JPS6320916B2 - - Google Patents

Info

Publication number
JPS6320916B2
JPS6320916B2 JP55149193A JP14919380A JPS6320916B2 JP S6320916 B2 JPS6320916 B2 JP S6320916B2 JP 55149193 A JP55149193 A JP 55149193A JP 14919380 A JP14919380 A JP 14919380A JP S6320916 B2 JPS6320916 B2 JP S6320916B2
Authority
JP
Japan
Prior art keywords
manganese nodule
present
nodule
manganese
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55149193A
Other languages
Japanese (ja)
Other versions
JPS5773194A (en
Inventor
Kazuhide Myazaki
Hisao Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP55149193A priority Critical patent/JPS5773194A/en
Publication of JPS5773194A publication Critical patent/JPS5773194A/en
Publication of JPS6320916B2 publication Critical patent/JPS6320916B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は海洋底に産出するマンガン、鉄、ニツ
ケル、コバルト、銅等を含有するマンガンノジユ
ールを電池の陽極活物質に構成することによつて
マンガンノジユール中の有価金属類を抽出回収す
る方法に関する。マンガンノジユールには主成分
であるマンガンの他に、鉄、ニツケル、コバル
ト、銅等の金属が含有されている。ニツケル、コ
バルト、銅の含有率はいずれも1%前後と低品位
であるが、これらの金属が工業上重要であり、陸
上においては枯渇しつつあること、(例えば、世
界有数のニツケル鉱床であるニユーカレドニアの
ニツケル鉱石の品位は当初9%台であつたものが
最近では2%程度になつている。しかし、消費量
は非常に速いスピードで増大している。)また、
一方マンガンノジユールの賦存量が莫大である
(例えば、資源可能量だけでも、Ni16億トン、
Co10億トン、Cu5億トン、Mn700億トンと推定
されている。)ことより、その処理法の開発は非
常に重要である。 その代表的な組成例は表−1に示すごとくであ
る。なお表−1のマンガンノジユールはカリフオ
ルニア沖の海底から採取されたものである。
The present invention is a method for extracting and recovering valuable metals in manganese nodule, which is produced on the ocean floor and contains manganese, iron, nickel, cobalt, copper, etc., by composing it as an anode active material of a battery. Regarding. In addition to manganese, which is the main component, manganese nodule contains metals such as iron, nickel, cobalt, and copper. Although the content of nickel, cobalt, and copper are all low-grade, around 1%, these metals are industrially important and are being depleted on land (for example, the world's largest nickel deposits). The grade of nickel ore in New Caledonia was originally in the 9% range, but recently it has decreased to around 2%.However, consumption is increasing at a very rapid rate.)
On the other hand, the amount of manganese nodule available is enormous (for example, the potential resource amount alone is 1.6 billion tons of Ni,
It is estimated to be 1 billion tons of Co, 500 million tons of Cu, and 70 billion tons of Mn. ), the development of treatment methods is extremely important. Typical composition examples are shown in Table 1. The manganese nodule shown in Table 1 was collected from the ocean floor off the coast of California.

