JPS63210713A - Formation of correction curve - Google Patents

Formation of correction curve

Info

Publication number
JPS63210713A
JPS63210713A JP62044765A JP4476587A JPS63210713A JP S63210713 A JPS63210713 A JP S63210713A JP 62044765 A JP62044765 A JP 62044765A JP 4476587 A JP4476587 A JP 4476587A JP S63210713 A JPS63210713 A JP S63210713A
Authority
JP
Japan
Prior art keywords
approximation
measurement
measurement points
input
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62044765A
Other languages
Japanese (ja)
Other versions
JPH0573161B2 (en
Inventor
Takeo Tanaami
健雄 田名網
Kenta Mikuriya
健太 御厨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP62044765A priority Critical patent/JPS63210713A/en
Publication of JPS63210713A publication Critical patent/JPS63210713A/en
Publication of JPH0573161B2 publication Critical patent/JPH0573161B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a continuous curve from data of many points, to make the influence of noises hard to exert, and to attain high-speed access by dividing many measurement data into several groups and performing regressive approximation, group by group. CONSTITUTION:The measurement data of all measurement points are divided into plural groups which consist of plural continuous measurement points and share measurement points at border parts. Then, the input/output relation of a measurement section to which each group belong is regressively approximated. Then, an optional output value which is set according to a constant standard is substituted in an approximate curve (approximation expression) to calculate a corresponding input value. When plural input values are calculated in this calculating process because of the presence of an overlapping approximation section, those input values are approximated regressively to find one input value. Then, polygonal line approximation connecting virtual measurement points is performed by using corresponding data of output values and input values found as mentioned above to generate a correction coefficient table. Consequently, the influence of noises is hard to exert and access is attained at a high speed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、センサの校正時などにおいて、得られた測定
データから補正曲線(補正式)を求める補正曲線形成方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a correction curve forming method for determining a correction curve (correction formula) from obtained measurement data during sensor calibration or the like.

更に詳しくは、センサの出力を計算機等により補正演算
して出力する測定装置において、この演算処理に使用さ
れる補正曲線(補正式)を求め、補正係数テーブルとし
て計算機内に予め記憶させておくための補正曲線形成方
法に関するものである。
More specifically, in a measuring device that corrects and outputs sensor output using a computer, etc., the correction curve (correction formula) used for this calculation process is determined and stored in advance in the computer as a correction coefficient table. This invention relates to a correction curve forming method.

〔従来の技術〕[Conventional technology]

従来、測定データから補正曲線を得る代表的な方法とし
ては、測定点間を線形で結び、各区間における補正式を
テーブル(補正係数テーブル)の形で記憶しておく折線
近似法と、最小二乗法に代表されるように、複数個の測
定データから回帰曲線を求める回帰近似法とが知られて
いる。
Conventionally, typical methods for obtaining correction curves from measurement data include the broken line approximation method, in which measurement points are connected linearly and the correction formula for each section is stored in the form of a table (correction coefficient table), and the minimum square Regression approximation methods are known, such as multiplication, in which a regression curve is determined from a plurality of pieces of measurement data.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前者の折線近似法は、ノイズに弱いとと
もに、高精度の補正を行なうためには、多数の測定デー
タ(測定時間)とメモリ容量とを必要としてしまう。ま
た、後者の回帰近似法は、高次、多点の回帰はノイズの
影響を受けやすく、計算機の能力によってはΣχ“の項
がすぐにオーバーフローしてしまい、多点の連続関数を
近似することはできない。さらに、高次の補正曲線(補
正式)を採用した場合には、計算機により補正演算を行
なう際(使用時)に、多くの演算時間を要してしまう。
However, the former polygonal line approximation method is susceptible to noise and requires a large amount of measurement data (measurement time) and memory capacity in order to perform highly accurate correction. In addition, in the latter regression approximation method, high-order, multi-point regression is easily affected by noise, and depending on the computer's ability, the term Σχ" may quickly overflow, making it difficult to approximate a continuous function for multiple points. Furthermore, if a high-order correction curve (correction formula) is adopted, a lot of calculation time will be required when performing correction calculations by a computer (when used).

本発明は、上記のような従来方法の欠、梃をなくし、多
点のデータから連続曲線を得ることができるとともに、
ノイズの影響を受けにくく、しかも使用時に高速でアク
セスすることのできる補正曲線形成方法を提供すること
を目的としたもので・ある。
The present invention eliminates the deficiencies and limitations of the conventional method as described above, and can obtain a continuous curve from data at multiple points.
The purpose of this invention is to provide a correction curve forming method that is less susceptible to noise and can be accessed quickly during use.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の補正曲線形成方法は、全測定点の測定データを
それぞれ複数個ずつの連続する゛測定点よりなるととも
に境界部の測定点を互いに共有するような複数のグルー
プに分ける過程と、この各グループの属する測定区間毎
にその入出力関係を回帰近似する過程と、これらの近似
曲線(近似式)に一定の基準で設定された任意の出力値
を代入してこれに対応した入力値を算出する過程と、こ
の算出過程において重複する近似区間の存在により複数
の入力値が算出された場合にこれらの入力値間を回帰近
似して1つの入力値を求める過程と、このようにして求
められた出力値と入力値との対応データからこれらの仮
想測定点を結ぶ折線近似を行ない補正係数テーブルを作
成する過程とを具備するようにしたものである。
The correction curve forming method of the present invention includes a process of dividing measurement data of all measurement points into a plurality of groups each consisting of a plurality of consecutive measurement points and sharing measurement points at the boundary; The process of regressively approximating the input-output relationship for each measurement section to which a group belongs, and calculating the corresponding input value by substituting arbitrary output values set according to a certain standard into these approximate curves (approximation formulas). When multiple input values are calculated due to the existence of overlapping approximation intervals in this calculation process, the process of regressively approximating these input values to obtain one input value, The method includes a step of creating a correction coefficient table by performing a polygonal line approximation connecting these virtual measurement points from the corresponding data of output values and input values.

〔作 用〕[For production]

このように、多数の測定データをいくつかのグループに
分け、各グループ毎に回帰近似を行なうとともに1、得
られた曲線を1((資)次結合するようにすると、各区
間の回帰近似は低次のものとなり、多点のデータから連
続曲線を得ることができるとともに、ノイズの影響を受
けにくくすることができる。また、得られた補正曲線に
任意の出力値を代入して、これに対応する入力値を求め
、折線近似による補正係数テーブルを作成しているので
、近似式を計算の容易な一次式とすることができるとと
もに、補正係数テーブルの間隔を測定データの間隔と独
立に任意に設定することができ、高速でのアクセスが可
能となる。
In this way, by dividing a large amount of measured data into several groups, performing regression approximation for each group, and combining the obtained curves in the first order, the regression approximation for each interval is It is a low-order one, making it possible to obtain a continuous curve from multi-point data and making it less susceptible to noise.Also, by substituting an arbitrary output value into the obtained correction curve, Since the corresponding input values are obtained and a correction coefficient table is created using broken line approximation, the approximation formula can be a linear equation that is easy to calculate, and the intervals of the correction coefficient table can be arbitrarily set independently of the intervals of measured data. can be set to allow high-speed access.

〔実施例〕〔Example〕

以下、本発明の補正曲線形成方法の一実施例を、図面を
使用して説明する。
An embodiment of the correction curve forming method of the present invention will be described below with reference to the drawings.

第1図は校正されるセンサなどの入出力関係を示す特性
図である。例えば、センサが温度検出器であった時には
、入力値(X軸)は温度であり、出力値(Y軸)は検出
出力である。図において、W!は測定範囲、fJは予想
される出力範囲である。
FIG. 1 is a characteristic diagram showing the input/output relationship of sensors to be calibrated. For example, when the sensor is a temperature detector, the input value (X-axis) is the temperature and the output value (Y-axis) is the detected output. In the figure, W! is the measurement range and fJ is the expected output range.

また、X印は測定点を示しており、その製定間隔(X軸
)はほぼ等間隔となっている。このような多数の測定点
に対応した測定データ(L、 Y、)が取り込まれる。
Further, the X marks indicate measurement points, and the manufacturing regular intervals (X-axis) are approximately equal intervals. Measurement data (L, Y,) corresponding to such a large number of measurement points are captured.

そこで、この多数の測定データを、第2図に示す如く、
それぞれ複数個ずつの連続する測定点よりなる複数のグ
ループG、に分ける。また、これらのグループは境界部
の測定点を互いに共有している。m、は各グループに対
応した測定区間である61つのグループに含まれる測定
点の数は、後述する回帰近似の効率を考慮して選ばれて
いる。
Therefore, as shown in Fig. 2, this large amount of measurement data is
It is divided into a plurality of groups G, each consisting of a plurality of consecutive measurement points. Additionally, these groups share measurement points at their boundaries. m is the measurement interval corresponding to each group. The number of measurement points included in each group is selected in consideration of the efficiency of regression approximation, which will be described later.

測定点をグループ分けした後は、各グループの属する沼
定区間毎にその入出力関係を回帰近似する。この時の近
似式の形は任意であるが、グループ内の測定点の数がさ
ほど多くないので、あまり高次の式とはならない。また
、この近似式は、後の利用を考慮して、 x=g (ν) という関数形に整理される。Xは入力値、yは出力値で
ある。
After the measurement points are divided into groups, the input-output relationship is approximated by regression for each Numaden section to which each group belongs. The form of the approximation equation at this time is arbitrary, but since the number of measurement points in the group is not so large, it is not a very high-order equation. In addition, this approximate expression is organized into the functional form x=g (ν) in consideration of later use. X is an input value and y is an output value.

第3図は上記のようにして得られた近似曲線の関係を示
したものである。図に示されるように、各近似曲線は相
互に重複部分を有している。ここで、出力値Vの範囲W
yをL等分し、任意(等間隔)の出力値ykを想定する
。この出方値ukを原次近似式g(ν)に代入し、出力
値ν、に対応する入力値Jek Xk=gCνk) を求める。この時1例えばν、のように、2つの近似曲
線が存在する位置においては、それぞれの近似曲線によ
り2つの入力値が求められることになるが、この場合に
は、第4図に示す如く、2つの入力値xk1.χ2.の
平均値tc x bとして採用する。また、この操作は
平均に限らず、前後の点を含め、@帰によって求めても
良い。なお、平均は2つの測定点による回帰と考えるこ
とができる。
FIG. 3 shows the relationship between the approximate curves obtained as described above. As shown in the figure, each approximate curve has a mutually overlapping portion. Here, the range W of the output value V
Divide y into L equal parts and assume arbitrary (equally spaced) output values yk. This output value uk is substituted into the primary approximation equation g(ν) to obtain the input value Jek Xk=gCνk) corresponding to the output value ν. At this time, at a position where two approximate curves exist, such as ν, two input values are obtained from each approximate curve, but in this case, as shown in FIG. Two input values xk1. χ2. It is adopted as the average value tc x b. Moreover, this operation is not limited to the average, and may also be calculated by @return including the previous and subsequent points. Note that the average can be considered as a regression based on two measurement points.

このようにして出力値11hζ入力値xkとの対応デー
タが得られた後は、これらの仮想測定点を結ぶ折線近似
を行ない補正係数テーブルを作成する。この時、テーブ
ルの@(1つの近似区間)はWy/Lである。また、折
れ線を表わす式はχ = a Ω ν + b Ω (yh≦II < U h++ ) であり、この係数aQ、bQがテーブルに記憶される。
After the data corresponding to the output value 11hζ input value xk is obtained in this way, a correction coefficient table is created by performing a broken line approximation connecting these virtual measurement points. At this time, @ (one approximate interval) in the table is Wy/L. Further, the equation representing the polygonal line is χ = aΩ ν + bΩ (yh≦II<U h++), and the coefficients aQ and bQ are stored in the table.

なお、係数au、bQにおいて、k番目の区間における
係数の値ak、bkは、 ah = CXk++−Xb ) / (#hヤ、−ν
、)b h = X h −u k’ a kのように
求められる。
In addition, in the coefficients au, bQ, the coefficient values ak, bk in the k-th interval are ah = CXk++-Xb) / (#hya, -ν
, ) b h = X h - u k' a k.

補正係数テーブルは次のような形で整理される。The correction coefficient table is organized as follows.

ここで、係数の数は近似式の次数に応じたものである。Here, the number of coefficients depends on the order of the approximate expression.

さて、上記のようにして作成された補正係数テーブルの
使用方法は次の通りである。まず、実際の測定状態にお
いて測定出力Ymが与えられると、テーブルの幅(Wy
/L)に応じて、テーブル中のどの係数を使用するかが
計算される。この場合。
Now, how to use the correction coefficient table created as described above is as follows. First, when the measurement output Ym is given in the actual measurement state, the width of the table (Wy
/L), which coefficient in the table to use is calculated. in this case.

テーブルの幅は一定であるので、 Q s= Ym/ (IFy/ L )なる式より、Q
11′!I目の係数が選択される。なお、上式において
、Qllは整数であり、余りは切りすてまたは切り上げ
られる。したがって、この測定出力Ymは xtn=a (ltn+Ytn+bAmにより補正され
、出力される。上式から明らかなように、測定出力Ym
からの補正係数の選択およびこの補正係数を使用した演
算は、非常に簡単な一次式であるので、高速のアクセス
が可能となる。
Since the width of the table is constant, from the formula Q s = Ym/ (IFy/L), Q
11′! The Ith coefficient is selected. Note that in the above equation, Qll is an integer, and the remainder is rounded down or rounded up. Therefore, this measurement output Ym is corrected and outputted by xtn=a (ltn+Ytn+bAm. As is clear from the above equation, the measurement output Ym
Since the selection of a correction coefficient from and the calculation using this correction coefficient are very simple linear equations, high-speed access is possible.

このように、1!I定点の数が多数であっても、この測
定データをいくつかのグループに分け、各グループ毎に
回帰近似を行なうとともに、得られた曲線をその重複部
分において順次結合するようにすると、多点のデータか
らこれらを近似した連続曲線を得ることができる。また
、各区間では回帰近似を行なっているので、ノイズの影
響を受けにくい。さらに、得られた補正曲線に任意の出
力値を代入して、これに対応する入力値を求め、新たに
折線近似による補正係数テーブルを作成しているので、
近似式を計算の容易な一次式とすることができるととも
に、補正係数テーブルの間隔を測定データの間隔と独立
に任意に設定することができ、前記したように、高速で
のアクセスが可能となる。
In this way, 1! I Even if there are a large number of fixed points, dividing this measurement data into several groups, performing regression approximation for each group, and sequentially combining the obtained curves at their overlapping parts, it is possible to A continuous curve that approximates these data can be obtained from the data. Furthermore, since regression approximation is performed in each section, it is less susceptible to noise. Furthermore, an arbitrary output value is substituted into the obtained correction curve to obtain the corresponding input value, and a new correction coefficient table is created using broken line approximation.
The approximation formula can be a linear formula that is easy to calculate, and the interval of the correction coefficient table can be arbitrarily set independently of the interval of the measured data, allowing high-speed access as described above. .

なお、上記の説明においては、回帰近似する測定区間を
等間隔とする場合を例示したが、近似区間の選び方はこ
れに限られるものではなく、例えば、対数座標のように
不等11ffll!のものであっても良い。また、回帰
近似における近似式はn次多項式に限らず、対数関数、
正弦波関数、スプライン関数などであっても良い。さら
に、補正係数テーブルにおいて、高速化のために一次式
を採用したが、演算時間に余裕があれば、より高次の式
にすることにより、メモリ容量を減らすことができる。
In addition, in the above explanation, the case where the measurement intervals for regression approximation are set at equal intervals is illustrated, but the method of selecting the approximate intervals is not limited to this. For example, the selection of the approximate intervals is not limited to this. It may be of. In addition, the approximation formula in regression approximation is not limited to the n-th degree polynomial, but also logarithmic functions,
It may also be a sine wave function, a spline function, etc. Further, in the correction coefficient table, a linear equation is adopted for speeding up the calculation, but if there is sufficient calculation time, the memory capacity can be reduced by using a higher order equation.

また、−次式のままでも、テーブルの幅を出力値の関数
とすれば、同様にメモリ容量を減らすことができる。
Further, even if the following equation is used, the memory capacity can be similarly reduced by making the width of the table a function of the output value.

〔発明の効果〕〔Effect of the invention〕

以上説明したように1本発明の補正曲線形成方法では、
全測定点の測定データをそれぞれ複数個ずつの連続する
測定点よりなるとともに境界部の測定点を互いに共有す
るような複数のグループに分ける過程と、この各グルー
プの属する澗定区間毎にその入出力関係を回帰近似する
過程と、これらの近似曲線(近似式)に一定の基準で設
定された任意の出力値を代入してこれに対応した入力値
を算出する過程と、この算出過程において重複する近似
区間の存在により複数の入力値が算出された場合にこれ
らの入力値間を回帰近似して1つの入力値を求める過程
と、このようにして求められた出力値と入力値との対応
データからこれらの仮想測定点を結ぶ折線近似を行ない
補正係数テーブルを作成する過程とを具備するようにし
ているので、各区間の回帰近似は低次のものとなり、多
点のデータから連続曲線を得ることができるとともに、
ノイズの影響を受けに<<、シかも使用時に高速でアク
セスすることのできる補正曲線形成方法を実現すること
ができる。
As explained above, in the correction curve forming method of the present invention,
The process of dividing the measurement data of all measurement points into multiple groups each consisting of a plurality of consecutive measurement points and sharing the measurement points at the boundary, and the process of dividing the measurement data of each measurement point into each group to which each group belongs. The process of regressively approximating the output relationship, and the process of substituting arbitrary output values set according to a certain standard to these approximate curves (approximation formulas) and calculating the corresponding input values, and this calculation process overlaps. When multiple input values are calculated due to the existence of an approximation interval that Since the process includes a process of creating a correction coefficient table by performing a broken line approximation connecting these virtual measurement points from the data, the regression approximation for each interval is of low order, and a continuous curve can be created from multi-point data. In addition to being able to obtain
It is possible to realize a correction curve forming method that can be accessed at high speed during use even though it is not affected by noise.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は本発明の補正曲線形成方法における処
理過程の一実施例を示す説明図である。 X・・・・・・入力値、ν・・・・・・出力値、WX・
・・・・・測定範囲、wy・・・・・・出力値yの範囲
、×・・・・・・測定点。 痕I図 第2図 第3図 路 第4図
FIGS. 1 to 4 are explanatory diagrams showing one embodiment of the processing steps in the correction curve forming method of the present invention. X...Input value, ν...Output value, WX・
...Measurement range, wy... Range of output value y, ×...Measurement point. Trace I Figure 2 Figure 3 Route Figure 4

Claims (1)

【特許請求の範囲】[Claims] 全測定点の測定データをそれぞれ複数個ずつの連続する
測定点よりなるとともに境界部の測定点を互いに共有す
るような複数のグループに分ける過程と、この各グルー
プの属する測定区間毎にその入出力関係を回帰近似する
過程と、これらの近似曲線(近似式)に一定の基準で設
定された任意の出力値を代入してこれに対応した入力値
を算出する過程と、この算出過程において重複する近似
区間の存在により複数の入力値が算出された場合にこれ
らの入力値間を回帰近似して1つの入力値を求める過程
と、このようにして求められた出力値と入力値との対応
データからこれらの仮想測定点を結ぶ折線近似を行ない
補正係数テーブルを作成する過程とを具備してなる補正
曲線形成方法。
The process of dividing the measurement data of all measurement points into multiple groups, each consisting of a plurality of consecutive measurement points and sharing the measurement points at the boundary, and the input/output of each measurement section to which each group belongs. The process of regressively approximating the relationship, and the process of substituting arbitrary output values set according to certain standards to these approximate curves (approximation formulas) and calculating the corresponding input values, overlap in this calculation process. When multiple input values are calculated due to the existence of an approximation interval, the process of calculating one input value by performing regression approximation between these input values, and the corresponding data between the output value and input value calculated in this way. A correction curve forming method comprising the steps of: performing a broken line approximation connecting these virtual measurement points to create a correction coefficient table.
JP62044765A 1987-02-27 1987-02-27 Formation of correction curve Granted JPS63210713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62044765A JPS63210713A (en) 1987-02-27 1987-02-27 Formation of correction curve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62044765A JPS63210713A (en) 1987-02-27 1987-02-27 Formation of correction curve

Publications (2)

Publication Number Publication Date
JPS63210713A true JPS63210713A (en) 1988-09-01
JPH0573161B2 JPH0573161B2 (en) 1993-10-13

Family

ID=12700513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62044765A Granted JPS63210713A (en) 1987-02-27 1987-02-27 Formation of correction curve

Country Status (1)

Country Link
JP (1) JPS63210713A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04274573A (en) * 1990-11-01 1992-09-30 Internatl Business Mach Corp <Ibm> Method used in system wherein video-image data are automatically corrected
JP2005201870A (en) * 2004-01-19 2005-07-28 Mitsutoyo Corp Signal processor, signal processing method, signal processing program, recording medium with signal processing program stored, and measuring machine
JP2009204624A (en) * 2009-06-16 2009-09-10 Mitsutoyo Corp Signal processing apparatus and measuring machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04274573A (en) * 1990-11-01 1992-09-30 Internatl Business Mach Corp <Ibm> Method used in system wherein video-image data are automatically corrected
JP2005201870A (en) * 2004-01-19 2005-07-28 Mitsutoyo Corp Signal processor, signal processing method, signal processing program, recording medium with signal processing program stored, and measuring machine
JP2009204624A (en) * 2009-06-16 2009-09-10 Mitsutoyo Corp Signal processing apparatus and measuring machine

Also Published As

Publication number Publication date
JPH0573161B2 (en) 1993-10-13

Similar Documents

Publication Publication Date Title
JPS63210713A (en) Formation of correction curve
Figueiredo et al. An Approach to Savitzky–Golay Differentiators
JPH0831776B2 (en) Digital filter
SE444730B (en) LJUDSYNTETISATOR
JP3598521B2 (en) Data table processing device
JPH06204798A (en) System for interpolating asynchronous sampling frequency conversion
JPS61177492A (en) Multiplier for reverberator
JPS6156821B2 (en)
JPH0991447A (en) Device for approximating bezier curve
JPH07282380A (en) Digital signal smoothing processor
SU470814A1 (en) Device for selecting the minimum averaged value
JP3390599B2 (en) Divider
DE4342867A1 (en) Signal evaluation appts. e.g. for pressure sensor
JPH0371331A (en) Multiplier
JP3121609B2 (en) Digital signal processor
JPS5913782B2 (en) digital arithmetic circuit
SU418831A1 (en) DEVICE FOR RESEARCHING CHARACTERISTICS OF AUTOMATIC CONTROL SYSTEMS
JPH031693B2 (en)
SU868616A1 (en) Device for digital measuring of pulse frequency deviation from given value
JPS6229816B2 (en)
JPH0340847B2 (en)
SU491129A1 (en) Device for raising binary numbers to the third degree
JPS62105518A (en) Digital filter
JPH0828646B2 (en) Digital filter
JP2652054B2 (en) Protection relay device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term