JPH08339728A - Manufacture of nb3sn system superconductive wire - Google Patents

Manufacture of nb3sn system superconductive wire

Info

Publication number
JPH08339728A
JPH08339728A JP7146587A JP14658795A JPH08339728A JP H08339728 A JPH08339728 A JP H08339728A JP 7146587 A JP7146587 A JP 7146587A JP 14658795 A JP14658795 A JP 14658795A JP H08339728 A JPH08339728 A JP H08339728A
Authority
JP
Japan
Prior art keywords
barrier layer
diffusion barrier
wire
alloy
billet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7146587A
Other languages
Japanese (ja)
Other versions
JP3353217B2 (en
Inventor
Isakazu Matsukura
功和 枩倉
Yasuhiko Inoue
康彦 井上
Takayuki Miyatake
孝之 宮武
Hidefumi Kurahashi
秀文 倉橋
Takayoshi Miyazaki
隆好 宮崎
Masamichi Chiba
政道 千葉
Masao Shimada
雅生 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP14658795A priority Critical patent/JP3353217B2/en
Publication of JPH08339728A publication Critical patent/JPH08339728A/en
Application granted granted Critical
Publication of JP3353217B2 publication Critical patent/JP3353217B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE: To manufacture an Nb3 Sn system superconductive wire without deteriorating an A.C. loss characteristic, by using material Nb for a diffusion barrier layer. CONSTITUTION: An Sn rod is arranged on the middle of a wire, a Cu matrix embedded with an Nb filament is formed on the outer side of the Sn rod, a sheet is winded on the outer side of the matrix to form a diffusion barrier layer 6a, a diffusion barrier layer 6b composed of an Nb sheet is formed on the periphery of the barrier layer 6b, and a stabilization material 7 is arranged on the utmost outer layer. These billets are diameter-reducingly worked by hydrostatic pressure extrusion, and are performed die wire drawing to manufacture a wire. Consequently, the A.C. loss of a superconductive wire can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超電導発電機や限流器等
の交流機器に好適なNb3 Sn系超電導線材の製造方法
に関し、詳細には安定化材とバリア層を有するNb3
n系超電導線材の交流損失特性を劣化させることのない
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an Nb 3 Sn-based superconducting wire suitable for an AC device such as a superconducting generator or a current limiter, and more specifically to a Nb 3 S having a stabilizer and a barrier layer.
The present invention relates to a manufacturing method that does not deteriorate the AC loss characteristics of an n-based superconducting wire.

【0002】[0002]

【従来の技術】Nb3 Sn系超電導線材は、Nbまたは
Nb合金と、CuまたはCu合金の複合材を伸線し、熱
処理を施してNbとSnを反応させNb3 Snを生成す
ることにより製造されているが、その出発材料の違いか
ら、ブロンズ法,チューブ法,粉末法,インサイチュー
法などに分類されている。以下に、上記ブロンズ法を代
表的にとりあげ、Nb3 Sn系超電導線材の一般的な製
造方法を図面に基づいて詳細に説明する。
2. Description of the Related Art Nb 3 Sn based superconducting wire is manufactured by drawing a composite material of Nb or Nb alloy and Cu or Cu alloy and subjecting it to heat treatment to react Nb and Sn to generate Nb 3 Sn. However, they are classified into a bronze method, a tube method, a powder method, an in-situ method, etc., depending on the difference in the starting materials. Hereinafter, the above-mentioned bronze method will be described as a typical example, and a general method for producing an Nb 3 Sn-based superconducting wire will be described in detail with reference to the drawings.

【0003】まず単芯型超電導線材の場合から述べる
と、図1に示す様に、Cu−Sn合金やCu−Sn−T
i合金等のCu−Sn基合金製のビレットケース1(線
状母材)にNb線2を埋設した後、端部を電子ビーム溶
接して単芯型複合ビレット3を組み立てる。該単芯型複
合ビレット3を熱間静水圧押出しに付して一体化と減面
加工を同時に行ない、さらに冷間加工によって所定の寸
法まで伸線加工する。このとき、冷間伸線加工により、
Cu−Sn合金は著しく加工硬化するため、加工率30
〜60%程度の加工毎に加工硬化ひずみを除去するため
の中間焼鈍が必要となる。その後熱処理(600〜70
0℃)によって、Cu−Sn合金製線状母材1とNb線
2の界面にNb3 Snを生成させてNb3 Sn超電導線
材とする。
First, the case of a single core type superconducting wire will be described. As shown in FIG. 1, Cu-Sn alloy and Cu-Sn-T are used.
After the Nb wire 2 is embedded in a billet case 1 (linear base material) made of a Cu-Sn based alloy such as an i alloy, the end portion is electron beam welded to assemble the single core type composite billet 3. The single core type composite billet 3 is subjected to hot isostatic pressing to perform integration and surface reduction at the same time, and further cold drawing is performed to wire drawing to a predetermined size. At this time, by cold drawing,
Since the Cu-Sn alloy is significantly work hardened, the work rate is 30
Intermediate annealing for removing work-hardening strain is required for each processing of about 60%. Then heat treatment (600-70
(0 ° C.), Nb 3 Sn is generated at the interface between the Cu—Sn alloy linear base material 1 and the Nb wire 2 to obtain an Nb 3 Sn superconducting wire.

【0004】次に多芯型超電導線材の場合は、前記した
図1或は図2に示す様に1本または複数本のNb線2を
Cu−Sn基合金のビレットケース1a製(線状母材)
に埋設してこれを断面減少加工に付して断面六角形の1
次多芯ビレット8を構成し、これを複数本円筒状に束ね
て線材群10(図3参照)とし、図3に示す様に、Cu
やCu−Sn基合金からなる円筒状の外層ケース9(最
外層)に挿入し、単芯型の場合と同様の方法で伸線し
て、最終形状において3000〜30000本のNb線
2が含まれた2次多芯ビレット11(多芯型複合ビレッ
ト)を構成する。尚2次多芯ビレット11では、前記図
3に示した様に、その中央部に線・棒状の無酸素銅等が
安定化材7として組み込まれており、前記1次多芯ビレ
ット8の線材群10と安定化材7の間には、Cu−Sn
基合金からなる筒状の内部層5、およびNb3 Sn生成
のための拡散熱処理時にCu−Sn合金からのSnの拡
散を防止する拡散バリア層として、円筒状のNb層また
はTa層(以下、拡散バリア層という)6が形成されて
いる。従って該拡散バリア層6を設けることにより前記
安定化材7がSnによって汚染されることを防ぐことが
できる。最後に熱処理を施すことにより、Cu−Sn基
合金製線状母材1aとNb線2の界面にNb3Snを生
成させて多芯型Nb3 Sn超電導線材とする。
Next, in the case of a multifilamentary superconducting wire, one or a plurality of Nb wires 2 are made of a billet case 1a made of a Cu--Sn base alloy as shown in FIG. 1 or FIG. Material)
It is embedded in and is subjected to cross-section reduction processing and has a hexagonal cross section.
Next, a multi-core billet 8 is formed, and a plurality of cylindrical billets 8 are bundled in a cylindrical shape to form a wire rod group 10 (see FIG. 3). As shown in FIG.
Inserted in a cylindrical outer layer case 9 (outermost layer) made of Cu-Sn-based alloy, drawn in the same manner as in the case of the single core type, and the final shape includes 3000 to 30000 Nb wires 2. To form a secondary multi-core billet 11 (multi-core type composite billet). In the secondary multi-core billet 11, as shown in FIG. 3, a wire / rod-shaped oxygen-free copper or the like is incorporated as a stabilizing material 7 in the central portion thereof, and the wire of the primary multi-core billet 8 is formed. Cu-Sn is provided between the group 10 and the stabilizing material 7.
A cylindrical inner layer 5 made of a base alloy, and a cylindrical Nb layer or Ta layer (hereinafter, referred to as a diffusion barrier layer for preventing diffusion of Sn from a Cu—Sn alloy during diffusion heat treatment for producing Nb 3 Sn (hereinafter, A diffusion barrier layer) 6 is formed. Therefore, by providing the diffusion barrier layer 6, the stabilizing material 7 can be prevented from being contaminated with Sn. Finally by heat treatment to, a Cu-Sn based alloy linear at the interface of the base material 1a and the Nb line 2 to generate Nb 3 Sn multi-core Nb 3 Sn superconducting wire.

【0005】尚2次多芯ビレットとしては、上記の如
く、中心側に安定化材や拡散バリア層を設ける代わり
に、1次多芯ビレットをCu−Sn基合金等にスタック
したその外周側に拡散バリア層、次いで安定化材を配置
したものもある。
As the secondary multi-core billet, as described above, instead of providing the stabilizing material or the diffusion barrier layer on the center side, the primary multi-core billet is stacked on the Cu-Sn base alloy or the like on the outer peripheral side. Some have a diffusion barrier layer followed by a stabilizing material.

【0006】この様にいずれの製造方法においても2次
多芯ビレットには、超電導線材の熱的及び電気的な安定
性を確保することを目的として、導電性に優れた安定化
材が設けられている。但し、該安定化材にSnが拡散し
て汚染されると、電気抵抗が大きくなると共に、熱伝導
率が小さくなり安定化材としての機能を果たさなくなる
ことから、安定化材とSnを含む部分との間にSnの拡
散を止める拡散バリア層を配置し、安定化材へのSnの
侵入を防いでいる。
As described above, in any of the manufacturing methods, the secondary multi-core billet is provided with a stabilizer having excellent conductivity for the purpose of ensuring the thermal and electrical stability of the superconducting wire. ing. However, when Sn diffuses into the stabilizing material and is contaminated, the electrical resistance increases, the thermal conductivity decreases, and the function as the stabilizing material cannot be achieved. A diffusion barrier layer for stopping the diffusion of Sn is arranged between the and, to prevent Sn from penetrating into the stabilizing material.

【0007】上記拡散バリア層の材料としては、比較的
に加工が容易であり、Cuと合金を作りにくく、且つS
nを透過させにくいという理由から、NbまたはTaを
用いることが一般的であるが、いずれも以下の様な問題
点を有している。
As a material of the diffusion barrier layer, it is relatively easy to process, it is difficult to form an alloy with Cu, and S
It is common to use Nb or Ta because it is difficult for n to pass through, but both have the following problems.

【0008】まず、拡散バリア層の材料としてNbを用
いる場合には、反応熱処理により拡散するSnとバリア
材のNbが反応し、拡散バリア層自体がNb3 Sn超電
導体になる。その結果、円筒状の拡散バリア層の外径が
超電導フィラメントの直径のようになり、超電導線材内
部に太い超電導フィラメントが存在するのと同じ作用を
発揮する。
First, when Nb is used as the material of the diffusion barrier layer, Sn diffused by the reaction heat treatment reacts with Nb of the barrier material, and the diffusion barrier layer itself becomes an Nb 3 Sn superconductor. As a result, the outer diameter of the cylindrical diffusion barrier layer becomes like the diameter of the superconducting filament, and the same effect as that of the thick superconducting filament existing inside the superconducting wire is exhibited.

【0009】超電導発電機や限流器等の交流機器に用い
られる超電導線材には、交流電流を通電した際に線材に
発生する交流損失を極力小さくして、交流機器の効率等
に悪影響を及ぼすことを防止する観点から、可及的に細
く形成された極細の超電導フィラメントを多数有する多
芯型の超電導線材が用いられている。しかしながら、超
電導フィラメントを極細多芯化しても円筒状の拡散バリ
ア層が超電導体になると交流損失が大きくなり、交流用
の超電導線材として機能しなくなるという問題点を有し
ていた。
In a superconducting wire used in an AC device such as a superconducting generator or a fault current limiter, AC loss generated in the wire when an AC current is applied is minimized to adversely affect the efficiency of the AC device. From the viewpoint of preventing this, a multicore superconducting wire having a large number of ultrafine superconducting filaments formed as thin as possible is used. However, even if the superconducting filament is made extremely thin and multifilamentary, if the cylindrical diffusion barrier layer becomes a superconductor, AC loss becomes large and there is a problem that it does not function as a superconducting wire for AC.

【0010】一方、Taを拡散バリア層の材料として用
いる場合には、Taは加工性が悪いことから、伸線加工
の際に断線が生じることがあり、大きな減面率での伸線
加工ができないので、伸線・焼鈍を繰り返す回数が多く
なる。また、TaはNbよりも高価な材料なので、Ta
を拡散バリア層に用いると製造コストが非常に高くなっ
てしまう。
On the other hand, when Ta is used as the material of the diffusion barrier layer, since Ta has poor workability, wire breakage may occur during wire drawing, and wire drawing with a large reduction in area is possible. Since this is not possible, the number of times wire drawing / annealing is repeated increases. Also, Ta is a more expensive material than Nb, so Ta
If is used for the diffusion barrier layer, the manufacturing cost becomes very high.

【0011】[0011]

【発明が解決しようとする課題】本発明は上記事情に着
目してなされたものであって、拡散バリア層に用いる材
料として、加工性に乏しく且つコスト的に不利なTaで
はなく、Nbを用いることを前提として、交流損失特性
を劣化させることなくNb3 Sn系超電導線材を製造す
る方法を提供しようとするものである。
The present invention has been made in view of the above circumstances, and Nb is used as a material for the diffusion barrier layer instead of Ta, which is poor in workability and disadvantageous in cost. On the premise of this, an object of the present invention is to provide a method for producing an Nb 3 Sn-based superconducting wire without deteriorating the AC loss characteristics.

【0012】[0012]

【課題を解決するための手段】上記目的を達成した本発
明の製造方法とは、円筒状の拡散バリア層を安定化材の
外周側または内周側に配置されたNb3 Sn系超電導線
材の製造方法であって、上記拡散バリア層に、Pを0.
01〜1wt%含有するNb合金を用いることを要旨と
するものである。また上記Nb合金として、P以外に、
Ta,Zr,Ti,Hfよりなる群から選ばれる1種以
上の元素を20wt%以下(但し、0%は含まない)含
有するNb合金を用いてもよい。
The manufacturing method of the present invention that achieves the above object is to provide a Nb 3 Sn-based superconducting wire in which a cylindrical diffusion barrier layer is arranged on the outer peripheral side or the inner peripheral side of a stabilizing material. A method of manufacturing, wherein P is added to the diffusion barrier layer to 0.
The gist is to use an Nb alloy containing 01 to 1 wt%. As the Nb alloy, other than P,
An Nb alloy containing 20 wt% or less (however, 0% is not included) of one or more elements selected from the group consisting of Ta, Zr, Ti, and Hf may be used.

【0013】さらに前記拡散バリア層を、同心円状に材
質の異なる2層から形成し、前記安定化材と接する一方
側の拡散バリア層にはNbを用い、他方側の拡散バリア
層にはPを0.01〜1wt%含有するCu合金を用い
る方法を採用してもよい。尚、上記Cu合金として、P
以外に、Sn,Ge,Mn,Al,Zn,Ti,Niよ
りなる群から選ばれる1種以上の元素を15wt%以下
(但し、0%は含まない)含有するCu合金を用いても
よい。
Further, the diffusion barrier layer is concentrically formed from two layers made of different materials, Nb is used for the diffusion barrier layer on one side in contact with the stabilizing material, and P is used for the diffusion barrier layer on the other side. A method using a Cu alloy containing 0.01 to 1 wt% may be adopted. As the Cu alloy, P
Alternatively, a Cu alloy containing 15 wt% or less (not including 0%) of one or more elements selected from the group consisting of Sn, Ge, Mn, Al, Zn, Ti, and Ni may be used.

【0014】[0014]

【作用】超電導フィラメントの直径を細くすればするほ
ど超電導線材の交流損失は小さくなるが、従来は拡散バ
リア層の表面にNb3 Snが生成していたため、円筒状
の拡散バリア層が電磁気的に1本の太いフィラメントの
ように振る舞い、超電導フィラメントを細くした効果が
なくなり、交流損失を小さくできなかった。これに対し
て、本発明の製造方法によれば拡散バリア層にNb3
nが生成することはない。従って超電導線材の交流損失
は、超電導フィラメントを細くすることによって小さく
できるので、交流損失の大幅な低減が可能である。
The smaller the diameter of the superconducting filament, the smaller the AC loss of the superconducting wire. However, in the past, Nb 3 Sn was generated on the surface of the diffusion barrier layer. It behaved like one thick filament, the effect of thinning the superconducting filament disappeared, and the AC loss could not be reduced. On the other hand, according to the manufacturing method of the present invention, Nb 3 S is formed in the diffusion barrier layer.
n is never generated. Therefore, the AC loss of the superconducting wire can be reduced by thinning the superconducting filament, so that the AC loss can be greatly reduced.

【0015】本発明者らは、Nbを主体とする拡散バリ
ア層にPを添加することにより、反応熱処理の際にSn
が上記拡散バリア層に侵入してもNb3 Snが生成され
ないことを見出し、本発明に想到した。この様なNb3
Snの生成抑制効果を発揮する上で、Nb中のPの含有
量は0.01wt以上必要であり、0.05wt%以上
であると好ましく、0.1wt%以上であるとより好ま
しい。一方、Pの含有量は多過ぎても拡散バリア層の加
工性を確保できないので、1wt%以下とすることが必
要であり、0.7wt%以下が好ましく、0.4wt%
以下であるとより好ましい。
The inventors of the present invention added P to the diffusion barrier layer mainly composed of Nb so that Sn was added during the reaction heat treatment.
Has found that Nb 3 Sn is not generated even when it penetrates into the diffusion barrier layer, and conceived the present invention. Nb 3 like this
In order to exert the effect of suppressing the generation of Sn, the content of P in Nb needs to be 0.01 wt or more, preferably 0.05 wt% or more, and more preferably 0.1 wt% or more. On the other hand, if the content of P is too large, the workability of the diffusion barrier layer cannot be ensured, so it is necessary to set it to 1 wt% or less, preferably 0.7 wt% or less, and 0.4 wt%
The following is more preferable.

【0016】尚、本発明の製造方法においては、前記N
b合金として、P以外に、Ta,Zr,Ti,Hfより
なる群から選ばれる1種以上の元素を20wt%以下
(但し、0%は含まない)含有するNb合金を用いても
よい。これらの元素を含有させることにより、PのNb
3 Sn生成抑制効果を阻害することなくNb合金の加工
性を改善できる。
In the manufacturing method of the present invention, the N
As the b alloy, an Nb alloy containing 20 wt% or less (not including 0%) of one or more elements selected from the group consisting of Ta, Zr, Ti, and Hf may be used as the b alloy. By including these elements, Nb of P
3 The workability of the Nb alloy can be improved without inhibiting the effect of suppressing Sn generation.

【0017】さらに本発明の製造方法においては、前記
拡散バリア層を同心円状に2層に分け、上記安定化材と
接する一方側の拡散バリア層にはNbを用い、他方側の
拡散バリア層にはPを0.01〜1wt%含有するCu
合金を用いる方法も推奨される。この様に拡散バリア層
をNbとCu−P合金の2層構造とし、Cu−P合金か
らなる拡散バリア層を反応熱処理時にSnが侵入する側
に配設することによって、Nbからなる拡散バリア層が
Snと反応してNb3 Snが生成することを防止するこ
とが可能である。
Further, in the manufacturing method of the present invention, the diffusion barrier layer is concentrically divided into two layers, Nb is used for the diffusion barrier layer on one side in contact with the stabilizer, and Nb is used for the diffusion barrier layer on the other side. Is Cu containing 0.01 to 1 wt% of P
A method using an alloy is also recommended. Thus, the diffusion barrier layer has a two-layer structure of Nb and a Cu-P alloy, and the diffusion barrier layer made of the Cu-P alloy is arranged on the side where Sn enters during the reaction heat treatment. Can be prevented from reacting with Sn to produce Nb 3 Sn.

【0018】Cu−P合金中のPの含有量は0.01w
t%以上必要であり、0.05wt%以上が好ましく、
0.1wt%以上であればより好ましい。一方、Pの含
有量は多過ぎると拡散バリア層の加工性が劣化するの
で、1wt%以下とすることが必要であり、0.7wt
%以下が好ましく、0.5wt%以下であればより好ま
しい。
The content of P in the Cu-P alloy is 0.01 w.
t% or more is necessary, 0.05 wt% or more is preferable,
More preferably, it is 0.1 wt% or more. On the other hand, if the content of P is too large, the workability of the diffusion barrier layer deteriorates, so it is necessary to set it to 1 wt% or less, and 0.7 wt%
% Or less, and more preferably 0.5 wt% or less.

【0019】本発明はCu−P合金からなる拡散バリア
層の厚さにより限定されるものではないが、伸線加工後
(製品)で5μm以上であればSn拡散のバリア層とし
て機能することができる。
The present invention is not limited by the thickness of the diffusion barrier layer made of a Cu-P alloy, but if it is 5 μm or more after wire drawing (product), it can function as a Sn diffusion barrier layer. it can.

【0020】尚、前記Cu合金として、P以外に、S
n,Ge,Mn,Al,Zn,Ti,Niよりなる群か
ら選ばれる1種以上の元素を15wt%以下(但し、0
%は含まない)含有するCu合金を用いてもよい。これ
らの元素を含有させることによりCu合金の加工性を改
善することができる。
As the Cu alloy, in addition to P, S
15 wt% or less of one or more elements selected from the group consisting of n, Ge, Mn, Al, Zn, Ti and Ni (however, 0
% Cu is not included) may be used. By containing these elements, the workability of the Cu alloy can be improved.

【0021】また、ブロンズ法だけでなく、安定化材と
拡散バリア層を有する超電導線材の製造方法であれば、
チューブ法,粉末法,インサイチュー法,液体浸漬法,
内部拡散法,外部拡散法などあらゆる超電導線材の製造
方法に適用することができる。
Further, not only the bronze method, but also a method for producing a superconducting wire having a stabilizing material and a diffusion barrier layer,
Tube method, powder method, in situ method, liquid immersion method,
It can be applied to any manufacturing method of superconducting wire such as internal diffusion method and external diffusion method.

【0022】以下本発明を実施例によって更に詳細に説
明するが、下記実施例は本発明を限定する性質のもので
はなく、前・後記の主旨に徴して設計変更することはい
ずれも本発明の技術的範囲に含まれるものである。
The present invention will be described in more detail with reference to the following examples, but the following examples are not intended to limit the present invention, and any modification of the design of the present invention can be made in view of the gist of the preceding and the following. It is included in the technical scope.

【0023】[0023]

【実施例】実施例1 (ブロンズ法) 図4に示すような線材中央に安定化材7(無酸素銅)、
その周りにNb−0.2%P合金シートを巻き拡散バリ
ア層6とし、その外側に5893本のNbフィラメント
を配置したビレットを準備した。また図5に示す様に、
安定化材7の周囲にNbシートを巻き拡散バリア層6b
とすると共に、その外側にCu−0.2%Pのシートを
巻き拡散バリア層6aを形成したビレットを準備した。
さらに従来例として、図4の拡散バリア層6にNbシー
トを用いたビレットと、Taシートを用いたビレットを
準備した。
EXAMPLES Example 1 (Bronze method) As shown in FIG. 4, a stabilizing material 7 (oxygen-free copper) is provided in the center of the wire.
A Nb-0.2% P alloy sheet was wound around it to form a diffusion barrier layer 6, and a billet was prepared in which 5893 Nb filaments were arranged on the outside thereof. Also, as shown in FIG.
A Nb sheet is wrapped around the stabilizing material 7 to form the diffusion barrier layer 6b.
At the same time, a billet having a diffusion barrier layer 6a formed by winding a Cu-0.2% P sheet on the outside thereof was prepared.
Further, as a conventional example, a billet using an Nb sheet and a billet using a Ta sheet were prepared for the diffusion barrier layer 6 in FIG.

【0024】これらのビレットをφ150からφ35に
静水圧押出しにより縮径加工した。静水圧押出し後、ダ
イス伸線し線材を製作した。反応熱処理を施してNb3
Sn超電導素線とし、その断面観察を行った。図6〜9
に、反応熱処理後における夫々の拡散バリア層のSEM
写真を示す。図6は、Nbシートだけを拡散バリア層に
用いたビレットのSEM写真であり、拡散バリア層のN
bがSnと反応してNb3 Snになっていることが分か
る。これに対して、本発明方法によるビレットの拡散バ
リア層(図7及び図8)では、いずれもNb3 Snは生
成されておらず、交流損失特性を劣化させることなく安
定化材をSnの汚染から防ぐことができた。
These billets were reduced in diameter from φ150 to φ35 by hydrostatic extrusion. After hydrostatic extrusion, wire drawing was performed using a die. Nb 3 after reaction heat treatment
A cross section of the Sn superconducting element wire was observed. 6-9
In addition, the SEM of each diffusion barrier layer after the reaction heat treatment
A photograph is shown. FIG. 6 is a SEM photograph of the billet using only the Nb sheet as the diffusion barrier layer.
It can be seen that b reacts with Sn to become Nb 3 Sn. On the other hand, in the billet diffusion barrier layer (FIGS. 7 and 8) according to the method of the present invention, Nb 3 Sn was not generated in any of the billet diffusion barrier layers, and the stabilizing material was contaminated with Sn without degrading the AC loss characteristics. Could be prevented from

【0025】尚、図9は、Taを拡散バリア層に用いた
ビレットのSEM写真であり、静水圧押出し後の試料の
一部を硝酸で溶かし、拡散バリア層の加工状態を観察し
たものである。多数の亀裂が入っており、Taからなる
拡散バリア層が正常に加工されていないことが分かる。
このビレットを伸線し続けると、Taからなる拡散バリ
ア層は、Sn拡散に対するバリアとしての役目を果たさ
なくなる。これに対してNb−Pを主体とする拡散バリ
ア層及びNbとCu−0.2%P複合材からなる本発明
に係る拡散バリア層では加工性に全く問題はなかった。
Incidentally, FIG. 9 is an SEM photograph of a billet using Ta as a diffusion barrier layer, and shows a processed state of the diffusion barrier layer obtained by dissolving a part of the sample after hydrostatic extrusion with nitric acid. . It can be seen that there are many cracks and the diffusion barrier layer made of Ta is not normally processed.
When this billet is continuously drawn, the diffusion barrier layer made of Ta does not serve as a barrier against Sn diffusion. In contrast, the diffusion barrier layer mainly composed of Nb-P and the diffusion barrier layer according to the present invention composed of the Nb and Cu-0.2% P composite material had no problem in workability.

【0026】実施例2(内部拡散法) 図10に示す様に、線材中央にSnロッドを配設し、そ
の外側に5893本のNbフィラメントが埋め込まれた
Cuマトリックス、その外側にCu−0.5%Pのシー
トを巻き拡散バリア層6aを形成し、その周りにNbシ
ートからなる拡散バリア層6bを形成し、最外層に安定
化材7(無酸素銅)を配置したビレットを準備した。ま
た、また図11に示す様に、拡散バリア層6にNbシー
トだけを用いたビレットも比較例として準備した。
Example 2 (Internal Diffusion Method) As shown in FIG. 10, a Sn rod was arranged at the center of the wire, and 5893 Nb filaments were embedded on the outside of the Cu matrix, and Cu-0. A 5% P sheet was wound to form a diffusion barrier layer 6a, a diffusion barrier layer 6b made of an Nb sheet was formed around the diffusion barrier layer 6a, and a billet having a stabilizing material 7 (oxygen-free copper) arranged in the outermost layer was prepared. In addition, as shown in FIG. 11, a billet using only an Nb sheet for the diffusion barrier layer 6 was also prepared as a comparative example.

【0027】これらのビレットをφ150からφ35に
静水圧押出しにより縮径加工した。静水圧押出し後、ダ
イス伸線し線材を製作した。反応熱処理を施してNb3
Sn超電導線材とし、その交流損失を測定した。図12
に両線材の交流損失の比較を示す。両線材はCu−0.
5%Pのシートの有無以外は同じ断面構成であるが、N
bとCu−0.5%Pの複合材バリアの方が格段に交流
損失が小さいことが分かる。このことから、本発明は超
電導線材の交流損失の低減に有効であることが明らかで
ある。
These billets were reduced in diameter from φ150 to φ35 by hydrostatic extrusion. After hydrostatic extrusion, wire drawing was performed using a die. Nb 3 after reaction heat treatment
The Sn loss was measured as the Sn superconducting wire. 12
Figure 2 shows a comparison of the AC loss of both wires. Both wires are Cu-0.
Except for the presence or absence of the 5% P sheet, the cross section is the same, but N
It can be seen that the AC loss of the composite material barrier of b and Cu-0.5% P is much smaller. From this, it is clear that the present invention is effective in reducing the AC loss of the superconducting wire.

【0028】実施例3(外部拡散法) 図13に示す様に、線材中央に安定化材7(無酸素銅)
を配設し、その周りにNb−0.2%Pシートを巻き拡
散バリア層6を形成し、その外側に5893本のNbフ
ィラメントを埋め込んだCuマトリックスを配置したビ
レットを準備した。また図14に示す様に、Nbシート
を拡散バリア層6に用いたビレットも比較例として準備
した。
Example 3 (External Diffusion Method) As shown in FIG. 13, a stabilizing material 7 (oxygen-free copper) was formed in the center of the wire.
Was prepared, a Nb-0.2% P sheet was wound around it to form a diffusion barrier layer 6, and a billet in which a Cu matrix in which 5893 Nb filaments were embedded was arranged on the outside thereof was prepared. As shown in FIG. 14, a billet using an Nb sheet for the diffusion barrier layer 6 was also prepared as a comparative example.

【0029】これらのビレットをφ150からφ35に
静水圧押出しにより縮径加工した。静水圧押出し後、ダ
イス伸線し線材を製作した。伸線加工後、線材の表面に
Snメッキを施し、これを反応熱処理し、Nb3 Sn超
電導線材として、その交流損失を測定した。図15に両
線材の交流損失の比較を示す。両線材はバリア材として
NbまたはNb−0.2%Pを用いている点以外は同じ
断面構成であるが、Nb−0.2%Pバリアの方が格段
に交流損失が小さいことが分かる。このことから、本発
明は超電導線材の交流損失の低減に有効であることが明
らかである。
The diameter of these billets was reduced from φ150 to φ35 by hydrostatic extrusion. After hydrostatic extrusion, wire drawing was performed using a die. After wire drawing, the surface of the wire was plated with Sn, and this was subjected to reaction heat treatment, and the AC loss was measured as a Nb 3 Sn superconducting wire. FIG. 15 shows a comparison of AC loss of both wire rods. Both wires have the same cross-sectional structure except that Nb or Nb-0.2% P is used as the barrier material, but it can be seen that the Nb-0.2% P barrier has a significantly smaller AC loss. From this, it is clear that the present invention is effective in reducing the AC loss of the superconducting wire.

【0030】実施例4 図10に示すビレットにおいて、Cu−P合金からなる
拡散バリア層6aのP含有量が0.005%,0.01
%,0.02%,0.05%,0.1%,0.5%,1
%,1.5%と異なる8種類のビレットを準備した。
Example 4 In the billet shown in FIG. 10, the P content of the diffusion barrier layer 6a made of Cu-P alloy was 0.005%, 0.01.
%, 0.02%, 0.05%, 0.1%, 0.5%, 1
%, 1.5%, and 8 types of billets were prepared.

【0031】これらのビレットをφ67からφ20に静
水圧押出しにより縮径加工した。静水圧押出し後、ダイ
ス伸線し、線径φ0.8の線材を製作した。これらに反
応熱処理を施しNb3 Snを生成させた後、断面を調べ
た。その結果、P含有量が0.005%の線材では拡散
バリア層のNbの一部にNb3 Snの生成が見られた。
また、P含有量が1.5%の線材では拡散バリア層のC
u−1.5%P合金に亀裂が見られ、安定化材にSnの
拡散が見られた。このことから、P含有量が0.005
%と1.5%の線材ではバリア材が機能していないこと
がわかる。したがって、拡散バリア層6aに用いるCu
−P合金中のP含有量は、0.01〜1.0%程度が適
当と考えられる。
The diameters of these billets were reduced from 67 to 20 by hydrostatic extrusion. After isostatic pressing, wire drawing was carried out with a die to produce a wire having a wire diameter of φ0.8. After subjecting these to reaction heat treatment to generate Nb 3 Sn, the cross section was examined. As a result, in the wire having a P content of 0.005%, generation of Nb 3 Sn was observed in a part of Nb in the diffusion barrier layer.
Further, in the wire material having a P content of 1.5%, the C of the diffusion barrier layer is
Cracks were observed in the u-1.5% P alloy and Sn diffusion was observed in the stabilizer. From this, the P content is 0.005
It can be seen that the barrier material does not function with the wire rods of 1% and 1.5%. Therefore, Cu used for the diffusion barrier layer 6a
It is considered appropriate that the P content in the -P alloy is about 0.01 to 1.0%.

【0032】実施例5 図13に示すビレットにおいて、Nb−P合金からなる
拡散バリア層6のP含有量が0.005%,0.01
%,0.02%,0.05%,0.1%,0.5%,1
%,1.5%と異なる8種類のビレットを準備した。
Example 5 In the billet shown in FIG. 13, the P content of the diffusion barrier layer 6 made of Nb-P alloy is 0.005%, 0.01.
%, 0.02%, 0.05%, 0.1%, 0.5%, 1
%, 1.5%, and 8 types of billets were prepared.

【0033】これらのビレットをφ67からφ20に静
水圧押出により縮径加工した。静水圧押出後、ダイス伸
線し、線径φ0.8の線材を製作した。伸線加工後、線
材の表面にSnメッキを施し、これらに反応熱処理を施
しNb3 Snを生成させた後、断面を調べた。その結
果、P含有量が0.005%の線材では拡散バリア層の
Nbの一部にNb3 Snの生成が見られた。また、P含
有量が1.5%の線材ではバリア材のNb−1.5%P
合金に亀裂が見られ、安定化材にSnの拡散が見られ
た。このことから、P含有量が0.005%と1.5%
の線材ではバリア材が機能していないことがわかる。し
たがって、拡散バリア層6に用いるNb−P合金中のP
含有量は、0.01〜1.0%程度が適当と考えられ
る。
The diameter of these billets was reduced from 67 to 20 by hydrostatic extrusion. After isostatic pressing, a die wire was drawn to produce a wire having a wire diameter of φ0.8. After the wire drawing process, the surface of the wire was plated with Sn and subjected to reaction heat treatment to generate Nb 3 Sn, and then the cross section was examined. As a result, in the wire having a P content of 0.005%, generation of Nb 3 Sn was observed in a part of Nb in the diffusion barrier layer. In addition, in a wire material having a P content of 1.5%, Nb-1.5% P of the barrier material is used.
Cracks were seen in the alloy and Sn diffusion was seen in the stabilizer. From this, the P content is 0.005% and 1.5%
It can be seen that the barrier material is not functioning with the wire rod of. Therefore, P in the Nb-P alloy used for the diffusion barrier layer 6 is
It is considered that the appropriate content is about 0.01 to 1.0%.

【0034】[0034]

【発明の効果】本発明は以上の様に構成されているの
で、拡散バリア層に用いる材料としてNbを採用しても
Nb3 Snが生成されず、超電導線材の交流損失特性を
劣化させることのないNb3 Sn系超電導線材の製造方
法が提供できることとなった。
EFFECTS OF THE INVENTION Since the present invention is constructed as described above, Nb 3 Sn is not generated even if Nb is used as the material used for the diffusion barrier layer, which deteriorates the AC loss characteristics of the superconducting wire. It is now possible to provide a method for manufacturing a Nb 3 Sn-based superconducting wire which does not exist.

