JPH07146287A - Water quality monitoring device - Google Patents

Water quality monitoring device

Info

Publication number
JPH07146287A
JPH07146287A JP5292868A JP29286893A JPH07146287A JP H07146287 A JPH07146287 A JP H07146287A JP 5292868 A JP5292868 A JP 5292868A JP 29286893 A JP29286893 A JP 29286893A JP H07146287 A JPH07146287 A JP H07146287A
Authority
JP
Japan
Prior art keywords
water
residual chlorine
sample water
monitoring device
quality monitoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5292868A
Other languages
Japanese (ja)
Inventor
Kazunari Ota
和成 太田
Noboru Yamaguchi
登 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Electronics Manufacturing Co Ltd
Kubota Corp
Original Assignee
Kyoto Electronics Manufacturing Co Ltd
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Electronics Manufacturing Co Ltd, Kubota Corp filed Critical Kyoto Electronics Manufacturing Co Ltd
Priority to JP5292868A priority Critical patent/JPH07146287A/en
Publication of JPH07146287A publication Critical patent/JPH07146287A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accurately measure residual nitrogen concentration by compensating a measurement error with a slight sample water. CONSTITUTION:In a water monitoring device 2 with a residual nitrogen meter 6 for measuring the residual nitrogen concentration of city water, etc., a bypass path 10 for directly delivering sample water without going through a mainstream path 5 separately from the mainstream path 5 for flowing the sample water to the side of the residual nitrogen meter 6 is provided and an electromagnetic valve 12 for breaking the flow of the sample water of the bypass path 10 is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、試料水、例えば水道水
中の残留塩素の濃度を連続的に測定する水質監視装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water quality monitor for continuously measuring the concentration of residual chlorine in sample water such as tap water.

【0002】[0002]

【従来の技術】上水道の水質測定の中で特に重要なもの
は消毒効果を調べる残留塩素であるが、この残留塩素は
非常に不安定であるため、現場で正確に測定しなければ
正確な値は出ない。しかし、水質監視装置を測定対象の
配水管または給水管に直接取り付けることが困難なの
で、通常、配水管などの近くに水質監視装置を設置し
て、導管で水を導いて監視装置内に組み込まれた各種水
質計で水質の測定を行なっている。なお、残留塩素を連
続的に安定して測定するためには一般にポーラログラフ
法が採用されている。
2. Description of the Related Art Residual chlorine, which is used for examining disinfection effects, is one of the most important water quality measurements in waterworks. Since this residual chlorine is extremely unstable, accurate values cannot be obtained unless it is accurately measured on-site. Does not come out. However, since it is difficult to attach a water quality monitoring device directly to the water pipe or water supply pipe to be measured, a water quality monitoring device is usually installed near the water pipe, and the water is guided by a conduit to be installed in the monitoring device. The water quality is measured by various water quality meters. The polarographic method is generally employed to continuously and stably measure residual chlorine.

【0003】[0003]

【発明が解決しようとする課題】ところで、測定する試
料水は測定後捨てられるので、できるだけ水質監視装置
に流す試料水は少ない方が望ましい。しかし、導管内の
試料水の流れは水量が少ないと遅くなるため、残留塩素
濃度の低下を招き、測定対象の管路の濃度と装置で測定
される濃度が僅かに異なり、残留塩素濃度を正確に測定
できなという問題点がある。特に、残留塩素濃度が低い
場合は、この僅かの誤差が問題となる。
By the way, since the sample water to be measured is discarded after the measurement, it is desirable that as little sample water as possible be supplied to the water quality monitoring device. However, the flow of sample water in the conduit becomes slow when the amount of water is small, which causes a decrease in the residual chlorine concentration, and the concentration of the pipeline to be measured and the concentration measured by the device are slightly different, and the residual chlorine concentration is There is a problem that it cannot be measured. In particular, when the residual chlorine concentration is low, this slight error becomes a problem.

【0004】本発明は、このような従来の問題点を解決
するためになされたもので、測定誤差を補正して残留塩
素濃度を正確に測定できる水質監視装置を提供すること
を目的としている。
The present invention has been made in order to solve such a conventional problem, and an object thereof is to provide a water quality monitoring device capable of accurately measuring the residual chlorine concentration by correcting the measurement error.

【0005】[0005]

【課題を解決するための手段】本発明の水質監視装置
は、残留塩素計側に試料水を流す主流路と、この主水路
の減圧弁を経由させずに直接排出するバイパス通路と、
このバイパス通路の試料水の流れを遮断する弁とを設け
ている。
A water quality monitoring device of the present invention comprises a main flow path for flowing sample water to a residual chlorine meter side, and a bypass passage for directly discharging the main water path without passing through a pressure reducing valve.
A valve for shutting off the flow of sample water in the bypass passage is provided.

【0006】[0006]

【作用】本発明は上記構成により、定常時は、試料水の
消費量を抑えるため、主流路だけに試料水を流すが、こ
の時の導管を流れる試料水の流れは遅く、残留塩素濃度
は低下し、実際の水道水などの残留塩素濃度とは相違す
ることになる。そこで、バイパス流路の弁を短時間、開
弁して導管に通常より多くの試料水を流すと、試料水が
導管内に滞留する時間が短かくなるため、残留塩素濃度
の低下が少なくなり、水道水に近い試料水が水質監視装
置内に流れ込むことになる。この試料水を測定すること
によって水道水にほぼ等しい状態の残留塩素濃度を測定
できる。この測定値から定常時の測定値を補正すれば水
道水の正確な残留塩素濃度値を知ることが可能となる。
しかし、試料水を間歇的にバイパス流路に流す量はわず
かであから、試料水が無駄になる量は少なくできる。
According to the present invention, in the steady state, the sample water is flowed only through the main flow path in order to suppress the consumption of the sample water in a steady state, but the flow of the sample water through the conduit at this time is slow and the residual chlorine concentration is It will decrease and will be different from the actual residual chlorine concentration of tap water. Therefore, if the valve of the bypass channel is opened for a short time and more sample water is allowed to flow through the conduit than usual, the sample water stays in the conduit for a shorter time, and the decrease in residual chlorine concentration is reduced. , Sample water close to tap water will flow into the water quality monitoring device. By measuring this sample water, the residual chlorine concentration in a state almost equal to tap water can be measured. Correcting the steady-state measured value from this measured value makes it possible to know the accurate residual chlorine concentration value of tap water.
However, since the amount of sample water intermittently flowing to the bypass channel is small, the amount of sample water wasted can be reduced.

【0007】[0007]

【実施例】以下に本発明の一実施例について、図面を参
照しながら説明する。図1は本発明の一実施例における
水質監視装置の回路図であって、この図において、1は
配水管を示し、2は水質監視装置を示している。配水管
1と水質監視装置2とは導管3で連結されており、配水
管1を流れる水道水を水質監視装置2内に導びき入れて
いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a circuit diagram of a water quality monitoring device according to an embodiment of the present invention, in which 1 indicates a water distribution pipe and 2 indicates a water quality monitoring device. The water pipe 1 and the water quality monitoring device 2 are connected by a conduit 3, and the tap water flowing through the water pipe 1 is introduced into the water quality monitoring device 2.

【0008】水質監視装置2内には、定常の測定時に残
留塩素計6に試料水を流す主流路5を備えている。この
主流路5の残留塩素計6の上流側に、試料水の水圧を減
圧する減圧弁7と、試料水の流量を測定する流量計8が
設けられている。
The water quality monitoring device 2 is provided with a main channel 5 for flowing sample water to a residual chlorine meter 6 during steady measurement. A pressure reducing valve 7 for reducing the water pressure of the sample water and a flow meter 8 for measuring the flow rate of the sample water are provided upstream of the residual chlorine meter 6 in the main flow path 5.

【0009】水質監視装置2内には、さらに、間歇的に
導管3に多くの試料水を流して残留塩素濃度の測定誤差
を補正するために、導管3から流れてきた試料水を、残
留塩素計6を経由させずいに直接、排水路9に流すバイ
パス流路10が設けられている。このバイパス流路10
には、制御器11で弁の開閉を制御する弁(電動弁1
2)と、その下流に可変絞り弁13が設けられている。
Further, in the water quality monitoring device 2, a large amount of sample water is intermittently caused to flow through the conduit 3 to correct the measurement error of the residual chlorine concentration. A bypass flow path 10 is provided to flow directly to the drainage path 9 without passing through the total 6. This bypass channel 10
The valve that controls the opening and closing of the valve by the controller 11 (motorized valve 1
2) and the variable throttle valve 13 is provided downstream thereof.

【0010】なお、主流路5とバイパス流路10が分岐
する分岐点の上流側にゲート弁14が設けられている。
つぎに、上記構成の作用を説明する。
A gate valve 14 is provided upstream of a branch point where the main flow path 5 and the bypass flow path 10 branch.
Next, the operation of the above configuration will be described.

【0011】定常時の試料水は、配水管1から導管3を
通って水質監視装置2に入り、ゲート弁14、減圧弁
7、流量計8を通って残留塩素計6内に入り、残留塩素
が測定されて排水路9から排出される。電動弁12は閉
弁しているため、バイパス流路10には試料水は全く流
れない。
The sample water in the steady state enters the water quality monitoring device 2 from the water distribution pipe 1 through the conduit 3, and enters the residual chlorine meter 6 through the gate valve 14, the pressure reducing valve 7 and the flow meter 8 to remove residual chlorine. Is measured and discharged from the drainage channel 9. Since the motor-operated valve 12 is closed, no sample water flows in the bypass flow passage 10.

【0012】制御器11によって電動弁12を開弁する
と、可変絞り弁13で調節された量の試料水がバイパス
流路10にも流れる。即ち、定常時は測定水として少量
の水が導管3を流れているが、電動弁12を開弁するこ
とによって導管3に通常より多くの試料水が流れること
になる。
When the motor-operated valve 12 is opened by the controller 11, the sample water of the amount adjusted by the variable throttle valve 13 also flows into the bypass passage 10. That is, in a steady state, a small amount of water as the measurement water flows through the conduit 3, but by opening the motor-operated valve 12, a larger amount of sample water flows through the conduit 3 than usual.

【0013】つぎに、残留塩素濃度の測定方法を説明す
る。定常時は、試料水の消費量を抑えて測定を行なうた
め、電動弁12を閉弁して主流路5だけに試料水を流
す。この時の導管3内を流れる試料水の流れは遅く、残
留塩素濃度の低下が予想される。従って、配水管1を流
れる水道水の残留塩素濃度と残留塩素計6内で測定され
る残留塩素濃度とは相違することになる。
Next, a method of measuring the residual chlorine concentration will be described. In order to carry out the measurement while suppressing the consumption of the sample water at a constant time, the motor-operated valve 12 is closed and the sample water is flowed only through the main flow path 5. At this time, the flow of the sample water flowing through the conduit 3 is slow, and the concentration of residual chlorine is expected to decrease. Therefore, the residual chlorine concentration of the tap water flowing through the water distribution pipe 1 and the residual chlorine concentration measured in the residual chlorine meter 6 are different.

【0014】そこで、制御器11で短時間、電動弁12
を開弁して導管3に通常より多くの試料水を流すと、試
料水が導管3内に滞留する時間が短くなるため、残留塩
素濃度の低下が少なくなり、配水管1内を流れる水道水
に近い試料水が水質監視装置2内に流れ込むことにな
る。この試料水を測定することによって配水管1内を流
れる水道水にほぼ等しい状態の残留塩素濃度の測定がで
きる。この測定値によって前記の通常の測定値を補正す
れば配水管1を流れる水道水の正確な残留塩素濃度値を
知ることが可能となる。しかし、試料水を間歇的にバイ
パス流路10に流す量はわずかであから、試料水を無駄
に流す量が少なくできる。
Therefore, the motor-operated valve 12 is controlled by the controller 11 for a short time.
When the valve is opened and a larger amount of sample water is flowed into the conduit 3 than usual, the time for which the sample water stays in the conduit 3 is shortened, the residual chlorine concentration is reduced less, and tap water flowing in the water distribution pipe 1 is reduced. The sample water close to is flowing into the water quality monitoring device 2. By measuring this sample water, it is possible to measure the residual chlorine concentration in a state substantially equal to the tap water flowing in the water distribution pipe 1. By correcting the above-mentioned normal measurement value with this measurement value, it becomes possible to know the accurate residual chlorine concentration value of the tap water flowing through the water pipe 1. However, since the amount of the sample water intermittently flown to the bypass channel 10 is small, the amount of the sample water wasted can be reduced.

【0015】さらに、図2を用いて測定値を補正する場
合を具体的に説明する。図2は、この水質監視装置によ
り連続的に残留塩素濃度を測定した時の状態図であっ
て、縦軸に残留塩素測定値(mg/l) 、横軸に時間(1
日)を示している。この図において、Aは導管3を流れ
る試料水の流量が少ない定常の残留塩素濃度の数値を示
し、Bはバイパス流路10に試料水を流すことによって
導管3の流量を増やした時の数値を示している。Aの残
留塩素濃度はおよそ0.20mg/lであって、Bは0.2
4mg/lである。従って、0.24mg/l−0.20mg/l=
0.04mg/lを定常時の測定値に加えて補正してやれ
ば、正確な配水管1内の水道水の残留塩素濃度を知るこ
とができる。
Further, the case where the measured value is corrected will be specifically described with reference to FIG. Fig. 2 is a state diagram when the residual chlorine concentration is continuously measured by this water quality monitoring device. The vertical axis shows the residual chlorine measurement value (mg / l) and the horizontal axis shows the time (1
Day). In this figure, A shows the numerical value of the steady-state residual chlorine concentration where the flow rate of the sample water flowing through the conduit 3 is small, and B shows the numerical value when the flow rate of the conduit 3 is increased by flowing the sample water through the bypass channel 10. Shows. The residual chlorine concentration of A is about 0.20 mg / l and that of B is 0.2
It is 4 mg / l. Therefore, 0.24 mg / l-0.20 mg / l =
If 0.04 mg / l is added to the measured value in the steady state and corrected, the accurate residual chlorine concentration of tap water in the water pipe 1 can be known.

【0016】上記実施例では、水質監視装置1の内部に
は残留塩素計6だけしか示していないが、pH計や導電
率計などが装備されたものであってもよいことは言うま
でもない。
In the above embodiment, only the residual chlorine meter 6 is shown inside the water quality monitoring apparatus 1, but it goes without saying that it may be equipped with a pH meter, a conductivity meter or the like.

【0017】また、バイパス流路10は、主流路5と共
通する排水路9に接続しているが、主流路5とは別にし
てもよい。
Further, although the bypass flow passage 10 is connected to the drainage passage 9 which is common to the main flow passage 5, it may be separated from the main flow passage 5.

【0018】[0018]

【発明の効果】以上のように、本発明によれば、試料水
を主水路を経由させずに排出するバイパス通路を別に設
けるとともに、このバイパス通路に弁を設けたことによ
り、バイパス流路の弁を短時間、開弁して導管に通常よ
り多くの試料水を流すと、試料水の残留塩素濃度の低下
が少なくなり、水道水にほぼ等しい残留塩素濃度を測定
できる。この測定値から定常時の測定値を補正すれば試
料水を無駄に流すことなく水道水の残留塩素濃度値を正
確に測定できる。
As described above, according to the present invention, the bypass passage for discharging the sample water without passing through the main water passage is separately provided, and the valve is provided in the bypass passage. When the valve is opened for a short time and more sample water than usual is flowed through the conduit, the decrease in residual chlorine concentration in the sample water is reduced, and the residual chlorine concentration almost equal to tap water can be measured. If the measured value in the steady state is corrected from this measured value, the residual chlorine concentration value of tap water can be accurately measured without wasting sample water.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における水質監視装置の回路
図である。
FIG. 1 is a circuit diagram of a water quality monitoring device according to an embodiment of the present invention.

【図2】連続的に残留塩素濃度を測定した時の状態図で
ある。
FIG. 2 is a state diagram when the residual chlorine concentration is continuously measured.

【符号の説明】[Explanation of symbols]

2 水質監視装置 5 主流路 6 残留塩素計 10 バイパス通路 12 電動弁 2 Water quality monitoring device 5 Main flow path 6 Residual chlorine meter 10 Bypass passage 12 Motorized valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水道水などの残留塩素濃度を測定する残
留塩素計を備えた水質監視装置において、残留塩素計側
に試料水を流す主流路と、この主水路を経由させずに試
料水を直接排出するバイパス通路と、このバイパス通路
の試料水の流れを遮断する弁とを設けたことを特徴とす
る水質監視装置。
1. A water quality monitoring device equipped with a residual chlorine meter for measuring the residual chlorine concentration of tap water, etc., wherein a main flow path for flowing sample water to the residual chlorine meter side and a sample water flow without passing through this main water channel. A water quality monitoring device comprising a bypass passage for direct discharge and a valve for shutting off the flow of sample water in the bypass passage.
JP5292868A 1993-11-24 1993-11-24 Water quality monitoring device Pending JPH07146287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5292868A JPH07146287A (en) 1993-11-24 1993-11-24 Water quality monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5292868A JPH07146287A (en) 1993-11-24 1993-11-24 Water quality monitoring device

Publications (1)

Publication Number Publication Date
JPH07146287A true JPH07146287A (en) 1995-06-06

Family

ID=17787422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5292868A Pending JPH07146287A (en) 1993-11-24 1993-11-24 Water quality monitoring device

Country Status (1)

Country Link
JP (1) JPH07146287A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100437308B1 (en) * 2001-04-27 2004-06-25 산요덴키가부시키가이샤 Water treatment apparatus
JP2007198033A (en) * 2006-01-27 2007-08-09 Toshiba Corp Portable discarded water testing device
JP2008203274A (en) * 2008-05-27 2008-09-04 Tacmina Corp Residual chlorine meter, and liquid sterilization device using it
JP2010507094A (en) * 2006-10-18 2010-03-04 インテリシス リミテッド Fluid monitoring apparatus and operation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100437308B1 (en) * 2001-04-27 2004-06-25 산요덴키가부시키가이샤 Water treatment apparatus
JP2007198033A (en) * 2006-01-27 2007-08-09 Toshiba Corp Portable discarded water testing device
JP4537962B2 (en) * 2006-01-27 2010-09-08 株式会社東芝 Portable wastewater inspection system
JP2010507094A (en) * 2006-10-18 2010-03-04 インテリシス リミテッド Fluid monitoring apparatus and operation method thereof
JP2008203274A (en) * 2008-05-27 2008-09-04 Tacmina Corp Residual chlorine meter, and liquid sterilization device using it

Similar Documents

Publication Publication Date Title
JP2004005308A (en) Method of dividing flow supply of gas to chamber from gas supply plant equipped with flow-control device
JPH07146287A (en) Water quality monitoring device
CN211005541U (en) Protective structure for preventing condensation of water-cooling roller
JPS56166422A (en) Fluid measuring apparatus
JPS5713319A (en) Measuring instrument for liquid level
JP3597978B2 (en) Sample dilution analyzer
CN217007153U (en) Water sample pretreatment device matched with chemical online instrument
JPS5848618Y2 (en) Suspension concentration measuring device
JP3276575B2 (en) Hardness leak detector for water softener
JPH07146275A (en) Residual chlorine meter
KR200158396Y1 (en) Automatic pressure control system for nitrogen box use process of manufacturing semiconductor device
JPS61128124A (en) Flow meter
CN206095310U (en) Medicinal water return water on -line automatic detection device
JP2001124692A (en) Particulate measuring device
CN218098751U (en) On-line measuring device for viscosity of olefin polymer solution
JP2000124186A (en) Liquid feeding device
JP4088965B2 (en) Polarographic detector
JPH0928141A (en) Liquid-agrochemical injection apparatus
KR20070098134A (en) Automatic supplying device for plating solution
JPH07284755A (en) Water quality monitor device in water service
JPH11319526A (en) Apparatus for producing ozone water
JP2005264259A5 (en) Ar gas supply equipment for converter blowing and method for supplying Ar gas for converter blowing
JP2001027555A (en) Flowrate-measuring device and leak tester
JPH05215708A (en) Method for automatically calibrating ph meter
JPS6093940A (en) Sampling apparatus