JPS63212852A - Optical interference type gas calorific value measuring apparatus - Google Patents

Optical interference type gas calorific value measuring apparatus

Info

Publication number
JPS63212852A
JPS63212852A JP4707387A JP4707387A JPS63212852A JP S63212852 A JPS63212852 A JP S63212852A JP 4707387 A JP4707387 A JP 4707387A JP 4707387 A JP4707387 A JP 4707387A JP S63212852 A JPS63212852 A JP S63212852A
Authority
JP
Japan
Prior art keywords
gas
cell
standard
calorific value
fuel gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4707387A
Other languages
Japanese (ja)
Other versions
JPH0772724B2 (en
Inventor
Iwao Okazaki
岡崎 巖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Keiki KK
Original Assignee
Riken Keiki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Keiki KK filed Critical Riken Keiki KK
Priority to JP62047073A priority Critical patent/JPH0772724B2/en
Publication of JPS63212852A publication Critical patent/JPS63212852A/en
Publication of JPH0772724B2 publication Critical patent/JPH0772724B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the consumption of standard gas by keeping the concn. of the standard gas in a standard cell constant over a long time, by a method wherein the gas discharge port of a standard gas cell is allowed to communicate with the fuel gas discharge pipeline of a measuring gas cell to discharge fuel gas. CONSTITUTION:When gas having a known calorific value as near as possible to the calorific value of the fuel gas flowing through a gas supply line L is selected to operate an apparatus, the fuel gas flowing through the gas supply line L flows in the first cell 1 while the flow rate is adjusted to a definite value by a flow control mechanism 2. The standard gas received in a cylinder 8 flows in the second cell 4 while the flow rate thereof is controlled to a definite value by a flow rate control mechanism 5 and issues to a discharge port 20 after a definite time while discharges the gas remaining in the cell 4. When the supply of the standard gas from the cylinder 8 is stopped in this state, the standard gas received in the second cell 4 communicates with the discharge port 20 through the fuel gas and, therefore, the initial concn. can be kept in the cell 4 over a long time.

Description

【発明の詳細な説明】 (技術分野) 本発明は、光干渉を利用したガス発熱量計における標準
ガスの供給機構に閉する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a standard gas supply mechanism in a gas calorific value meter using optical interference.

(従来技術) 燃料ガス製造プロセス(こおいては、第3図に示したよ
うに排出口a、bが大気に開放した2つの光学セルA、
Bに被測定ガス、及び標準ガスを流入させるとともに、
両セルに同一光源Cからの光を透過させて干渉を主しさ
せ、この干渉度に基づいて燃料ガスの発熱jlヲ測定す
ることが行なわれている。なお、図中符号Fは、干渉度
を測定する検出器を示す。
(Prior art) Fuel gas production process (in this case, two optical cells A whose exhaust ports a and b are open to the atmosphere as shown in FIG.
While flowing the gas to be measured and the standard gas into B,
Light from the same light source C is transmitted through both cells to cause interference, and the heat generation of the fuel gas is measured based on the degree of interference. Note that the symbol F in the figure indicates a detector that measures the degree of interference.

ところで、標準ガスは通常、ポンベDにより供給するた
め可及的にその消費量を節約すべく、抵抗管Gを介して
放出しているが、それでも年に数度の割合いでボンベの
交換を必要とし、保守に手間を要するという不都合があ
った。
By the way, standard gas is normally supplied by a pump D, so in order to save on consumption as much as possible, it is released through a resistance tube G, but the cylinder still needs to be replaced several times a year. This has the disadvantage that maintenance is time-consuming.

(目的) 本発明は、このような問題に鑑みてなされたものであっ
て、その目的とするとこらは標準ガスの消費1mlを飛
躍的に少なくすることができる干渉式ガス熱測定装Mを
提供することである。
(Objectives) The present invention was made in view of these problems, and its objects are to provide an interferometric gas heat measuring device M that can dramatically reduce the consumption of 1ml of standard gas. It is to be.

(発明の概要) すなわち、本発明が特徴とするところは、被測定ガスセ
ルの排出口と標準ガスセルの排出口とを共通の放出口に
連通させることにより、標準ガスの拡散による散逸を抑
えた点にある。
(Summary of the Invention) In other words, the present invention is characterized in that dissipation due to diffusion of the standard gas is suppressed by communicating the outlet of the gas cell to be measured and the outlet of the standard gas cell to a common outlet. It is in.

(実施例) そこで、以下に本発明の詳細を図示した実施例に基づい
て説明する。
(Example) The details of the present invention will be described below based on illustrated examples.

第1図は、本発明の一実施例を示すものであって、図中
符号1は、発熱量を測定すべきガスが流入する第1セル
で、側部に形成されたガス流入口]aには、ガス流量調
整機構2を介してガス供給ラインLに接続され、また他
端はバイブ3を介して放出口20に*siされている。
FIG. 1 shows an embodiment of the present invention, and reference numeral 1 in the figure indicates a first cell into which the gas whose calorific value is to be measured flows, and the gas inlet port formed on the side thereof is a is connected to a gas supply line L via a gas flow rate adjustment mechanism 2, and the other end is connected to a discharge port 20 via a vibrator 3.

4は、標準ガスが流入する第2セルで、側部に形成され
たガス流入口4aにはガス流量調整機構5、及びタイマ
ー15により間欠的に開閉される電磁弁6を介して標準
ガスボンベ8に接続され、またガス排出口4bは、キヤ
とラリチューブをコイル状に巻回、もしくは曲折させて
なる抵抗管9を介して第1セル1のガス排出バイブ3が
連通している放出口20に共通に接続されている。これ
らセル1.4には、平行平面ガラス板により光源11か
らの光を2光路に分割して入射させ、また第1、及び第
2セル1.4から出射した光を平行平面ガラス板12に
より同一光路に導いて干渉を生じさせてから光電検出器
13に入射させて干渉測定計か構成されている。この検
出器]3からの信号は、発熱量変換回路14に入力して
屈折率に基づいて発熱量に変換されでいる。
Reference numeral 4 denotes a second cell into which standard gas flows, and a gas inlet 4a formed on the side is connected to a standard gas cylinder 8 via a gas flow rate adjustment mechanism 5 and a solenoid valve 6 that is intermittently opened and closed by a timer 15. The gas discharge port 4b is connected to the discharge port 20, which is connected to the gas discharge vibrator 3 of the first cell 1 via a resistance tube 9 formed by winding or bending a carrier and a rary tube into a coil shape. are commonly connected. The light from the light source 11 is divided into two optical paths and enters the cells 1.4 using a parallel plane glass plate, and the light emitted from the first and second cells 1.4 is transmitted through a parallel plane glass plate 12. An interference measurement meter is constructed by guiding the light beams along the same optical path to cause interference and then inputting the light beams into the photoelectric detector 13. The signal from this detector] 3 is input to a calorific value conversion circuit 14 and is converted into a calorific value based on the refractive index.

この実施例において、ガス供給ライシLV流れている燃
料ガスの発熱量に可及的に近い発熱ilヲ有するととも
に、発熱量が既知のガス、つまり燃料ガスに可及的に近
く、かつ屈折率が既知の標準ガスを選択して装置を作動
させると、ガス供給うインしを流れている燃料ガスは、
流量調整機構2により一定の流量に調整されて第1セル
1に流入する。
In this embodiment, the gas supply lamp LV has a heat generation value as close as possible to the calorific value of the flowing fuel gas, has a known calorific value, that is, as close as possible to the fuel gas, and has a refractive index. When a known standard gas is selected and the device is operated, the fuel gas flowing through the gas supply will be
The flow rate is adjusted to a constant level by the flow rate adjustment mechanism 2 and flows into the first cell 1 .

一方、ボンベ8に収容されでいる標準ガスは、タイマー
15からの駆動信号により開放された電磁弁6を経て流
量調整機構5により一定の流量となって第2セル4に流
入し、セル4内に残留しているガスを排出させながら一
定時間後に排出口4bから抵抗管9を介して放出口20
に出る。この段階で、タイマー15からの信号により電
磁弁6が閉じてボンベ8からの標準ガスの供給を断つと
、第2セル4に収容されている標準ガスは、これと略々
同じ程度の組成を持つ燃料ガスを介して放出口20と連
通することになるため、M接大気に接する場合に比較し
て拡散速度が極めて低く、セル4内で長時間に亘って初
期の濃度を維持することになる。この状態で、光源11
から入射した光は、標準ガスと燃料ガスとΦ差に比例し
て干渉を生じるから、この干渉の度合が燃料ガスの発熱
量を示すことになる。この測定過程において燃料ガスの
供給圧力が変化すると、第1セル1に抵抗管9により連
通している第2セル4内の標準ガスの圧力も連動して変
化するから、燃料ガスの圧力変動に伴なう誤差は可及的
に小さく抑えられることになる。
On the other hand, the standard gas contained in the cylinder 8 flows into the second cell 4 at a constant flow rate by the flow rate adjustment mechanism 5 through the solenoid valve 6 which is opened by the drive signal from the timer 15, and flows into the second cell 4. After a certain period of time, the gas remaining in the gas is discharged from the discharge port 20 through the resistance pipe 9 from the discharge port 4b.
Go out. At this stage, when the solenoid valve 6 is closed by a signal from the timer 15 and the supply of standard gas from the cylinder 8 is cut off, the standard gas contained in the second cell 4 has approximately the same composition as this. Because it communicates with the outlet 20 through the fuel gas that it has, the diffusion rate is extremely low compared to when it comes into contact with the atmosphere, and the initial concentration can be maintained within the cell 4 for a long time. Become. In this state, the light source 11
Since the light incident from the standard gas and the fuel gas interfere in proportion to the difference in Φ, the degree of this interference indicates the calorific value of the fuel gas. When the fuel gas supply pressure changes during this measurement process, the pressure of the standard gas in the second cell 4, which is connected to the first cell 1 through the resistance tube 9, changes accordingly. The accompanying errors will be kept as small as possible.

このようにして、第2セル4内の標準ガスの濃度が低下
した段階で、電磁弁6を開放して、ボンベ8から標準ガ
スを供給し、第2セル4内のガスを置換した段階で電磁
弁6を閉じる。
In this way, when the concentration of the standard gas in the second cell 4 has decreased, the solenoid valve 6 is opened and the standard gas is supplied from the cylinder 8, and the gas in the second cell 4 has been replaced. Close the solenoid valve 6.

以下、このようにして第2セルの標準ガス濃度が低下し
た段階で、電磁弁6を開放して標準ガスを供給しながら
計測を連続的に実行する。
Thereafter, when the standard gas concentration in the second cell has decreased in this manner, the electromagnetic valve 6 is opened and measurements are continuously performed while supplying the standard gas.

なお、この実施例(こおいては、セル1.4から排出さ
れたガスを大気中に排出するようにしているが、燃料ガ
ス供給ラインしに戻すようにしても同様の作用を奏する
ことは明らかである。
Note that in this embodiment, the gas discharged from the cell 1.4 is discharged into the atmosphere, but the same effect cannot be achieved even if the gas is returned to the fuel gas supply line. it is obvious.

[実施例] 抵抗管9として直径2 mm、長さ2mのキヤとラリ−
チューブを使用して、M2セル4のガス排出口4bを第
1セル1のガス排出口1bに連通させた状態で、標準ガ
スとして7000kcal/ m3のものを、また燃料
ガスとして発熱量が8000kcal/ m3一定のも
のを使用し、標準ガスを1回注入した状態で測定を行な
ったところ、第2図において実線Aにより示したように
約40分間、一定の測定値を得ることができた。
[Example] A gear and a rally with a diameter of 2 mm and a length of 2 m are used as the resistance tube 9.
Using a tube, the gas outlet 4b of the M2 cell 4 is connected to the gas outlet 1b of the first cell 1, and the standard gas has a calorific value of 7000 kcal/m3, and the fuel gas has a calorific value of 8000 kcal/m3. When measurements were carried out with a constant m3 gas and a standard gas injected once, constant measured values could be obtained for about 40 minutes, as shown by solid line A in FIG.

比較のため、第2セルのガス排出口を直接大気に開放し
た状態で(第3図)、上記と同一のガスを使用して測定
を行なったところ、点線Bで示したように測定開始から
4分程度で測定値に変動を来した。
For comparison, measurements were performed using the same gas as above with the gas outlet of the second cell opened directly to the atmosphere (Figure 3), and as shown by dotted line B, from the start of the measurement The measured value fluctuated in about 4 minutes.

このことから、各セルのガス排出口を共通接続すること
により約10倍の時間、セル内の標準ガスの濃度を一定
に保持でき、その消費11を1/]0と飛躍的に節約で
きることが判明した。
From this, by commonly connecting the gas discharge ports of each cell, the concentration of the standard gas in the cell can be maintained constant for about 10 times longer, and the consumption 11 can be dramatically reduced to 1/]0. found.

(効果) 以上、説明したように本発明によれば、標準ガス用セル
のガス排出口を、測定ガスセルの燃料ガス排出管路に連
通させた後放出するようにしたので、標準ガスは、組成
が似かよった燃料ガスを介して放出口に排出されること
となって、拡散速度が小ざくなつ、標準セル内の標準ガ
スの濃度を長時間に亘って一定に維持することができて
、標準ガスの消費量を飛躍的に少なくすることができる
(Effects) As described above, according to the present invention, the gas discharge port of the standard gas cell is communicated with the fuel gas discharge pipe of the measurement gas cell, and then the standard gas is discharged. is discharged to the outlet via similar fuel gas, the diffusion rate becomes small, and the concentration of the standard gas in the standard cell can be maintained constant over a long period of time. Gas consumption can be dramatically reduced.