【図面の簡単な説明】[Brief description of drawings]

【図1】ブロンズ法による単芯型複合ビレットの断面を
示す図である。
FIG. 1 is a view showing a cross section of a single core type composite billet by a bronze method.

【図2】ブロンズ法による1次多芯ビレット8の断面を
示す図である。
FIG. 2 is a view showing a cross section of a primary multi-core billet 8 by a bronze method.

【図3】ブロンズ法による2次多芯ビレット11の断面
を示す図である。
FIG. 3 is a view showing a cross section of a secondary multi-core billet 11 by the bronze method.

【図4】本発明方法をブロンズ法に適用した場合の超電
導線材の断面を示す説明図である。
FIG. 4 is an explanatory view showing a cross section of a superconducting wire rod when the method of the present invention is applied to a bronze method.

【図5】本発明方法をブロンズ法に適用した場合の超電
導線材の断面を示す説明図である。
FIG. 5 is an explanatory view showing a cross section of a superconducting wire rod when the method of the present invention is applied to a bronze method.

【図6】反応熱処理後における拡散バリア層のSEM写
真であり、拡散バリア層にNbを用いた従来法によるも
のである。
FIG. 6 is an SEM photograph of the diffusion barrier layer after the reaction heat treatment, which is based on the conventional method using Nb for the diffusion barrier layer.

【図7】反応熱処理後における拡散バリア層のSEM写
真であり、拡散バリア層にNb−P合金を用いた本発明
方法によるものである。
FIG. 7 is a SEM photograph of the diffusion barrier layer after the reaction heat treatment, which is obtained by the method of the present invention using an Nb-P alloy for the diffusion barrier layer.

【図8】反応熱処理後における拡散バリア層のSEM写
真であり、拡散バリア層にNbとCu−P合金の複合材
を用いた本発明方法によるものである。
FIG. 8 is a SEM photograph of the diffusion barrier layer after the reaction heat treatment, which is obtained by the method of the present invention using a composite material of Nb and Cu—P alloy for the diffusion barrier layer.

【図9】反応熱処理後における拡散バリア層のSEM写
真であり、拡散バリア層にTaを用いた従来法によるも
のである。
FIG. 9 is an SEM photograph of the diffusion barrier layer after the reaction heat treatment, which is based on the conventional method using Ta for the diffusion barrier layer.

【図10】本発明方法を内部拡散法に適用した場合の超
電導線材の断面を示す説明図である。
FIG. 10 is an explanatory view showing a cross section of a superconducting wire rod when the method of the present invention is applied to the internal diffusion method.

【図11】従来の内部拡散法による超電導線材の断面を
示す説明図である。
FIG. 11 is an explanatory view showing a cross section of a superconducting wire according to a conventional internal diffusion method.

【図12】交流損失の外部磁場振幅依存性について、本
発明方法と従来法による拡散バリア層の比較を行なうグ
ラフである。
FIG. 12 is a graph showing a comparison between a diffusion barrier layer according to the present invention and a diffusion barrier layer according to a conventional method with respect to the external magnetic field amplitude dependency of AC loss.

【図13】本発明方法を外部拡散法に適用した場合の超
電導線材の断面を示す説明図である。
FIG. 13 is an explanatory view showing a cross section of a superconducting wire rod when the method of the present invention is applied to an external diffusion method.

【図14】従来の外部拡散法による超電導線材の断面を
示す説明図である。
FIG. 14 is an explanatory view showing a cross section of a conventional superconducting wire by an external diffusion method.

【図15】交流損失の外部磁場振幅依存性について、本
発明方法と従来法による拡散バリア層の比較を行なうグ
ラフである。
FIG. 15 is a graph comparing the diffusion barrier layer according to the method of the present invention and the diffusion barrier layer according to the conventional method with respect to the external magnetic field amplitude dependency of the AC loss.

【符号の説明】[Explanation of symbols]

1 ビレットケース(Cu−Sn基合金製線状母材) 2 Nb線 3 混合ビレット(単芯型複合ビレット) 5 内部層 6 Nb層(拡散バリア層) 7 無酸素銅(安定化銅) 8 1次多芯ビレット 9 外層ケース(最外層) 10 線材群 11 2次多芯ビレット(多芯型複合ビレット) DESCRIPTION OF SYMBOLS 1 Billet case (Cu-Sn base alloy linear base material) 2 Nb wire 3 Mixed billet (single core composite billet) 5 Inner layer 6 Nb layer (diffusion barrier layer) 7 Oxygen-free copper (stabilized copper) 8 1 Next multi-core billet 9 Outer layer case (outermost layer) 10 Wire group 11 Secondary multi-core billet (multi-core composite billet)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 倉橋 秀文 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 宮崎 隆好 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 千葉 政道 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 嶋田 雅生 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hidefumi Kurahashi Inventor Hidefumi Kurahashi 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Prefecture Kobe Steel Research Institute, Kobe Steel Co., Ltd. (72) Takayoshi Miyazaki Nishi-ku, Kobe-shi, Hyogo 1-5-5 Takatsukadai, Kobe Research Institute of Kobe Steel, Ltd. (72) Inventor, Masamichi Chiba 1-5-5 Takatsukadai, Nishi-ku, Kobe City, Hyogo Prefecture Kobe Institute of Technology, Kobe Steel (72) ) Inventor Masao Shimada 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Prefecture Kobe Steel Works, Ltd. Kobe Research Institute

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 円筒状の拡散バリア層が安定化材の外周
側または内周側に配置されたNb3 Sn系超電導線材の
製造方法であって、 上記拡散バリア層に、Pを0.01〜1wt%含有する
Nb合金を用いることを特徴とするNb3 Sn系超電導
線材の製造方法。
1. A method of manufacturing an Nb 3 Sn-based superconducting wire, wherein a cylindrical diffusion barrier layer is arranged on the outer peripheral side or the inner peripheral side of a stabilizing material, wherein P is 0.01 in the diffusion barrier layer. A method for producing an Nb 3 Sn-based superconducting wire, which comprises using an Nb alloy containing 1 to 1 wt%.
【請求項2】 前記Nb合金が、P以外に、Ta,Z
r,Ti,Hfよりなる群から選ばれる1種以上の元素
を20wt%以下(但し、0%は含まない)含有するN
b合金である請求項1に記載のNb3 Sn系超電導線材
の製造方法。
2. The Nb alloy is Ta, Z in addition to P.
N containing 20 wt% or less (not including 0%) of one or more elements selected from the group consisting of r, Ti, and Hf
The method for producing an Nb 3 Sn-based superconducting wire according to claim 1, which is a b alloy.
【請求項3】 円筒状の拡散バリア層が安定化材の外周
側または内周側に配置されたNb3 Sn系超電導線材の
製造方法であって、 上記拡散バリア層を、同心円状に材質の異なる2層から
形成し、前記安定化材と接する一方側の拡散バリア層に
はNbを用い、他方側の拡散バリア層にはPを0.01
〜1wt%含有するCu合金を用いることを特徴とする
Nb3 Sn系超電導線材の製造方法。
3. A method of manufacturing an Nb 3 Sn-based superconducting wire, wherein a cylindrical diffusion barrier layer is arranged on the outer peripheral side or the inner peripheral side of a stabilizing material, wherein the diffusion barrier layer is made of concentric material. It is formed of two different layers, Nb is used for the diffusion barrier layer on one side in contact with the stabilizing material, and P is 0.01 for the diffusion barrier layer on the other side.
A method for producing an Nb 3 Sn-based superconducting wire, characterized in that a Cu alloy containing 1 to 1 wt% is used.
【請求項4】 前記Cu合金が、P以外に、Sn,G
e,Mn,Al,Zn,Ti,Niよりなる群から選ば
れる1種以上の元素を15wt%以下(但し、0%は含
まない)含有するCu合金である請求項3に記載のNb
3 Sn系超電導線材の製造方法。
4. The Cu alloy contains Sn, G, in addition to P.
The Nb according to claim 3, which is a Cu alloy containing 15 wt% or less (not including 0%) of one or more elements selected from the group consisting of e, Mn, Al, Zn, Ti and Ni.
3 Manufacturing method of Sn-based superconducting wire.
JP14658795A 1995-06-13 1995-06-13 Method for producing Nb-3 Sn-based superconducting wire Expired - Fee Related JP3353217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14658795A JP3353217B2 (en) 1995-06-13 1995-06-13 Method for producing Nb-3 Sn-based superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14658795A JP3353217B2 (en) 1995-06-13 1995-06-13 Method for producing Nb-3 Sn-based superconducting wire

Publications (2)

Publication Number Publication Date
JPH08339728A true JPH08339728A (en) 1996-12-24
JP3353217B2 JP3353217B2 (en) 2002-12-03

Family

ID=15411092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14658795A Expired - Fee Related JP3353217B2 (en) 1995-06-13 1995-06-13 Method for producing Nb-3 Sn-based superconducting wire

Country Status (1)

Country Link
JP (1) JP3353217B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007524210A (en) * 2004-02-19 2007-08-23 オックスフォード スーパーコンダクティング テクノロジー Improvement of critical density in Nb3Sn superconducting wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007524210A (en) * 2004-02-19 2007-08-23 オックスフォード スーパーコンダクティング テクノロジー Improvement of critical density in Nb3Sn superconducting wire
JP4728260B2 (en) * 2004-02-19 2011-07-20 オックスフォード スーパーコンダクティング テクノロジー Method for manufacturing Nb3Sn superconducting wire

Also Published As

Publication number Publication date
JP3353217B2 (en) 2002-12-03

Similar Documents

Publication Publication Date Title
JP7004700B2 (en) Diffusion barrier for metal superconducting wires
JP2016195100A (en) SEMI-COMPLETE WIRE MATERIAL HAVING PIT ELEMENT FOR SUPERCONDUCTING WIRE MATERIAL CONTAINING Nb3Sn AND METHOD FOR MANUFACTURING SEMI-COMPLETE WIRE MATERIAL
JP2007311126A (en) Compound superconductor, and its manufacturing method
JPH08339728A (en) Manufacture of nb3sn system superconductive wire
JP3124448B2 (en) Method for manufacturing Nb (3) Sn superconducting wire
JPH10128428A (en) Manufacture of alloy fine wire, alloy fine wire assembly, alloy fine wire strand, alloy fine wire textile, alloy fine wire knit fabric, alloy fine wire web and alloy fine wire felt
JPH04277409A (en) Compound superconducting wire and manufacture thereof
US20220051833A1 (en) Diffusion barriers for metallic superconducting wires
JP3182978B2 (en) Nb (3) Sn Superconducting Wire for Magnet Operated by Permanent Current and Manufacturing Method Thereof
JPH10255563A (en) Nb3sn superconducting wire
JP2007165151A (en) CORE WIRE FOR Nb3Sn SUPERCONDUCTIVE WIRE, Nb3Sn SUPERCONDUCTIVE WIRE, AND METHOD OF MANUFACTURING SAME
JP3757617B2 (en) Oxide superconducting billet, oxide superconducting wire, and manufacturing method thereof
JPH0362420A (en) Manufacture of compound superconductor
JP2700249B2 (en) Method of manufacturing Nb (3) Sn multi-core superconducting wire having high residual resistance ratio
JPS58189909A (en) Method of producing nb3sn superconductor
JPS6358715A (en) Manufacture of nb3sn multi-core superconductor
JPH08212847A (en) Composite multicore superconducting wire
JPH07282650A (en) Compound superconductor
JPH08212854A (en) Manufacture of compound superconducting wire
JPH06150737A (en) Nb multicore superconducting cable and manufacture thereof
JPH08227621A (en) Compound superconducting wire material
JPH09171727A (en) Manufacture of metal-based superconductive wire
JPH09204825A (en) Nb3al compound superconductor and nb3al compound superconducting wire
JPH04132117A (en) Manufacture of nb3x multi-core superconducting wire
JPH07302520A (en) Manufacture of nb3sn superconductive wire

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070927

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080927

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090927

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100927

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100927

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110927

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110927

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120927

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120927

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130927

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees