JPS63213675A - Glow discharge decomposition device - Google Patents

Glow discharge decomposition device

Info

Publication number
JPS63213675A
JPS63213675A JP62046578A JP4657887A JPS63213675A JP S63213675 A JPS63213675 A JP S63213675A JP 62046578 A JP62046578 A JP 62046578A JP 4657887 A JP4657887 A JP 4657887A JP S63213675 A JPS63213675 A JP S63213675A
Authority
JP
Japan
Prior art keywords
gas
substrate
glow discharge
electrode plate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62046578A
Other languages
Japanese (ja)
Inventor
Hisashi Higuchi
永 樋口
Atsushi Watanabe
渡辺 敦司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP62046578A priority Critical patent/JPS63213675A/en
Publication of JPS63213675A publication Critical patent/JPS63213675A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0525Coating methods

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To form a coated film having uniform thickness on a substrate, by forming a gas nozzle in a cylindrical electrode plate so that a film forming gas is blown off in the non-vertical direction to the cylindrical substrate surface, and spiraling the gas with respect to the substrate. CONSTITUTION:The cylindrical electrode plate 2 is coaxially set in a reaction vessel 1 into which a film forming gas is introduced, and a cylindrical film forming substrate 10 is coaxially supported by a carrier 3 in the electrode plate 2. Many nozzles 9a for the film forming gas are uniformly formed in the electrode plate 2 so that the gas is blown off in the non-vertical direction to the substrate surface, and the blown off gas is spiraled downward with the substrate 10 as the axis. By such a constitution, the film forming gas is introduced from an inlet 7, glow discharge is carried out, and the homogeneous coated film is formed in the uniform amt. over the whole surface of the substrate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えばアモルファスシリコン又はアモルファ
スシリコンカーバイドなどから成る電子写真感光体ドラ
ムを製作するグロー放電分解装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a glow discharge decomposition apparatus for producing an electrophotographic photosensitive drum made of, for example, amorphous silicon or amorphous silicon carbide.

〔従来技術及びその問題点〕[Prior art and its problems]

今日、アモルファスシリコンを光導電層とした電子写真
感光体が実用化されており、その優れた耐摩耗性、耐熱
性、光感度特性及び無公害性等々によって急速に市場に
浸透しつつある。
BACKGROUND ART Electrophotographic photoreceptors having a photoconductive layer made of amorphous silicon have been put into practical use today, and are rapidly penetrating the market due to their excellent wear resistance, heat resistance, photosensitivity, non-pollution properties, and the like.

この電子写真感光体はグロー放電分解法によって形成さ
れるが、その感光体はドラム形状であり、そのためにド
ラム周面に亘って均質なアモルファスシリコンM(以下
、アモルファスシリコンをa−3iと略す)を形成する
のが難しく、これにより、感光体ドラムの周面全体に亘
って電子写真特性が均等にならず、画像形成して得られ
た画面には品質上ムラが生じるという問題がある。
This electrophotographic photoreceptor is formed by a glow discharge decomposition method, and the photoreceptor is drum-shaped, so that uniform amorphous silicon M (hereinafter amorphous silicon is abbreviated as a-3i) is formed over the circumferential surface of the drum. This causes problems in that the electrophotographic characteristics are not uniform over the entire circumferential surface of the photoreceptor drum, and that the quality of the screen obtained by forming an image is uneven.

この問題を第4図及び第5図に示したグロー放電分解装
置で説明すると、以下の通りである。
This problem will be explained using the glow discharge decomposition apparatus shown in FIGS. 4 and 5 as follows.

即ち、第4図及び第5図はグロー放電分解装置のそれぞ
れの正面及び平面を表わす概略図であり、1は円筒形状
の反応容器であり、2は円筒形状のグロー放電用型掻板
であり、3は成膜用基板を所定の位置に設定するための
円筒形状の基板支持体であって、反応容器1、電極板2
及び基板支持体3のそれぞれの中心軸は実質上一致して
おり、そして、反応容器1及び電極板2にはそれぞれ上
面la、2aがあり、反応容器1、電極板2及び上面1
a、2aが電極的に導通している。また、反応容器1に
は底板4が設置されており、基板支持体3は底板4上に
形成され、両者は電気的に導通しており、5は電極板2
と底板4を電気的に絶縁するリング体、6は基板支持体
3上に設置されて基板支持体3と上面2aとを電気的に
絶縁するキャップ体であり、高周波電源(図示せず)か
ら導入される高周波電力は電極板2と基板支持体3の間
に印加される。
That is, FIGS. 4 and 5 are schematic diagrams showing the front and plane views of the glow discharge decomposition apparatus, respectively, in which 1 is a cylindrical reaction vessel, and 2 is a cylindrical glow discharge mold scraper. , 3 is a cylindrical substrate support for setting the film-forming substrate in a predetermined position, and includes a reaction vessel 1, an electrode plate 2
and the substrate support 3 substantially coincide with each other, and the reaction vessel 1 and the electrode plate 2 have upper surfaces la and 2a, respectively, and the reaction vessel 1, the electrode plate 2 and the upper surface 1
a and 2a are electrically connected. Further, a bottom plate 4 is installed in the reaction container 1, a substrate support 3 is formed on the bottom plate 4, and the two are electrically connected, and 5 is an electrode plate 2.
6 is a ring body that electrically insulates the bottom plate 4, and 6 is a cap body that is installed on the substrate support 3 and electrically insulates the substrate support 3 and the upper surface 2a. The introduced high frequency power is applied between the electrode plate 2 and the substrate support 3.

7はガス導入口、8はガス排気口であり、a−5t成膜
用ガスがガス導入ロアを介して反応容器1の内部へ導入
され、次いで電極板2に貫設された複数個のガス噴出口
9を介して基板支持体3へ向けて噴出される。
7 is a gas inlet port, 8 is a gas exhaust port, and the a-5t film forming gas is introduced into the reaction vessel 1 via the gas introduction lower, and then a plurality of gas It is ejected toward the substrate support 3 through the ejection port 9 .

a−Si電子写真感光体ドラムを製作する場合、上記の
ような電力印加系及びガス流系の下でドラム状基板10
を基板支持体3に装着し、基板支持体3の内部に形成さ
れたヒータ11によって基板10を所定の温度に設定し
、更に基板10と電極板2の間でガスがグロー放電分解
した場合、基板10上にa−5i膜が気相成長する。そ
して、この気相成長に伴って生じるガス分解残余ガスは
ガス排出口8を介して排出される。尚、図中の矢印はガ
ス流の方向を表わす。
When manufacturing an a-Si electrophotographic photoreceptor drum, the drum-shaped substrate 10 is
is attached to the substrate support 3, the substrate 10 is set to a predetermined temperature by the heater 11 formed inside the substrate support 3, and further, when the gas is decomposed by glow discharge between the substrate 10 and the electrode plate 2, An a-5i film is grown on the substrate 10 by vapor phase growth. The gas decomposition residual gas generated along with this vapor phase growth is discharged through the gas exhaust port 8. Note that the arrows in the figure indicate the direction of gas flow.

上記のような気相成長方式をもつグロー放電分解装置に
よれば、電極板2を介して噴出されるガスは、第5図に
示す通り、電極板2の中心軸へ向かって噴出され、その
ためにこのガスは基板10の板面へ向かって垂直方向へ
吹き出される。
According to the glow discharge decomposition apparatus using the vapor phase growth method as described above, the gas ejected through the electrode plate 2 is ejected toward the central axis of the electrode plate 2, as shown in FIG. Then, this gas is blown out in a vertical direction toward the surface of the substrate 10.

このようなガス噴出状態によれば、電極板2の厚みやガ
ス噴出口9の孔径によって基板に対するガス噴出状態が
変動する。即ち、電極板2の厚みが小さいか或いはガス
噴出口9の孔径が大きい場合には噴出用ガス圧力が充分
な大きさに至らず、これにより、すべてのガス噴出口9
のガス噴出力が均等にならず、そのために基板面全体に
亘って均等量のガスが与えられず、その結果、グロー放
電分解によって得られたa−Si膜がその基板面全体に
亘って均一な膜厚分布とならず、均等な電子写真特性が
得られないという問題が生じる。
According to such a gas jetting state, the gas jetting state to the substrate changes depending on the thickness of the electrode plate 2 and the hole diameter of the gas jetting port 9. That is, if the thickness of the electrode plate 2 is small or the hole diameter of the gas jet ports 9 is large, the jetting gas pressure will not reach a sufficient level.
The gas ejection force is not uniform, and therefore an equal amount of gas is not applied to the entire substrate surface, and as a result, the a-Si film obtained by glow discharge decomposition is uniform over the entire substrate surface. A problem arises in that a uniform film thickness distribution is not obtained and uniform electrophotographic characteristics cannot be obtained.

一方、電極板2の厚みが大きいか或いはガス噴出口9の
孔径が小さい場合にはガス噴出口9から吹き出されたガ
スが比較的大きな指向性を有することになり、そのため
にガス噴出口9と対向した基板面上の近傍部位に比較的
多くのガス量が当てられることになり、更にその部位の
基板温度が低下傾向となり、このような条件の下で形成
されたa−5i膜ではその膜面全体に亘って均等な電子
写真特性が得られず、スポット的な成膜欠陥分布が生じ
る。また、基板面に対してスポット的に当てられたガス
流は、その板面上ではね返されて一種の乱気流状態が生
じ、これにより、基板面全体に亘る雰囲気に不均一な活
性種が生じ、このような理由によっても均質なa−3i
膜が得られない。
On the other hand, if the thickness of the electrode plate 2 is large or the hole diameter of the gas outlet 9 is small, the gas blown out from the gas outlet 9 will have a relatively large directivity. A relatively large amount of gas is applied to a nearby area on the facing substrate surface, and the substrate temperature at that area tends to decrease. Uniform electrophotographic characteristics cannot be obtained over the entire surface, and a spotty distribution of film formation defects occurs. In addition, the gas flow that is spot-wise applied to the substrate surface is bounced off the surface of the substrate, creating a kind of turbulence, which generates non-uniform active species in the atmosphere over the entire substrate surface. For this reason, the homogeneous a-3i
A film cannot be obtained.

〔発明の目的〕[Purpose of the invention]

従って本発明は叙上に鑑みて案出されたものであり、そ
の目的は電極板の厚みやガス噴出口の孔径によって基板
に当てられるガス流状態が変動せず、基板面全体に亘っ
て均等量のガスを当てることができ、これにより、成膜
全体に亘って均一な特性が得られるグロー放電分解装置
を提供することにある。
Therefore, the present invention has been devised in view of the above, and its purpose is to ensure that the gas flow condition applied to the substrate does not vary depending on the thickness of the electrode plate or the hole diameter of the gas jet port, and is uniform over the entire surface of the substrate. It is an object of the present invention to provide a glow discharge decomposition apparatus that can apply a large amount of gas and thereby obtain uniform characteristics over the entire film formation.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、成膜用ガスが導入される反応室内部に
円筒形状の電極板を設置し、該電極板の内部に円筒形状
の成膜用基板を設置し、これらの電極板と基板のそれぞ
れの中心軸が実質上一致しており、成膜用ガスをグロー
放電分解させて基板上に成膜するグロー放電分解装置に
おいて、前記成膜用ガスが基板面に対して非垂直方向へ
吹き出されるようなガス噴出手段を前記電極板に形成し
、成膜中該ガスが基板を軸にして螺旋回転しながらグロ
ー放電分解されることを特徴とするグロー放電分解装置
が提供される。
According to the present invention, a cylindrical electrode plate is installed inside a reaction chamber into which a film-forming gas is introduced, a cylindrical film-forming substrate is installed inside the electrode plate, and these electrode plates and the substrate In a glow discharge decomposition device that decomposes a film-forming gas by glow discharge to form a film on a substrate, the central axes of each of the film-forming gases are substantially aligned, and the film-forming gas is directed in a direction non-perpendicular to the substrate surface. A glow discharge decomposition device is provided, characterized in that a gas ejection means for blowing out is formed on the electrode plate, and the gas is decomposed by glow discharge while spirally rotating around the substrate during film formation.

以下、本発明をa−3i悪感光ドラムを製作することが
できるグロー放電分解装置を例にとって詳細に説明する
Hereinafter, the present invention will be described in detail by taking as an example a glow discharge decomposition apparatus capable of manufacturing an A-3I photosensitive drum.

第1図は本発明グロー放電分解装置の平面を表わす概略
図であり、この装置の正面を表わす概略図は第4図に対
応しており、また第2図にドラム状基板10の周面近傍
におけるガス流状態を表している。尚、第1図中第4図
及び第5図と同一個所には同一符号が付しである。
FIG. 1 is a schematic plan view of the glow discharge decomposition apparatus of the present invention, and the schematic view showing the front side of this apparatus corresponds to FIG. 4, and FIG. represents the gas flow state at . Note that the same parts in FIG. 1 as in FIGS. 4 and 5 are given the same reference numerals.

即ち、第1図に示すグロー放電分解装置は第4図に示す
装置に比べ、電極板2に貫設されたガス噴出口9aのガ
ス吹き出し方向が基板面に対して非垂直になるように形
成され、すべてのガス噴出口9aのガス吹き出し方向が
一様に揃えられており、更にガス排出手段が第4図に示
すように反応容器1の下部に形成されている場合、電極
板2の内部に吹き出されたガスは基板10を軸にして螺
旋回転しながら下方へ向かい、このようなガス流状態の
なかで基板10と電極板2の間でグロー放電を発生させ
る。
That is, compared to the apparatus shown in FIG. 4, the glow discharge decomposition device shown in FIG. 1 is formed so that the gas blowing direction of the gas blowout port 9a penetrated through the electrode plate 2 is not perpendicular to the substrate surface. When the gas blowing direction of all the gas blowing ports 9a is uniformly aligned and the gas exhaust means is formed at the bottom of the reaction vessel 1 as shown in FIG. The gas blown out heads downward while spirally rotating around the substrate 10, and a glow discharge is generated between the substrate 10 and the electrode plate 2 in this gas flow state.

上記構成のグロー放電分解装置によれば、ガス噴出口9
aより吹き出されたガスが基板面に対してスポット的に
当たらず、そのために基板全体に亘って均等な温度が維
持されており、更に基板面全体に亘ってその周面近傍で
定常的なガス流ができるためにグロー放電分解に伴って
生じる活性種が基板面全体に亘って概ね均質且つ均等量
となり、その結果、膜面全体に亘って均質なa−5i膜
を形成することができる。
According to the glow discharge decomposition device having the above configuration, the gas outlet 9
The gas blown out from a does not hit the substrate surface spot-wise, so that a uniform temperature is maintained over the entire substrate, and the gas is kept constant near the circumferential surface over the entire substrate surface. Because of the flow, the active species generated as a result of glow discharge decomposition are generally homogeneous and in an equal amount over the entire substrate surface, and as a result, a homogeneous a-5i film can be formed over the entire film surface.

また本発明によれば、前記のようにガスを螺旋回転させ
る場合、ガス噴出口9aのガス吹き出し方向を下記のよ
うな範囲内に設定するとa−St膜の膜面に亘って一段
と均質な電子写真特性と成り得る。
Further, according to the present invention, when the gas is spirally rotated as described above, if the gas blowing direction of the gas blowing port 9a is set within the following range, electrons can be made more homogeneous over the film surface of the a-St film. It can be a photographic characteristic.

即ち、本発明者等が繰り返し行った実験によれば、第3
図に示すように基板の外径を2r5、電極板の内径を2
rzとし、ガス噴出口9aの吹き出し方向を基板の中心
軸に対する方向からの振れの角度θとして表した場合に
、 θ≧5in−’ (r+/rz) の範囲に設定すると、基板周面に亘って形成されたa−
St膜はムラのない均等な電子写真特性となり、そして
、同一のグロー放電分解装置を用いて繰り返し成膜して
も個々のa−3i悪感光ドラムの間で品質上ムラがなく
なり、高品質且つ高倍転性のa−Si感光体ドラムが得
られることを確認した。尚、図中の角度θ0はsin〜
’ (r=/rz)を表わす。
That is, according to experiments repeatedly conducted by the inventors, the third
As shown in the figure, the outer diameter of the substrate is 2r5, and the inner diameter of the electrode plate is 2r5.
rz, and the blowing direction of the gas outlet 9a is expressed as the deflection angle θ from the direction with respect to the central axis of the substrate, and if it is set in the range of θ≧5in-' (r+/rz), a-
The St film has even and uniform electrophotographic properties, and even if the film is repeatedly formed using the same glow discharge decomposition device, there will be no unevenness in quality between individual A-3I photosensitive drums, resulting in high quality and It was confirmed that an a-Si photoreceptor drum with a high conversion rate could be obtained. Note that the angle θ0 in the figure is sin ~
'(r=/rz).

〔実施例〕〔Example〕

次に本発明の実施例を述べる。 Next, examples of the present invention will be described.

(例1) 第1図に示すグロー放電分解装置において、r1=54
mm、 r==100mm、電極板の厚みが2.5n+
mに設定されたグロー放電用電極板に角度(θ)45°
の振れをもつガス噴出口(孔径φ0.5mm )を30
mmのピッチでマス目状に複数個貫設し、そして、a−
St成膜用ガスを3000secHの流量でガス導入ロ
アより導入し、円筒状電極板内部のガス圧力を0.5T
orrに、基板温度を300℃に、グロー放電用高周波
電力を250臀に、その周波数を13.56MHzに設
定し、a−Si感光体ドラムを製作した。尚、この製作
例の場合θOは33°である。
(Example 1) In the glow discharge decomposition device shown in Fig. 1, r1=54
mm, r==100mm, electrode plate thickness 2.5n+
The angle (θ) is 45° to the glow discharge electrode plate set at m.
A gas outlet (hole diameter φ0.5 mm) with a deflection of 30
A plurality of pieces are penetrated in a grid pattern with a pitch of mm, and a-
St film forming gas was introduced from the gas introduction lower at a flow rate of 3000 secH, and the gas pressure inside the cylindrical electrode plate was set to 0.5T.
An a-Si photoreceptor drum was manufactured by setting the substrate temperature to 300° C., the high-frequency power for glow discharge to 250° C., and the frequency to 13.56 MHz. In this manufacturing example, θO is 33°.

このようにして製作したa−3i悪感光ドラムを複写機
に搭載して5.6KVでコロナ放電し、画像形成を行っ
たところ、コピー画像に白抜等のスポット的な画像欠陥
が表れず、画面全体に亘って濃度の再現性に優れている
ことを確認した。
When the a-3i photosensitive drum manufactured in this way was installed in a copying machine and subjected to corona discharge at 5.6 KV to form an image, no spot image defects such as white spots appeared on the copied image. It was confirmed that the density reproducibility was excellent over the entire screen.

また、同一のグロー放電分解装置を用いて同じ製作条件
でもって10本のa−3t悪感光ドラムを製作し、これ
らを上記と同じようにして画像評価を行った結果、ドラ
ム間で全く同一の高品質画像を得ることができ、ドラム
間で差異のない画像を得ることができた。
In addition, we fabricated 10 A-3T photosensitive drums under the same manufacturing conditions using the same glow discharge decomposition apparatus, and evaluated the images in the same manner as above. It was possible to obtain high quality images, with no differences between drums.

(例2) 本例においては(例1)のなかで電極板からのガス吹き
出し方向θを22°に設定し、それ以外は(例1)と全
く同じ条件とし、これによって製作したa−Si感光体
ドラムの画像評価を行った結果、コピー画像に白抜等の
スポット的な画像欠陥が表れず、画像全体に亘って濃度
の再現性に優れ、高品質画像が得られた。
(Example 2) In this example, the gas blowing direction θ from the electrode plate in (Example 1) was set to 22°, and the other conditions were exactly the same as in (Example 1). As a result of image evaluation of the photoreceptor drum, it was found that no spot image defects such as white spots appeared in the copied image, excellent density reproducibility over the entire image, and a high quality image.

また、同一のグロー放電分解装置を用いて同じ製作条件
でもって10本のa−Si感光体ドラムを製作し、これ
らを上記と同じようにして画像評価を行った結果、ドラ
ム間で概ね同じレベルの画像が得られ、際立った差異が
認められず、実用上同等支障がないことを確認した。
In addition, 10 a-Si photoreceptor drums were manufactured under the same manufacturing conditions using the same glow discharge decomposition apparatus, and the images were evaluated in the same manner as above. images were obtained, and no noticeable differences were observed, confirming that there were no practical problems.

(例3) 本例においては(例1)のなかでa−St成膜用ガスを
6000secMの流量でガス導入ロアより導入し、円
筒状電極板内部のガス圧力を0.5Torrに設定し、
更にグロー放電用高周波電力を500−に設定し、それ
以外は(例1)と全く同じ条件とし、これによってa−
5i悪感光ドラムを製作したところ、成膜速度を約2倍
に高めることができた。
(Example 3) In this example, in (Example 1), the a-St film forming gas was introduced from the gas introduction lower at a flow rate of 6000 secM, and the gas pressure inside the cylindrical electrode plate was set to 0.5 Torr.
Furthermore, the high frequency power for glow discharge was set to 500-, and the other conditions were exactly the same as in (Example 1), so that a-
When we manufactured a 5i photosensitive drum, we were able to increase the film formation rate by about twice.

このようにして製作したa−3i悪感光ドラムの画像評
価を行ったところ、コピー画像に白抜等のスポット的な
画像欠陥が表れず、画像全体に亘って濃度の再現性に優
れ、高品質画像が得られた。
An image evaluation of the a-3i photosensitive drum produced in this way revealed that no spot image defects such as white spots appeared in the copied image, excellent density reproducibility over the entire image, and high quality. Image obtained.

(例4) 本例においては(例工)のなかで電極板からのガス吹き
出し方向を基板面に対して垂直方向(θ#O0)に設定
し、それ以外は(例1)と全く同じ条件とし、これによ
って製作したa−St感光体ドラムの画像評価を行った
結果、コピー画像に白抜等のスポット的な画像欠陥が表
れた。
(Example 4) In this example, the gas blowing direction from the electrode plate is set perpendicular to the substrate surface (θ#O0) in (Example work), and other than that, the conditions are exactly the same as in (Example 1). As a result of image evaluation of the a-St photoreceptor drum produced in this way, spot-like image defects such as white spots appeared in the copied image.

(例5) 本例においては(例1)のなかでガス噴出口の孔径をφ
0 、2mmに設定し、それ以外は(例1)と全く同じ
条件とし、これによって製作したa−St感光体ドラム
の画像評価を行った結果、コピー画像に白抜等のスポッ
ト的な画像欠陥が表れず、(例1)と同様に高品質画像
が得られた。
(Example 5) In this example, the hole diameter of the gas outlet in (Example 1) is φ
As a result of image evaluation of the a-St photoreceptor drum manufactured under the same conditions as (Example 1), we found that there were no spot image defects such as white spots on the copied image. was not observed, and a high quality image was obtained in the same manner as in (Example 1).

(例6) 本例においては(例1)のなかでガス噴出口の孔径をφ
1mmに設定し、それ以外は(例1)と全く同じ条件と
し、これによって製作したa−3i悪感光ドラムの画像
評価を行った結果、コピー画像に白抜等のスポット的な
画像欠陥が表れず、(例1)と同様に高品質画像が得ら
れた。
(Example 6) In this example, the hole diameter of the gas outlet in (Example 1) is φ
1 mm, and the other conditions were exactly the same as in Example 1, and as a result of image evaluation of the a-3i photosensitive drum manufactured under these conditions, spot-like image defects such as white spots appeared in the copied image. A high quality image was obtained in the same way as in (Example 1).

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明のグロー放電分解装置によれば、成
膜用ガスを基板を軸にして螺旋回転させており、これに
より、電極板の厚み並びにそれに形成されたガス噴出口
の孔径に影響を受けないで均質な成膜形成を行うことが
でき、その結果、成膜全体に亘って均一な特性が得られ
且つ個々の成膜製品の間で品質上バラツキがなくなる。
As described above, according to the glow discharge decomposition apparatus of the present invention, the film-forming gas is spirally rotated around the substrate, which affects the thickness of the electrode plate and the pore diameter of the gas outlet formed therein. It is possible to form a homogeneous film without causing any damage, and as a result, uniform properties are obtained over the entire film and there is no variation in quality between individual film-formed products.

更に本発明のグロー放電分解装置によれば、グロー放電
用電極板から吹き出すガス量を大きくすることができる
ので高速成膜ができ、これによって製造効率を高めて製
造コストの低減化を図ることができる。
Furthermore, according to the glow discharge decomposition apparatus of the present invention, it is possible to increase the amount of gas blown out from the glow discharge electrode plate, so high-speed film formation is possible, thereby increasing production efficiency and reducing production costs. can.

尚、本発明は上記実施例に限定されるものではなく、本
発明の要旨を逸脱しない範囲においてガス噴出手段など
の変更、改良等は何等差し支えない。
It should be noted that the present invention is not limited to the above-mentioned embodiments, and any changes or improvements to the gas ejection means etc. may be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のグロー放電分解装置の平面を示す概略
図、第2図は成膜用円筒形状基板の周囲のガス流通状態
を示す説明図、第3図はグロー放電用電極板からの成膜
用ガスの吹き出し方向を示す説明図、第4図は従来のグ
ロー放電分解装置の正面を示す概略図、第5図は第4図
に示したグロー放電分解装置の平面を示す概略図である
。 1・・・反応容器 2・・・グロー放電用電極板 3・・・基板支持体 7・・・ガス導入口 9・・・ガス噴出口 10・・ドラム状基板 特許出願人 (663)京セラ株式会社代表者 安城 
欽寿
Figure 1 is a schematic plan view of the glow discharge decomposition apparatus of the present invention, Figure 2 is an explanatory diagram showing the state of gas flow around the cylindrical substrate for film formation, and Figure 3 is a diagram showing the state of gas flow around the cylindrical substrate for film formation. An explanatory diagram showing the blowing direction of the film-forming gas, FIG. 4 is a schematic diagram showing the front of a conventional glow discharge decomposition device, and FIG. 5 is a schematic diagram showing the plane of the glow discharge decomposition device shown in FIG. 4. be. 1...Reaction vessel 2...Glow discharge electrode plate 3...Substrate support 7...Gas inlet 9...Gas outlet 10...Drum-shaped substrate patent applicant (663) Kyocera Corporation Company representative Anjo
Kinju

Claims (1)

【特許請求の範囲】[Claims] 成膜用ガスが導入される反応室内部に円筒形状の電極板
を設置し、該電極板の内部に円筒形状の成膜用基板を設
置し、これら電極板と基板のそれぞれの中心軸が実質上
一致しており、成膜用ガスをグロー放電分解させて基板
上に成膜するグロー放電分解装置において、前記成膜用
ガスが基板面に対して非垂直方向へ吹き出されるような
ガス噴出手段を前記電極板に形成し、成膜中該ガスが基
板を軸にして螺旋回転しながらグロー放電分解されるこ
とを特徴とするグロー放電分解装置。
A cylindrical electrode plate is installed inside the reaction chamber into which the film-forming gas is introduced, and a cylindrical film-forming substrate is installed inside the electrode plate. In a glow discharge decomposition apparatus that decomposes a film-forming gas by glow discharge to form a film on a substrate, a gas ejection in which the film-forming gas is blown out in a direction non-perpendicular to the substrate surface. A glow discharge decomposition device characterized in that means is formed on the electrode plate, and the gas is decomposed by glow discharge while spirally rotating around the substrate during film formation.
JP62046578A 1987-02-27 1987-02-27 Glow discharge decomposition device Pending JPS63213675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62046578A JPS63213675A (en) 1987-02-27 1987-02-27 Glow discharge decomposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62046578A JPS63213675A (en) 1987-02-27 1987-02-27 Glow discharge decomposition device

Publications (1)

Publication Number Publication Date
JPS63213675A true JPS63213675A (en) 1988-09-06

Family

ID=12751184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62046578A Pending JPS63213675A (en) 1987-02-27 1987-02-27 Glow discharge decomposition device

Country Status (1)

Country Link
JP (1) JPS63213675A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288011A (en) * 1987-05-20 1988-11-25 Hitachi Ltd Vapor crowth method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288011A (en) * 1987-05-20 1988-11-25 Hitachi Ltd Vapor crowth method

Similar Documents

Publication Publication Date Title
JPS6314875A (en) Functional deposited film forming device by plasma chemical vapor deposition method
JPH0459390B2 (en)
US4404076A (en) Film forming process utilizing discharge
JPS63213675A (en) Glow discharge decomposition device
US5582648A (en) Apparatus for preparing a functional deposited film by microwave plasma chemical vapor deposition
US5338580A (en) Method of preparation of functional deposited film by microwave plasma chemical vapor deposition
US6158382A (en) Method for forming a deposited film by plasma chemical vapor deposition and apparatus for forming a deposited film by plasma chemical vapor deposition
JPS6010618A (en) Plasma cvd apparatus
JPS5938375A (en) Plasma cvd device
JP2553330B2 (en) Functional deposition film forming apparatus by plasma CVD
JP3034139B2 (en) Amorphous silicon photoreceptor and thin film forming apparatus
JPH0565590B2 (en)
JPS58217672A (en) Capacity coupling type glow discharge decomposition apparatus
JP3848018B2 (en) Functional deposition film manufacturing method and functional deposition film manufacturing apparatus
JP2620782B2 (en) Deposition film forming apparatus by plasma CVD method
JPS5938377A (en) Plasma cvd device
US20040261716A1 (en) Deposition film forming apparatus and deposition film forming method
JPS58171564A (en) Capacity coupling type decomposing device using glow discharge
JPS637373A (en) Deposited film forming device by plasma cvd method
KR20050077155A (en) Plasma enhanced semiconductor deposition apparatus
JP2620939B2 (en) Glow discharge decomposition equipment
JPS59170259A (en) Capacity coupling type decomposing device by glow discharge
JPH0344475A (en) Device for producing amorphous silicon photosensitive body
JPH0344477A (en) Device for producing amorphous silicon photosensitive body
JPS62146262A (en) Apparatus for producing electrophotographic sensitive body