また、標準ガス用のセルと燃料ガスのセルが連通してい
るため、セル内の燃料ガスの圧力の変動を、標準ガス圧
に作用させて相殺でき、発熱量を高い精度で測定するこ
とができる。
In addition, since the standard gas cell and the fuel gas cell are in communication, fluctuations in fuel gas pressure within the cell can be offset by acting on the standard gas pressure, making it possible to measure calorific value with high accuracy. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す装置の構成図、第2図
は同上製雪の動作を示す測定結果を示す線図、及び第3
図は従来の光干渉式ガス熱量測定装置の一例を示す構成
図である。 ]・・・・測定セル 1a・・・・燃料ガス流入口 1b・・・・燃料ガス排出口 3・・・・燃料ガス排出バイブ   4・・・・標準セ
ル4a・・・・標準ガス流入口 4b・・・・標準ガス排出口 8・・・・標準ガスボンベ     9・・・・抵抗管
2o・・・・放出口
Fig. 1 is a configuration diagram of an apparatus showing an embodiment of the present invention, Fig. 2 is a diagram showing measurement results showing the operation of the snow making machine, and Fig.
The figure is a configuration diagram showing an example of a conventional optical interference type gas calorimetry device. ]...Measurement cell 1a...Fuel gas inlet 1b...Fuel gas outlet 3...Fuel gas exhaust vibrator 4...Standard cell 4a...Standard gas inlet 4b...Standard gas discharge port 8...Standard gas cylinder 9...Resistance tube 2o...Discharge port

Claims (1)

【特許請求の範囲】[Claims] それぞれに燃料ガス、及び標準ガスが供給される第1の
セルと第2のセルに同一光源からの光を照射して、燃料
ガスの発熱量を光干渉度により測定する手段を備えると
ともに、第1セルのガス排出口と第2のセルのガス排出
口とを連通させて放出口に接続してなる光干渉式ガス発
熱量測定装置。
The first cell and the second cell, to which the fuel gas and the standard gas are respectively supplied, are irradiated with light from the same light source to measure the calorific value of the fuel gas by optical interference. An optical interference type gas calorific value measuring device in which a gas discharge port of one cell and a gas discharge port of a second cell are communicated with each other and connected to the discharge port.
JP62047073A 1987-03-02 1987-03-02 Optical interference gas calorimeter Expired - Fee Related JPH0772724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62047073A JPH0772724B2 (en) 1987-03-02 1987-03-02 Optical interference gas calorimeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62047073A JPH0772724B2 (en) 1987-03-02 1987-03-02 Optical interference gas calorimeter

Publications (2)

Publication Number Publication Date
JPS63212852A true JPS63212852A (en) 1988-09-05
JPH0772724B2 JPH0772724B2 (en) 1995-08-02

Family

ID=12764991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62047073A Expired - Fee Related JPH0772724B2 (en) 1987-03-02 1987-03-02 Optical interference gas calorimeter

Country Status (1)

Country Link
JP (1) JPH0772724B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49116190U (en) * 1973-01-30 1974-10-03
JPS54134480A (en) * 1978-04-10 1979-10-18 Osaka Gas Co Ltd Device for measuring calorific value

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49116190U (en) * 1973-01-30 1974-10-03
JPS54134480A (en) * 1978-04-10 1979-10-18 Osaka Gas Co Ltd Device for measuring calorific value

Also Published As

Publication number Publication date
JPH0772724B2 (en) 1995-08-02

Similar Documents

Publication Publication Date Title
MX9305480A (en) GAS DENSITY METER AND METHOD.
CN104730266B (en) The method of a kind of total organic carbon continuous the real time measure Tong Bu with total nitrogen and instrument
RU2606369C1 (en) System of measuring concentration of boric acid in power nuclear reactor heat carrier circuit
CN205229033U (en) Low concentration ozone concentration detection appearance of single light source
JPS63212852A (en) Optical interference type gas calorific value measuring apparatus
CN212432951U (en) Light path system for multi-parameter water quality on-line analyzer and analyzer
JPS57173740A (en) Referense gas producer for calibration of nitrogen oxide concentration measuring device
JPS5830541B2 (en) Sotansoriyosokuteihouhououoyobisouchi
CN114397257B (en) H (H) 2 Synchronous monitoring system for S corrosiveness and adsorption analysis characteristics
JPH07146287A (en) Water quality monitoring device
CN113740257B (en) High-concentration-difference optical-path-adjustable high-sensitivity absorbance liquid rapid transmission and distribution system and method
JPS5763826A (en) Apparatus for manufacturing semiconductor
JPS58162842A (en) Measuring instrument of quality of water
CN109444079B (en) Optical fiber oxygen measuring sensor
JPS5788320A (en) Mass flow flowmeter
JPS5488068A (en) Determination method of production condition for semiconductor device
SU1203406A1 (en) Method of determining dust concentration in closed volume
SU585367A1 (en) Device for automatic filling of a flask with gas
JPS5319037A (en) Device for controlling wire diameter of optical fibers
JPS5750612A (en) Measuring apparatus for flow rate of gas
SU697890A1 (en) Photocolorimetric gas analyzer
JPS6214772B2 (en)
SU1462131A2 (en) Method of graduating vacuum gauges
SU728051A1 (en) Automatic compensation-type density meter
JPS5467462A (en) Gas flow meter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees