JPS63212707A - Exhaust absorbing steam prime mover unit - Google Patents

Exhaust absorbing steam prime mover unit

Info

Publication number
JPS63212707A
JPS63212707A JP4487787A JP4487787A JPS63212707A JP S63212707 A JPS63212707 A JP S63212707A JP 4487787 A JP4487787 A JP 4487787A JP 4487787 A JP4487787 A JP 4487787A JP S63212707 A JPS63212707 A JP S63212707A
Authority
JP
Japan
Prior art keywords
exhaust
temperature
steam
pressure
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4487787A
Other languages
Japanese (ja)
Inventor
Masayuki Arai
新井 雅幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP4487787A priority Critical patent/JPS63212707A/en
Publication of JPS63212707A publication Critical patent/JPS63212707A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To lower the exhaust temperature and exhaust pressure so as to recover and regenerate exhaust heat in the exhaust gas by communicating an evaporative cooling device with the outlet of a condensing heater and a turbine high pressure portion, and connecting a steam compressor to the top portion of a steam generator and the inlet of the condensing heater. CONSTITUTION:In a steam prime mover unit including an absorber 8 communicating with a turbine 12 low pressure portion through an exhaust heat exchanger 13, the inlet side of an evaporative cooling device 9 for cooling the absorber 8 is connected to the outlet of a condensing heater 4 for heating a steam generator 3 and to a turbine 12 high pressure portion through an expansion valve 7 and the first heat exchanger 6. The suction side of the evaporative cooling device 9 is connected to the top portion of the steam generator 3 and the discharge side thereof is connected to the inlet of the condensing heater 4 respectively. In this arrangement, steam can be evaporated and separated from an absorbent solution and condensed to be liquefied, and further the condensed water is forced to act as a coolant on the evaporative cooling device 9 to be evaporated, so that the saturation temperature and pressure of the absorbent solution in the absorber 8 can be put in a designated state of low temperature and low pressure.

Description

【発明の詳細な説明】 本発明は吸収冷凍機の原理を蒸気原動装置に応用する事
に依り、従来の蒸気原動装置に於ける復水器を吸収器に
代え、タービンよシ排出される作業媒体蒸気の排気を、
吸収剤溶液に吸収溶解させて溶液の状態に於て凝縮液化
させるところの排気吸収蒸気原動装置に関するものであ
る。
Detailed Description of the Invention The present invention applies the principle of an absorption refrigerator to a steam power unit, thereby replacing the condenser in the conventional steam power unit with an absorber, thereby reducing the amount of work that is discharged from the turbine. Exhaust the medium vapor,
This relates to an exhaust gas absorption steam power system that absorbs and dissolves the exhaust gas into an absorbent solution and condenses and liquefies it in the solution state.

本発明は更に加圧蒸発式熱ポンプの原理をも応用してそ
の全装置を本発明の構成部分とし、その作用に依シ吸収
剤溶液よりの作業媒体蒸気の蒸発分離と凝縮液化を行な
わしめるものである・その目的とする事は従来の復水器
を備える蒸気原動装置に於ける排温排圧以下の低い排温
排圧の実現と排気に於ける排熱の回収再生にある。
The present invention further applies the principle of a pressurized evaporative heat pump, making the entire device a component of the present invention, and relies on its action to perform the evaporative separation and condensation of the working medium vapor from the absorbent solution. Its purpose is to realize a low exhaust temperature and exhaust pressure that is lower than the exhaust temperature and exhaust pressure in a steam power unit equipped with a conventional condenser, and to recover and regenerate the exhaust heat in the exhaust gas.

〔産業上の利用分野〕[Industrial application field]

動力エネルギーの発生に依b、産業上の各種機器に利用
可能である。
Depending on the generation of power energy, it can be used in various industrial equipment.

〔従来の技術〕[Conventional technology]

従来の技術としては例えば(山田治夫「冷凍機および熱
ポンプ」昭33.1.5、養賢堂、P2O0及びP31
8)及び(柴山信三「蒸気タービン」昭32.12.2
5、山海量P15.)等の文献がある。
Examples of conventional technology include (Haruo Yamada, "Refrigerating Machines and Heat Pumps", January 5, 1972, Yokendo, P2O0 and P31
8) and (Shinzo Shibayama “Steam Turbine” December 2, 1963)
5. Mountain and sea volume P15. ), etc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の復水器を備える蒸気原動装置に於ける排温排圧は
、使用される常温の冷却水温度に依って制約され、理想
的な場合に於ても復水器に於ける冷却水温度に一致する
排温及びその排温に相当する水蒸気の飽和圧力を以って
排温排圧の低限界とする。実際には排温に於て32℃。
The exhaust temperature and exhaust pressure in a steam power plant equipped with a conventional condenser is limited by the room temperature cooling water temperature used, and even in the ideal case, the cooling water temperature in the condenser The exhaust temperature and the steam saturation pressure corresponding to the exhaust temperature are defined as the lower limit of exhaust temperature and exhaust pressure. Actually, the exhaust temperature is 32℃.

排圧に於て排温32−Cに相当する水蒸気飽和圧力37
1WIHgが実用上の低限界である。また排気に於ける
排熱はその全部が冷却水中に放出されサイクル内に回収
再生される事がない。
Water vapor saturation pressure 37 corresponding to exhaust temperature 32-C at exhaust pressure
1WIHg is the practical lower limit. Furthermore, all of the waste heat from the exhaust gas is released into the cooling water and is not recovered and regenerated within the cycle.

〔問題点を解決するための手段〕[Means for solving problems]

以上の従来の復水器を備える蒸気原動装置に於ける制約
を解消する為に本発明は、まず吸収冷凍機に於ける原理
を応用して従来の復水器を吸収器に代え、吸収冷凍機が
実現している低温低山を以って蒸気原動装置に於ける排
温排圧とする。更に加圧蒸発式熱ポンプの原理をも応用
してその全装置を本発明に於ける構成部分とし、その作
用の結果として吸収剤溶液からの水蒸気の蒸発分離と凝
、給液化を可能とさせ、更にその凝縮水を蒸発冷却器に
於て冷却剤として作用させて気化蒸発させ、 ′吸収器
に於ける吸収剤溶液の飽和温度及び圧力を所定の低温低
圧状態にするものでおる。即ち本発明に於ては作業媒体
蒸気及び冷却剤を同一物質とする事で排気に於ける排熱
の回収再生を実現するものである。
In order to solve the above-mentioned restrictions on steam power equipment equipped with a conventional condenser, the present invention first applies the principle of an absorption chiller to replace the conventional condenser with an absorber, thereby creating an absorption chiller. The low temperature and low temperature achieved by the machine is used as the exhaust temperature exhaust pressure in the steam power equipment. Furthermore, by applying the principle of a pressurized evaporative heat pump, the entire device is a component of the present invention, and as a result of its action, it is possible to evaporate and separate water vapor from an absorbent solution, condense it, and convert it into a liquid supply. Furthermore, the condensed water is allowed to act as a coolant in the evaporative cooler and evaporated, thereby bringing the saturation temperature and pressure of the absorbent solution in the absorber to a predetermined low temperature and low pressure state. That is, in the present invention, the working medium steam and the coolant are made of the same substance, thereby realizing the recovery and regeneration of exhaust heat from the exhaust gas.

〔作用〕[Effect]

排気における排熱の回収再生を可能とし、且つ従来の復
水器を備えた蒸気原動装置の排温排圧以上の低い排気排
圧を実現し、従来の低温限界を超える再生利用が可能と
なる極めて顕著な作用がある。
It makes it possible to recover and regenerate exhaust heat in the exhaust gas, and achieves a lower exhaust exhaust pressure than the exhaust temperature exhaust pressure of a steam power unit equipped with a conventional condenser, making it possible to recycle beyond the conventional low-temperature limit. It has a very noticeable effect.

〔実施例〕〔Example〕

更に之を図面に示す実施の一例に就いて説明すると本発
明は図示の如く構、成装置されその構成は蒸気圧縮機1
、連管2、蒸気発生器3、凝縮加熱器4、連管5、第一
熱交換器6、膨張弁7、吸収器8、蒸発冷却器9、蒸気
過熱器10.連管11、タービン12、排熱交換器13
、溶液ポンプ14、連管15、第二熱交換器、16、連
管17,18゜19.20及び21、減圧装置22の各
部分を密閉回路状に連通構成するものである。
Further, the present invention will be explained with reference to an example of implementation shown in the drawings.The present invention is constructed and constructed as shown in the drawings.
, connecting pipe 2, steam generator 3, condensing heater 4, connecting pipe 5, first heat exchanger 6, expansion valve 7, absorber 8, evaporative cooler 9, steam superheater 10. Connecting pipe 11, turbine 12, exhaust heat exchanger 13
, the solution pump 14, the connecting pipe 15, the second heat exchanger 16, the connecting pipes 17, 18, 19, 20 and 21, and the pressure reducing device 22 are configured to communicate in a closed circuit.

以上の構成に於て作業媒体蒸気には水蒸気、吸収剤には
リチウムブロマイドの水溶液を使用するものとして以下
説明する。最初に本発明の作用条件を特定する。吸収剤
溶液の水蒸気溶解最大濃度t−50%とする。その最大
濃度の溶液を以下希溶液と記す。水蒸気溶解最小濃度を
45−とする。
In the above configuration, the following description will be made assuming that water vapor is used as the working medium vapor and an aqueous solution of lithium bromide is used as the absorbent. First, the working conditions of the present invention are specified. The maximum water vapor dissolution concentration of the absorbent solution is t-50%. The solution with the maximum concentration is hereinafter referred to as a dilute solution. The minimum concentration of water vapor dissolved is 45-.

その最小濃度の溶液を以下濃溶液と記す。蒸気発生器3
に於ける飽和圧力50 mmHgo従って濃溶液飽和温
度73℃。吸収器8に於ける希溶液飽和温度32℃、従
って飽和圧力即ち排圧9.5 mmHg o各熱交換過
程に於ける高低温度の温度差3℃。以上の特定条件に於
ての本発明の作用は、蒸気圧縮機1は蒸気発生器3内の
飽和温度73℃、圧力50mmHgの水蒸気を連管18
に依りて吸入して圧縮し、温度73℃以上の高温の過熱
蒸気として連管2に依シ蒸気発生器3を加熱する凝縮加
熱器4に送シ、温度62℃の希溶液を加熱して水蒸気を
蒸発分離させ、飽和温度73℃の濃溶液に至ってその蒸
発過程を終了する。飽和温度62℃の希溶液に冷却され
九過熱蒸気は、飽和温度65℃、従って飽和圧力184
mmHg Ic於て凝縮加熱器4内にて凝縮液化し、連
管5に依って蒸発冷却器9に送られる途中第一熱交換器
6に於て吸収器8から蒸気発生器3に送られる途中の温
度32℃の飽和希溶液と間接に対向流の接触をして冷却
され、温度35℃の過冷却凝縮水となシ、次に膨張弁7
に依って蒸発冷却器9内の水蒸気飽和圧力30 mmH
gに減圧され、飽和温度29℃の飽和水として蒸発冷却
器9に入る。蒸発冷却器9に於て飽和温度29℃の飽和
水は、吸収器8に於ける飽和温度32℃、圧力9.5 
mmHgの飽和希溶液を冷却して自らは加熱され、その
全量を飽和温度29℃、圧力30 mmHgにて気化蒸
発させ。
The solution with the minimum concentration is hereinafter referred to as a concentrated solution. steam generator 3
Saturation pressure at 50 mmHgo and concentrated solution saturation temperature 73°C. The saturation temperature of the dilute solution in the absorber 8 is 32°C, therefore the saturation pressure, that is, the exhaust pressure is 9.5 mmHg. o The temperature difference between high and low temperatures in each heat exchange process is 3°C. The operation of the present invention under the above specific conditions is that the steam compressor 1 supplies steam at a saturation temperature of 73°C and a pressure of 50 mmHg in the steam generator 3 to the connecting pipe 18.
The superheated steam at a temperature of 73°C or higher is sent to a condensing heater 4 which heats a steam generator 3, which heats a dilute solution at a temperature of 62°C. The water vapor is separated by evaporation to reach a concentrated solution with a saturation temperature of 73° C., and the evaporation process is completed. Nine superheated vapors cooled to a dilute solution with a saturation temperature of 62°C have a saturation temperature of 65°C and therefore a saturation pressure of 184°C.
It is condensed and liquefied in the condensing heater 4 at mmHg Ic, and on its way to the evaporative cooler 9 via the connecting pipe 5, while being sent from the absorber 8 to the steam generator 3 in the first heat exchanger 6. is cooled by indirect countercurrent contact with a saturated dilute solution at a temperature of 32°C, and then cooled with supercooled condensed water at a temperature of 35°C, and then the expansion valve 7
The water vapor saturation pressure in the evaporative cooler 9 is 30 mmH depending on
g, and enters the evaporative cooler 9 as saturated water with a saturation temperature of 29°C. The saturated water in the evaporative cooler 9 has a saturation temperature of 29°C, and the absorber 8 has a saturation temperature of 32°C and a pressure of 9.5°C.
A saturated dilute solution of mmHg is cooled and heated, and the entire amount is vaporized at a saturation temperature of 29°C and a pressure of 30 mmHg.

飽和蒸気としてタービン12に送られる途中蒸気過熱器
10に於て、蒸気発生@3に於ての蒸発過程を終了して
吸収器8に送られる途中の飽和温度73℃、圧力50m
1gの飽和濃溶液と間接に対向流の接触をして熱交換作
用を行ない、濃溶液を温度68℃に冷却すると同時に自
らは加熱されて温度70℃の過熱蒸気となり連管11に
依りタービン12に送られる。タービン12に於て過熱
蒸気  ゛は、排圧即ち吸収器8に於ける飽和温度32
℃の希溶液飽和圧力9.5 mmHgとの圧力差に於て
膨張してタービン仕事を発生し、その温度を低下させて
排圧に相当する水蒸気飽和温度部ち排温10℃の排気と
して吸収器8え排出される。その途中排熱交換器13に
於て排温10℃の排気は、外部の常温の熱源と熱交換作
用を行ない、熱交換量に相当する冷熱を外部に供給する
。−万蒸気過熱器10に於ての熱交換作用を終了した温
度68℃の濃溶液は、連管20及び21に依って吸収器
8に送られる途中第二熱交換器16に於て、吸収器8よ
り蒸気発生器4に送られる途中の温度35℃の希溶液と
間接に対向流の接触をして熱交換作用を行ない、希溶液
を温度62℃に加熱すると同時に自らは温度41℃に冷
却されて過冷却濃溶液になり、次に減圧装置22に依り
て吸収器8内の希溶液飽和圧力9.5 mmHgに減圧
水吸収器8に入る。吸収器8に入っ九濃溶液は、タービ
ン12より排出されて来る排温10℃の排気と直接に接
触して吸収溶解し、その過程の最終に於て飽和希溶液と
なり、排気の吸収溶解を終了する。その吸収過程に於て
は、排気に於ける温度10℃の排熱は、吸収剤溶液温度
に常に一致する凝縮熱として溶液中に放出され、その飽
和温度及び圧力を高めるから蒸発冷却器9に依って冷却
し、吸収器8に於ける希溶液飽和温度32℃及び圧力9
.5 mmHgを保持させるものとする。吸収器8に於
ける飽和希溶液は、溶液ポンプ14に依って蒸気発生器
3の吸収剤飽和圧力50mmHg以上に加圧され、連管
15に依って最初に第一熱交換器6に送られ、凝縮加熱
器4より蒸発冷却器9に送られる途中の温度65°、飽
和圧力184mmHHの高圧凝縮水と間接に対向流の接
触をして熱交換作用を行ない、高圧凝縮水を35℃に冷
却すると同時に自らは温度35℃に加熱され、次に第二
熱交換器16に於て蒸気過熱器10での熱交換作用を終
了して吸収器8に送られる途中の温度68℃の濃溶液と
間接に対向流の接触をして熱交換作用を行ない、濃溶液
を温度38℃に冷却すると同時に自らは温度62℃に加
熱され連管17に依シ蒸気発生器3に送られる。以下以
上に説明した作用を繰り返す。
The saturated steam is sent to the turbine 12 as saturated steam in the steam superheater 10, and after finishing the evaporation process in steam generation @3, the saturated steam is sent to the absorber 8 at a saturation temperature of 73°C and a pressure of 50 m.
Heat exchange is performed by indirectly contacting 1 g of a saturated concentrated solution in a countercurrent flow, and the concentrated solution is cooled to a temperature of 68°C, and at the same time it is heated and becomes superheated steam at a temperature of 70°C. sent to. The superheated steam in the turbine 12 is the exhaust pressure, that is, the saturation temperature 32 in the absorber 8.
It expands in the pressure difference between the dilute solution saturation pressure of 9.5 mmHg and generates turbine work, lowering its temperature and absorbing it as exhaust gas at the steam saturation temperature part corresponding to the exhaust pressure and exhaust temperature of 10 °C. The container 8 is discharged. On the way, in the exhaust heat exchanger 13, the exhaust gas having an exhaust temperature of 10° C. exchanges heat with an external heat source at room temperature, and supplies cold heat corresponding to the amount of heat exchanged to the outside. - The concentrated solution at a temperature of 68°C which has completed the heat exchange action in the steam superheater 10 is absorbed in the second heat exchanger 16 while being sent to the absorber 8 via the connecting pipes 20 and 21. The dilute solution is indirectly brought into countercurrent contact with the dilute solution at a temperature of 35°C being sent from the vessel 8 to the steam generator 4 to perform a heat exchange effect, and the dilute solution is heated to a temperature of 62°C while at the same time the temperature of the diluted solution reaches 41°C. It is cooled to become a supercooled concentrated solution and then enters the vacuum water absorber 8 by the pressure reducing device 22 to a dilute solution saturation pressure in the absorber 8 of 9.5 mmHg. The concentrated solution entering the absorber 8 directly contacts and absorbs and dissolves the exhaust gas discharged from the turbine 12 at an exhaust temperature of 10°C, and at the end of the process becomes a saturated dilute solution, which absorbs and dissolves the exhaust gas. finish. In the absorption process, the exhaust heat at a temperature of 10°C in the exhaust gas is released into the solution as condensation heat that always matches the temperature of the absorbent solution, increasing its saturation temperature and pressure, and is then transferred to the evaporative cooler 9. Therefore, the dilute solution saturation temperature in the absorber 8 is 32°C and the pressure is 9.
.. 5 mmHg shall be maintained. The saturated dilute solution in the absorber 8 is pressurized by the solution pump 14 to an absorbent saturation pressure of 50 mmHg or more in the steam generator 3, and is first sent to the first heat exchanger 6 via the connecting pipe 15. , the high-pressure condensed water having a temperature of 65° and a saturation pressure of 184 mmHH is indirectly brought into contact with the high-pressure condensed water that is being sent from the condensing heater 4 to the evaporative cooler 9 to perform a heat exchange action and cool the high-pressure condensed water to 35°C. At the same time, it is heated to a temperature of 35°C, and then in the second heat exchanger 16, the heat exchange action in the steam superheater 10 is completed, and the concentrated solution at a temperature of 68°C is sent to the absorber 8. Heat exchange is performed through indirect countercurrent contact, and the concentrated solution is cooled to a temperature of 38° C. At the same time, it is heated to a temperature of 62° C. and is sent to the steam generator 3 through a connecting pipe 17. The actions described above are repeated below.

本発明は作業媒体蒸気及び吸収剤両物質を、それぞれ適
当な性状に於ける物質に変更する事に依り、その作用温
度及び圧力水準を適当な水準に定める事が可能である;
前記説明に於ては、従来の復水器を備えた蒸気原動装置
との比較上から、作業媒体蒸気には水蒸気を特定して説
明し、本発明が原理的に成立する事を説明したが、前記
説明に於て特定した圧力水準に於ては、水蒸気の比容積
が膨大で実用には適さない、従って本発明を実施する場
合には、作業媒体蒸気には水蒸気より低温高圧の性状の
物質を使用することが適当である。
In the present invention, by changing both the working medium vapor and the absorbent material to materials with appropriate properties, it is possible to set the operating temperature and pressure level to appropriate levels;
In the above explanation, water vapor was specifically explained as the working medium steam for comparison with a conventional steam power unit equipped with a condenser, and it was explained that the present invention is established in principle. , At the pressure level specified in the above explanation, the specific volume of water vapor is enormous and is not suitable for practical use. Therefore, when carrying out the present invention, the working medium vapor has properties of lower temperature and higher pressure than water vapor. It is appropriate to use substances.

例示するとアンモニア、フレオン12或いはフレオン2
1等の物質を作業媒体蒸気とする事である。
For example, ammonia, Freon 12 or Freon 2
The first-class substance is the working medium vapor.

その場合吸収剤は、作業媒体蒸気に対する親和力が大な
る物質に当然変更されるが、その結果として作業媒体蒸
気の比容積は減少し、作用温度水準も低下する。その結
果排温もマイナス20℃程度に低下する事も可能となり
、その場合冷熱の増加と共に常温を熱源とする事の可能
性も生じる。
The absorbent is then naturally changed to a substance that has a greater affinity for the working medium vapor, but as a result the specific volume of the working medium vapor is reduced and the operating temperature level is also reduced. As a result, the exhaust temperature can also be lowered to about -20°C, and in that case, there will be an increase in cold heat and the possibility of using room temperature as a heat source.

〔発明の効果〕〔Effect of the invention〕

本発明は上述の構成、作用より成るから排気における排
熱の回収再生を可能とし、且つ従来の復水器を備え九蒸
気原動装置の排温排圧以下の低い排気排圧を実現し、従
来の低温限界を超える再生利用が可能となる極めて顕著
な作用、効果を生じ得るものである。
The present invention has the above-described structure and operation, and thus enables the recovery and regeneration of exhaust heat in the exhaust gas, and also realizes a low exhaust exhaust pressure that is lower than the exhaust temperature exhaust pressure of a nine-steam power plant equipped with a conventional condenser. This has the potential to produce extremely remarkable actions and effects that make it possible to recycle materials that exceed their low-temperature limits.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を示す基本的構成を示す系統図で
ある。 1・・・蒸気圧縮機、3・・・蒸気発生器、4・・・凝
縮加熱器、6・・・第一熱交換器、7・・・膨張弁、8
・・・吸収器、9・・・蒸発冷却器、10−・・蒸気過
熱器、12−・・タービン、13・・・排熱交換器、1
4・・・溶液4ング、16−・・第二熱交換器、22・
・・減圧装置、2−t 5 。 11.15,17,18.19.20.21−・・連管
The figure is a system diagram showing the basic configuration of an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Vapor compressor, 3... Steam generator, 4... Condensation heater, 6... First heat exchanger, 7... Expansion valve, 8
...Absorber, 9--Evaporative cooler, 10--Steam superheater, 12--Turbine, 13--Exhaust heat exchanger, 1
4...4 solution solution, 16-...second heat exchanger, 22-...
...pressure reducing device, 2-t5. 11.15,17,18.19.20.21--Connected pipes.

Claims (1)

【特許請求の範囲】[Claims] タービン低圧部に排熱交換器を介して連通する吸収器を
備えた蒸気原動装置に於て、吸収器を冷却する蒸発冷却
器の入口側を蒸気発生器を加熱する凝縮加熱器の出口に
膨脹弁及び第一熱交換器を介して連通し、蒸発冷却器の
出口を蒸気過熱器を介してタービン高圧部に連通し、蒸
気圧縮機の吸入側を蒸気発生器の頂上部に、蒸気圧縮機
の排出側を蒸気発生器を加熱する凝縮加熱器の入口にそ
れぞれ連通せしめる事を特徴とする排気吸収蒸気原動装
置。
In a steam power plant equipped with an absorber that communicates with the low pressure part of the turbine via an exhaust heat exchanger, the inlet side of the evaporative cooler that cools the absorber is expanded to the outlet of the condensing heater that heats the steam generator. The outlet of the evaporative cooler is connected to the turbine high pressure section through the steam superheater, the suction side of the vapor compressor is connected to the top of the steam generator, and the vapor compressor is connected to the top of the steam generator. An exhaust absorption steam power unit characterized in that the exhaust side of the exhaust gas absorbing steam power unit is connected to the inlet of a condensing heater that heats a steam generator.
JP4487787A 1987-02-27 1987-02-27 Exhaust absorbing steam prime mover unit Pending JPS63212707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4487787A JPS63212707A (en) 1987-02-27 1987-02-27 Exhaust absorbing steam prime mover unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4487787A JPS63212707A (en) 1987-02-27 1987-02-27 Exhaust absorbing steam prime mover unit

Publications (1)

Publication Number Publication Date
JPS63212707A true JPS63212707A (en) 1988-09-05

Family

ID=12703720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4487787A Pending JPS63212707A (en) 1987-02-27 1987-02-27 Exhaust absorbing steam prime mover unit

Country Status (1)

Country Link
JP (1) JPS63212707A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291404A (en) * 1988-09-27 1990-03-30 Masayuki Arai Exhaust absorbing steam motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61258907A (en) * 1985-05-10 1986-11-17 Kawasaki Heavy Ind Ltd Power system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61258907A (en) * 1985-05-10 1986-11-17 Kawasaki Heavy Ind Ltd Power system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291404A (en) * 1988-09-27 1990-03-30 Masayuki Arai Exhaust absorbing steam motor

Similar Documents

Publication Publication Date Title
US4009575A (en) Multi-use absorption/regeneration power cycle
KR20120128753A (en) Rankine cycle system for ship
JPS58500379A (en) Absorption refrigeration method and device operated by effervescence
CN109519243B (en) Supercritical CO2 and ammonia water combined cycle system and power generation system
US4094355A (en) Heat recovery process
JPH0291404A (en) Exhaust absorbing steam motor
JPS63212707A (en) Exhaust absorbing steam prime mover unit
JPS62218773A (en) Cold and heat accumulator
JPH05272837A (en) Compression absorption composite heat pump
JP4545691B2 (en) Hot water storage system
JP2734343B2 (en) Vacuum ice making equipment
JP2753347B2 (en) Steam turbine system and energy supply system
JP2005172380A (en) Adsorption-type heat pump
JPH07198222A (en) Heat pump including reverse rectifying part
CN211739030U (en) Flue gas enthalpy self-driven cooling purification system
JP4184196B2 (en) Hybrid absorption heat pump system
KR100827569B1 (en) Absorption refrigerating apparatus with heat pump
JPH01234761A (en) Double-effect multi-stage pressure type absorption type refrigerator and system therefor
JP3583171B2 (en) Fabric processing method and apparatus using ammonia
JPS5832301B2 (en) absorption refrigerator
JPS6025714B2 (en) Combined heat pump
JPS6022253B2 (en) absorption refrigerator
JPH048805A (en) Evaporating cooling type absorber and exhaust gas absorbing steam primed mover
JPH06108804A (en) Power generating system
JPH0345205B2 (en)