-P coating
CN110062819A (en) Method for using coating layer that uncoated steel band is electroplated
CN102245806A (en) Electroless palladium plating solution and method of use
Barker Electroless deposition of metals
US20180258538A1 (en) Plating bath solutions
JPH10267918A (en) Solution for chemical analysis of zinc-iron alloy group 2-layer plated steel board, and chemical analysis method using it
Steinmetz et al. Electroless deposition of pure nickel, palladium and platinum
KR20090113255A (en) High peroxide autodeposition bath
CN105525282B (en) A kind of alkalescence chromium-free passivation liquid and its normal temperature passivated Electroless Plating Ni P layers of method
Liu et al. Gold immersion deposition on electroless nickel substrates: Deposition process and influence factor analysis
US3930081A (en) Composition and process for displacement plating of zinc surfaces
Georgieva et al. Electroless Deposition of Ni–Sn–P and Ni–Sn–Cu–P Coatings
CA1199754A (en) Catalyst solutions for activating non-conductive substrates and electroless plating process
Sierka Industrial zinc plating processes
KR102218457B1 (en) Liquefaction reagent composition for plating layer of nickel plated steel sheet, and analyzing method of plating layer of nickel plated steel sheet using thereof
JP2822840B2 (en) Plating method and plating apparatus for electroless tin, lead or their alloys
Montañés et al. Evolution with exposure time of copper corrosion in a concentrated lithium bromide solution. Characterization of corrosion products by energy-dispersive X-ray analysis and X-ray diffraction
Motsogi Evaluation of selected oxidising reagents, as an attempt to replace FeCl3 in the mirror face cleaning process

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040601