JPS63213213A - Manufacture of internal diffusion type flat-type multicore superconductive wire - Google Patents

Manufacture of internal diffusion type flat-type multicore superconductive wire

Info

Publication number
JPS63213213A
JPS63213213A JP62044629A JP4462987A JPS63213213A JP S63213213 A JPS63213213 A JP S63213213A JP 62044629 A JP62044629 A JP 62044629A JP 4462987 A JP4462987 A JP 4462987A JP S63213213 A JPS63213213 A JP S63213213A
Authority
JP
Japan
Prior art keywords
alloy
heat treatment
type
diffusion barrier
rectangular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62044629A
Other languages
Japanese (ja)
Inventor
Hidemoto Suzuki
鈴木 英元
Masamitsu Ichihara
市原 政光
Yoshimasa Kamisada
神定 良昌
Nobuo Aoki
伸夫 青木
Tomoyuki Kumano
智幸 熊野
Ichiro Noguchi
一朗 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP62044629A priority Critical patent/JPS63213213A/en
Publication of JPS63213213A publication Critical patent/JPS63213213A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To prevent breakage of a thin diffusion barrier for preventing contamination of a stabilizing material to obtain a superconductive wire having a good characteristic by performing fixed heat treatment before molding a flat-type superconductive wire of internal diffusion type multicore structure by a rolling process. CONSTITUTION:A number of Nb or Nb alloy wires whose outsides are coated with Cu or a Cu alloy are arranged inside a Cu composite tube, in whose inside a diffusion barrier is arranged, centering round an Sn or Sn alloy rod coated with Cu or a Cu alloy. Then, a surface reducing process is applied thereon followed by heat treatment at 300-550 deg.C for 20-100 h, further being molded into a flat-type shape by a rolling process for being subjected to heat treatment to generate Nb3Sn. Breakage of the diffusion barrier can be prevented by diffusing Sn through heat treatment before the rolling process and making a matrix into the Cu-Sn alloy to uniformalize its hardness.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は内部拡散法による平角多心超電導線の製造方法
に係り、特に平角加工時の拡散障壁の破断を防止する方
法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention relates to a method for manufacturing a rectangular multicore superconducting wire by an internal diffusion method, and in particular a method for preventing rupture of a diffusion barrier during rectangular processing. Regarding.

(従来の技術) Nb3Sn超電導線の製造方法の一種である内部拡散法
は、その製法が簡単な上、Sniを増加することにより
臨界電流密度(Jc)を容易に向上させることができる
等の利点を有しており、この内部拡散法による多心構造
のNb3Sn超電導線の製造方法として以下の方法が知
られている。
(Prior art) The internal diffusion method, which is a type of manufacturing method for Nb3Sn superconducting wire, has advantages such as a simple manufacturing method and the ability to easily improve critical current density (Jc) by increasing Sni. The following method is known as a method for producing a multicore Nb3Sn superconducting wire using this internal diffusion method.

すなわち、この方法は3nロツドの外周にCLI被IN
b線の多数本を配置し、これを拡散障壁を内側に設けた
Cu管内に収容して減面加工を施した後、最終断面形状
の状態で熱処理を施すものであり、この熱処理は通常3
nの拡散によるQu−3n合金生成の熱処理とNb−3
nの反応によるNb3Sn生成の熱処理の2段階にわた
って行われている。
In other words, this method requires CLI to be installed on the outer periphery of the 3n rod.
A large number of B-wires are arranged, placed inside a Cu tube with a diffusion barrier inside, subjected to area reduction processing, and then heat-treated in the final cross-sectional shape.
Heat treatment for Qu-3n alloy formation by diffusion of n and Nb-3
The heat treatment for producing Nb3Sn through the reaction of n is carried out in two stages.

上記の最終断面形状が平角形状の場合には、その成形は
通常圧延加工により施されるが、アスペクト比(平角断
面の厚さに対する幅の比)が大きくなると、すなわち圧
下率が大きくなると圧下の中央部近傍で薄い拡散障壁が
破断し、続く2段階の熱処理によって最外層の安定化銅
がSnで汚染され超電導線の安全性を低下させるという
難点を有する。
When the above-mentioned final cross-sectional shape is a rectangular shape, it is usually formed by rolling, but as the aspect ratio (the ratio of the width to the thickness of the rectangular cross section) increases, that is, the rolling reduction ratio increases. The problem is that the thin diffusion barrier breaks near the center, and the subsequent two-step heat treatment contaminates the stabilizing copper in the outermost layer with Sn, reducing the safety of the superconducting wire.

(発明が解決しようとする問題点) 本発明は上記の難点を解決するためになされ゛たもので
、多心構造の内部拡散型超電導線を圧延加工により平角
形状に成形する際の拡散障壁の破断を防止し得る製造方
法を提供することをその目的とする。
(Problems to be Solved by the Invention) The present invention has been made in order to solve the above-mentioned difficulties. The purpose is to provide a manufacturing method that can prevent breakage.

[発明の構成] (問題点を解決するための手段) 、本発明の内部拡散型平角多心超電導線の製造方法は、
内側に拡散障壁を配置したCu複合管の内部に、Cuま
たはCu合金で被覆されたsnまたはSn合金ロッドを
中心として、その外側に ・C1またはCu合金で被覆
されたNbまたはNb合金線の多数本を配置し、これに
減面加工を施した後、300〜550℃で20〜100
時間の熱処理を施し、次いで圧延加工により平角形状に
成形した後、NbzSn生成の熱処理を施すことを特徴
とする。
[Structure of the Invention] (Means for Solving the Problems) The method for manufacturing an internally diffused rectangular multicore superconducting wire of the present invention includes the following steps:
Inside a Cu composite tube with a diffusion barrier placed inside, there is a Sn or Sn alloy rod coated with Cu or Cu alloy as the center, and on the outside - a large number of Nb or Nb alloy wires coated with C1 or Cu alloy. After arranging the books and subjecting them to surface reduction processing,
It is characterized in that it is subjected to heat treatment for a period of time, then formed into a rectangular shape by rolling, and then subjected to heat treatment for NbzSn production.

本発明の方法において、圧延加工前の熱処理を上記のよ
うに限定したのは以下の理由による。すなわち、熱処理
温度が300℃未満であると2以上のアスペクト比で圧
延加工を施すことができず、一方550℃を越えるとN
b 3Snが生成するため特性が劣化し、さらに上記の
温度範囲内で100時間を越える熱処理を施してもアス
ペクト比を向上させることはできないためである。
In the method of the present invention, the heat treatment before rolling is limited as described above for the following reason. In other words, if the heat treatment temperature is less than 300°C, it will not be possible to perform rolling with an aspect ratio of 2 or more, while if it exceeds 550°C, N
This is because the characteristics deteriorate due to the formation of b3Sn, and furthermore, even if heat treatment is performed for more than 100 hours within the above temperature range, the aspect ratio cannot be improved.

上記の熱処理のより好ましい条件は500〜550’C
x90〜96時間であり、この場合には3以上のアスペ
クト比で圧延加工が可能になる。これに対して300℃
X24時間の場合に可能な最大アスペクト比は2である
More preferable conditions for the above heat treatment are 500 to 550'C.
x90 to 96 hours, and in this case, rolling can be performed with an aspect ratio of 3 or more. On the other hand, 300℃
The maximum possible aspect ratio for x24 hours is 2.

(作用) 拡散障壁として用いられるNbやTaの薄肉管が圧延加
工時に破断する理由として、中心部のSn  (あるい
は3n合金)が他の構成材料であるCu 、Nb 、T
aに比較して柔かいため、圧延加工時に圧下の中央部か
ら両側に逃げ、拡散障壁に過大な張力が働くことにより
破断するものと考えられる。この拡散障壁の破断は、圧
延加工前の熱処理によりSnを拡散させマトリックスを
CU −sn合金化して硬さを均一化することにより防
止することができる。
(Function) The reason why thin-walled Nb or Ta tubes used as diffusion barriers break during rolling is that the Sn (or 3n alloy) in the center is damaged by other constituent materials such as Cu, Nb, and T.
Since it is soft compared to a, it is thought that it escapes from the center of the rolling process to both sides during rolling, and breaks due to excessive tension acting on the diffusion barrier. This breakage of the diffusion barrier can be prevented by heat treatment before rolling to diffuse Sn and make the matrix a CU-sn alloy to make the hardness uniform.

(実施例) 断面六角形のCu被ISnロッドの外周に断面六角形の
CuwL覆Nb線の4218本を配置し、さらにこの外
周にTa管およびCU管を順に配置した外径58111
mφの複合体に静水圧押出加工および伸線加工を施して
外径2.8mmφの線材を製造した。
(Example) 4218 CuwL-covered Nb wires with a hexagonal cross section are arranged on the outer periphery of a Cu-covered ISn rod with a hexagonal cross section, and further a Ta tube and a CU tube are arranged in order on the outer periphery.The outer diameter is 58111.
A wire rod with an outer diameter of 2.8 mmφ was produced by subjecting the composite body of mφ to hydrostatic extrusion and wire drawing.

この線材中のSn′線の外径は1.26mmφ、Ti管
の外径は2.3mmφ、その厚さは0.1mmであった
。これにアスペクト比1.5で圧延加工を施したところ
、圧下の中央部でTa管の破断を生じた。一方この線材
を300℃で24時間の熱処理を施した後、ア・スペク
ト比2.0で圧延加工を施した場合にはTa管の破断は
認められなかったが、アスペクト比2.5の場合にはT
a管の破断を生じた。
The Sn' wire in this wire had an outer diameter of 1.26 mm, the Ti tube had an outer diameter of 2.3 mm, and a thickness of 0.1 mm. When this was rolled with an aspect ratio of 1.5, the Ta tube broke at the center of the rolling process. On the other hand, when this wire was heat treated at 300°C for 24 hours and then rolled at an aspect ratio of 2.0, no breakage of the Ta tube was observed, but when the wire rod was rolled at an aspect ratio of 2.5, no breakage of the Ta tube was observed. T for
A-tube rupture occurred.

ざらに上記と同一の線材(外径2.8mmφ)に550
℃で96時間の熱処理を施した後、アスペクト比4.0
で圧延加工を施したところ7−a管の破断は認められず
良好な平角形状を得ることができた。
Roughly the same wire rod as above (outer diameter 2.8mmφ) 550
After heat treatment at ℃ for 96 hours, the aspect ratio was 4.0.
When rolling was carried out, no breakage of the 7-a tube was observed and a good rectangular shape could be obtained.

このときのTa管内にはCD−32%Snのブロンズが
均一に形成されていることが確認された。
At this time, it was confirmed that CD-32% Sn bronze was uniformly formed inside the Ta tube.

[発明の効果] 以上述べたように本発明の方法によれば、内部拡散型の
多心構造の平角超電導線を圧延加工により成形する前に
所定の熱処理を施すことにより、薄肉の拡散障壁の破断
を防止することができ、これにより安定化材の汚染を防
ぐことができるため、良好な特性を有する超電導線を製
造することができる。
[Effects of the Invention] As described above, according to the method of the present invention, by subjecting a rectangular superconducting wire of an internal diffusion type multi-core structure to a predetermined heat treatment before forming it by rolling, a thin diffusion barrier can be formed. Since breakage can be prevented and thereby the stabilizing material can be prevented from being contaminated, a superconducting wire with good properties can be manufactured.

出願人      昭和電線電纜株式会社代理人 弁理
士  須′山 佐 − (ばか1名)
Applicant Showa Cable and Wire Co., Ltd. Representative Patent Attorney Sasa Su'yama - (1 idiot)

Claims (3)

【特許請求の範囲】[Claims] (1)内側に拡散障壁を配置したCu複合管の内部に、
CuまたはCu合金で被覆されたSnまたはSn合金ロ
ッドを中心として、その外側にCuまたはCu合金で被
覆されたNbまたはNb合金線の多数本を配置し、これ
に減面加工を施した後、300〜550℃で20〜10
0時間の熱処理を施し、次いで圧延加工により平角形状
に成形した後、Nb_3Sn生成の熱処理を施すことを
特徴とする内部拡散型平角多心超電導線の製造方法。
(1) Inside the Cu composite tube with a diffusion barrier placed inside,
Centering around a Sn or Sn alloy rod coated with Cu or Cu alloy, a large number of Nb or Nb alloy wires coated with Cu or Cu alloy are arranged on the outside thereof, and after performing area reduction processing on this, 20-10 at 300-550℃
1. A method for manufacturing an internally diffused rectangular multicore superconducting wire, which comprises performing a heat treatment for 0 hours, then forming the wire into a rectangular shape by rolling, and then performing a heat treatment to generate Nb_3Sn.
(2)圧延加工による平角形状の線材のアスペクト比は
3以上である特許請求の範囲第1項記載の内部拡散型平
角多心超電導線の製造方法。
(2) The method for manufacturing an internally diffused rectangular multicore superconducting wire according to claim 1, wherein the aspect ratio of the rectangular wire rod formed by rolling is 3 or more.
(3)圧延加工前の熱処理は500〜550℃で90〜
96時間である特許請求の範囲第2項記載の内部拡散型
平角多心超電導線の製造方法。
(3) Heat treatment before rolling at 500-550°C and 90-90°C
The method for manufacturing an internally diffused rectangular multi-core superconducting wire according to claim 2, wherein the manufacturing time is 96 hours.
JP62044629A 1987-02-27 1987-02-27 Manufacture of internal diffusion type flat-type multicore superconductive wire Pending JPS63213213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62044629A JPS63213213A (en) 1987-02-27 1987-02-27 Manufacture of internal diffusion type flat-type multicore superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62044629A JPS63213213A (en) 1987-02-27 1987-02-27 Manufacture of internal diffusion type flat-type multicore superconductive wire

Publications (1)

Publication Number Publication Date
JPS63213213A true JPS63213213A (en) 1988-09-06

Family

ID=12696713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62044629A Pending JPS63213213A (en) 1987-02-27 1987-02-27 Manufacture of internal diffusion type flat-type multicore superconductive wire

Country Status (1)

Country Link
JP (1) JPS63213213A (en)

Similar Documents

Publication Publication Date Title
JP2007311126A (en) Compound superconductor, and its manufacturing method
JPS63213213A (en) Manufacture of internal diffusion type flat-type multicore superconductive wire
JP2683768B2 (en) Nb (bottom 3) Method for manufacturing Sn multi-core superconducting wire
JPS607014A (en) Method of producing nb3sn superconductive wire
JPS62240751A (en) Manufacture of nb3sn super conducting wire by internal diffusion method
JPH01304616A (en) Manufacture of nb3 sn multi-superconductor wire
JPH04277409A (en) Compound superconducting wire and manufacture thereof
JPS6358715A (en) Manufacture of nb3sn multi-core superconductor
JPS63271818A (en) Manufacture of nb3sn superconductive wire by external diffusion method
JPH01304617A (en) Manufacture of nb3 sn multi-superconductor wire
JPS61115612A (en) Production of nb-ti multicore superconductive wire
JPS58189909A (en) Method of producing nb3sn superconductor
JPH03283320A (en) Manufacture of nb3sn multicore superconductor
JPS63213212A (en) Manufacture of internal diffusion type nb3 sn superconductive wire
JPH08167336A (en) Manufacture of nb3sn superconducting wire
JPS61115613A (en) Production of nb-ti multicore superconductive wire
JPS61227310A (en) Manufacture of nb3 sn by internal diffusion
JPH01312803A (en) Manufacture of nb3sn magnet
JPS61227155A (en) Manufacture of superconductive nb3sn wire
JPH0240809A (en) Manufacture of nb3sn multifiber superconducting wire
JPH0381915A (en) Manufacture of composite superconductive material
JPH0676662A (en) Manufacture of nb3sn superconducting wire
JPH04132115A (en) Manufacture of nb3x multi-core superconducting wire
JPS6358714A (en) Manufacture of nb3sn multi-core superconductor
JPH08339728A (en) Manufacture of nb3sn system superconductive wire