【表】 周知の様にマンガンノジユールの湿式処理法で
は、回収対象となる有価金属がMn,Feの酸化物
鉱物相(マトリツクス)に分散賦存していること
から、まず上記マトリツクスを破壊し、Ni,Co,
Cuを抽出されやすい状態にすることが必要であ
る。処理法としては、苛酷な条件下での酸ある
いはアルカリによる直接浸出法、酸化焙焼、還
元焙焼後の酸あるいはアルカリで浸出する方法等
数多くの方法が提案されているが、どれも相当苛
酷な条件とそれにともなう高価な設備とを必要と
する上に、外部から多量のエネルギーを加える必
要があり、昨今のエネルギーコストの高騰が著し
い状勢では不利である。しかも、有価金属の抽出
率は高くなかつた。とくにコバルトの抽出率につ
いては従来どの方法によつても不満足であつた。 本発明者らは、種々の研究を重ねた結果、マン
ガンノジユールを電池の陽極活物質に構成し、こ
れを放電することにより、マンガンノジユールの
Mn及びFeのマトリツクス(格子)を破壊し、そ
の中に存在するニツケル、コバルト、銅などが可
溶化することを見出した。この方法は電池反応を
利用したマンガンノジユールの全く新しい金属抽
出法である。 本発明は、わざわざ還元剤を添加しなくとも、
放電により自動的にMnマトリツクス及びその中
に分散賦存する有価金属類が極めて容易に還元さ
れ、そのあと高温などの苛酷な処理を施すことな
く、きわめて温和な条件で希酸などの溶媒に短時
間に溶ける性質を帯びるという技術的特性を有す
る。また、本発明は、従来法の様に外部からの多
量のエネルギーを加えるのではなく、逆にエネル
ギーをマンガンノジユールから取出しながら、マ
ンガンノジユール中の有価金属類を回収できると
いう従来にみられない新しい効果を奏する。さら
にまた、本発明においては、放電時間を適当に選
択することにより各成分共90%以上100%近くま
での抽出率が容易に得られるという従来想到でき
なかつた効果を奏し得る。とくに従来その抽出が
困難とされていたCoの抽出率は容易に80〜90%、
あるいはそれ以上となる。 本発明において放電に使用される陽極合剤組成
は一般的には下記の通りである。 マンガンノジユール 40〜60重量% アセチレンブラツク(AB) 5〜15 NH4Cl(塩化アンモニウム) 0〜20 ZnCl2(塩化亜鉛) 0〜8 H2O 0〜20 導電剤はABに限定されるものではなく、コー
クス粉、粉、木炭、活性炭等各種の粉状カーボン
でよい。一方、負極活物質としては例えば、亜鉛
が使用される。回収される電気エネルギーは例え
ば8mA連続放電(合剤組成;Mnノジユール59.2
%、AB7.4%、NH4Cl8.4%、ZnCl24.2%、
H2O20.8%)において約0.2W・Hh/g−ノジユ
ール(0.85Vまで放電した時)である。これは蓄
電してもよいし、そのまま使用してもよい。 本発明において使用する溶出液としては、鉱酸
(H2SO4,HCl,HNO3)、アンモニア水等が利用
できるが、後処理の容易さ、高価な設備を必要と
しない、そして安価で豊富に入手できる点から、
硫酸が特に好ましい。その濃度は0.5〜10mol/
l、好ましくは1〜3mol/lの希硫酸でよく、
マンガンノジユール中の金属成分が金属塩を形成
するのに必要な理論量よりも若干過剰使用するこ
とにより、100℃以下で短時間にマンガンノジユ
ール中の有価金属を90%以上100%近くまで抽出
できる。特に、従来その抽出が困難とされていた
Coについても80〜90%、あるいはそれ以上抽出
できる。 本発明によりマンガンノジユールから有価金属
類を溶出して得られた溶液からの各成分の分離は
公知の方法により容易に行うことができる。 本発明を実施例に基づいてさらに詳細に説明す
るが、本発明はこれによつて限定されるものでは
ない。 なお、以下の例における「%」及び「部」は特
にことわらない限り、重量による。 実施例 1 Mn19.46%、Fe15.37%、Ni0.47%、Co0.46%、
Cu0.30%を含有するマンガンノジユール(150メ
ツシユ)20gにAB(50%プレス)2.5gを添加し、
十分に混合した後、これにNH4Cl20部、ZnCl210
部、H2O70部からなる溶液を10ml添加し混練し
た合剤より5gを分取し、これを陽極活物質と
し、負極活物質としてZn板を使用し、電池を構
成し、定電流(5mA)にて放電させた後、この
合剤を3mol/希硫酸を3g/g−ノジユール
添加し、60℃×30min反応させた。その結果は次
のごとくである。
[Table] As is well known, in the wet processing method for manganese nodule, since the valuable metals to be recovered are dispersed in the oxide mineral phase (matrix) of Mn and Fe, the matrix must first be destroyed. , Ni, Co,
It is necessary to put Cu in a state where it can be easily extracted. Many treatment methods have been proposed, including direct leaching with acid or alkali under harsh conditions, oxidation roasting, and leaching with acid or alkali after reduction roasting, but all of them are quite harsh. In addition to requiring the following conditions and expensive equipment, it is also necessary to add a large amount of energy from outside, which is disadvantageous in the current situation where energy costs are rapidly increasing. Moreover, the extraction rate of valuable metals was not high. In particular, the extraction rate of cobalt has been unsatisfactory with all conventional methods. As a result of various researches, the present inventors have discovered that manganese nodule can be used as an anode active material in a battery, and by discharging it, manganese nodule can be made into
It was discovered that the Mn and Fe matrix (lattice) was destroyed and the nickel, cobalt, copper, etc. present within it were solubilized. This method is a completely new method for extracting metals from manganese nodule using a battery reaction. The present invention does not require adding a reducing agent.
The Mn matrix and the valuable metals dispersed within it are automatically reduced by the electric discharge, and then they can be quickly reduced in a solvent such as a dilute acid under extremely mild conditions without harsh treatments such as high temperatures. It has the technical characteristic of melting over time. Furthermore, the present invention does not require a large amount of external energy to be applied as in the conventional method, but on the contrary, the valuable metals in the manganese nodule can be recovered while extracting energy from the manganese nodule. It produces new effects that have never existed before. Furthermore, in the present invention, by appropriately selecting the discharge time, it is possible to easily obtain an extraction rate of 90% or more to nearly 100% for each component, which is an effect previously unimaginable. In particular, the extraction rate of Co, which was previously considered difficult to extract, is easily 80-90%.
Or even more. The anode mixture composition used for discharge in the present invention is generally as follows. Manganese nodule 40-60% by weight Acetylene black (AB) 5-15 NH 4 Cl (ammonium chloride) 0-20 ZnCl 2 (zinc chloride) 0-8 H 2 O 0-20 Conductive agent is limited to AB Instead, various types of powdered carbon such as coke powder, powder, charcoal, and activated carbon may be used. On the other hand, for example, zinc is used as the negative electrode active material. The recovered electrical energy is, for example, 8 mA continuous discharge (mixture composition: Mn nodule 59.2
%, AB7.4%, NH 4 Cl 8.4%, ZnCl 2 4.2%,
H 2 O20.8%), it is approximately 0.2 W·Hh/g-nodule (when discharged to 0.85 V). This may be used to store electricity or may be used as is. As the eluent used in the present invention, mineral acids (H 2 SO 4 , HCl, HNO 3 ), ammonia water, etc. can be used, but they are easy to post-process, do not require expensive equipment, and are inexpensive and abundant. Since it is available in
Particularly preferred is sulfuric acid. Its concentration is 0.5-10mol/
1, preferably 1 to 3 mol/l of dilute sulfuric acid,
By using slightly more than the theoretical amount required for the metal components in the manganese nodule to form metal salts, the valuable metals in the manganese nodule can be increased from 90% to nearly 100% in a short time at 100℃ or below. Can be extracted. In particular, it has been difficult to extract
It is also possible to extract 80 to 90% or more of Co. Separation of each component from the solution obtained by eluting valuable metals from manganese nodule according to the present invention can be easily carried out by known methods. The present invention will be explained in more detail based on Examples, but the present invention is not limited thereto. In addition, "%" and "part" in the following examples are by weight unless otherwise specified. Example 1 Mn19.46%, Fe15.37%, Ni0.47%, Co0.46%,
Add 2.5 g of AB (50% press) to 20 g of manganese nodule (150 mesh) containing 0.30% Cu,
After mixing thoroughly, add 20 parts of NH 4 Cl and 10 parts of ZnCl 2 to this.
Add 10 ml of a solution consisting of 50% H 2 ), 3 mol/3 g/g of diluted sulfuric acid was added to this mixture, and the mixture was reacted at 60°C for 30 min. The results are as follows.

【表】 すなわち、表−2の特に試験1−2では、放電
時間10Hr後のマンガンノジユールは希硫酸浸出
処理により、Mn,Fe,Ni,CoおよびCuのいず
れの元素も90%以上の抽出率を示した。 実施例 2 Mn18.25%、Fe11.31%、Ni0.50%、Co0.27%、
Cu0.25%を含有するMnノジユールを実施例1と
同様な方法で合剤に作製し、5gを分取し、これ
を陽極活物質として電池を構成し、放電電流を変
化させ70Hr放電した後、9.2mol/硫酸を16
g/g−ノジユール添加し、60℃×30min反応さ
せた。その結果は次のごとくであつた。
[Table] In other words, especially in Test 1-2 in Table-2, the manganese nodule after a discharge time of 10 hours was subjected to dilute sulfuric acid leaching treatment, and more than 90% of the elements Mn, Fe, Ni, Co, and Cu were extracted. The rate was shown. Example 2 Mn18.25%, Fe11.31%, Ni0.50%, Co0.27%,
A mixture of Mn nodule containing 0.25% Cu was prepared in the same manner as in Example 1, 5 g was taken out, a battery was constructed using this as the anode active material, and the discharge current was varied and the battery was discharged for 70 hours. , 9.2mol/16 sulfuric acid
g/g-nodule was added and reacted at 60°C for 30 minutes. The results were as follows.

【表】 一方、比較のため、、マンガンノジユールをそ
のまま上記と同一条件で硫酸と反応させた場合の
各元素の抽出率はMn14%、Fe90%、Ni81%、
Co51%、Cu96%にとどまつた。表−3の試験に
みられるように本発明による放電の効果は顕著で
ある。 実施例 3 実施例1と同じ組成、粒度を有するマンガンノ
ジユールをAB,NH4Cl,ZnCl2と混合、混練し
た次のごとき組成を有する陽極合剤5gと負極活
物質としてのZn板を使用し、電池を構成し放電
させた。その結果は表−5及び図−1のごとくで
ある。
[Table] On the other hand, for comparison, when manganese nodule was directly reacted with sulfuric acid under the same conditions as above, the extraction rate of each element was Mn 14%, Fe 90%, Ni 81%,
The content remained at 51% Co and 96% Cu. As seen in the tests in Table 3, the effects of the discharge according to the present invention are remarkable. Example 3 5 g of an anode mixture having the following composition prepared by mixing and kneading manganese nodule having the same composition and particle size as in Example 1 with AB, NH 4 Cl, and ZnCl 2 and a Zn plate as a negative electrode active material were used. Then, the battery was constructed and discharged. The results are shown in Table 5 and Figure 1.

【表】【table】

【表】【table】

【表】 すなわち、表−5及び図−1から明らかなよう
に、マンガンノジユールg当り0.07〜0.135W・
Hr(50Hr放電時)の電力を取り出しながら、マ
ンガンノジユール中の各元素に可溶化の性質を同
時に付与することができるという従来にみられな
い本発明の技術的効果が明らかである。 比較例 本発明の効果をさらにはつきりさせるために、
実施例1と同じ組成、粒度を有するマンガンノジ
ユール3gを本発明の処理を行うことなく、その
まま硫酸により濃度、添加量、反応温度、時間を
種々に変化させた。その結果は次のごとくであ
る。
[Table] In other words, as is clear from Table 5 and Figure 1, 0.07 to 0.135 W per gram of manganese nodule.
It is clear that the technical effect of the present invention, which has not been seen before, is that it is possible to simultaneously impart solubilizing properties to each element in the manganese nodule while extracting electric power of Hr (at the time of 50 Hr discharge). Comparative Example In order to further enhance the effect of the present invention,
3 g of manganese nodule having the same composition and particle size as in Example 1 was not subjected to the treatment of the present invention, but was directly treated with sulfuric acid while varying the concentration, amount added, reaction temperature, and time. The results are as follows.

【表】 表−6の結果にみられるように、本発明による
処理を経ない硫酸抽出のみでは各元素の抽出率は
低く、とくにMn1〜14%、Co4〜53%とこの2元
素が劣る。すなわち本発明のすぐれた抽出効果は
明らかである。
[Table] As seen in the results in Table 6, the extraction rate of each element is low with sulfuric acid extraction alone without the treatment according to the present invention, and in particular, these two elements are inferior at 1 to 14% for Mn and 4 to 53% for Co. In other words, the excellent extraction effect of the present invention is obvious.

【図面の簡単な説明】[Brief explanation of the drawing]

図−1は本発明によるマンガンノジユールの放
電曲線を示した。
Figure 1 shows the discharge curve of the manganese nodule according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 マンガンノジユールを電池の陽極活物質に構
成し、これを放電することにより、マンガンノジ
ユール中の有価金属を可溶化し、抽出回収するこ
とを特徴とする電池反応を利用したマンガンノジ
ユールの処理方法。
1 Manganese nodule is configured as an anode active material of a battery, and by discharging it, valuable metals in the manganese nodule are solubilized and extracted and recovered. Processing method.
JP55149193A 1980-10-24 1980-10-24 Treatment of manganese nodule Granted JPS5773194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55149193A JPS5773194A (en) 1980-10-24 1980-10-24 Treatment of manganese nodule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55149193A JPS5773194A (en) 1980-10-24 1980-10-24 Treatment of manganese nodule

Publications (2)

Publication Number Publication Date
JPS5773194A JPS5773194A (en) 1982-05-07
JPS6320916B2 true JPS6320916B2 (en) 1988-05-02

Family

ID=15469836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55149193A Granted JPS5773194A (en) 1980-10-24 1980-10-24 Treatment of manganese nodule

Country Status (1)

Country Link
JP (1) JPS5773194A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0253111U (en) * 1988-10-11 1990-04-17
JPH0586244B2 (en) * 1989-02-27 1993-12-10 Masanori Okamoto
JPH07114908B2 (en) * 1989-05-22 1995-12-13 謹造 神田 Air cleaner cleaning equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4730488B2 (en) * 2000-04-04 2011-07-20 東ソー株式会社 Method for producing manganese ore processed product
JP4734703B2 (en) * 2000-05-19 2011-07-27 東ソー株式会社 Method for producing reduced manganese ore

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0253111U (en) * 1988-10-11 1990-04-17
JPH0586244B2 (en) * 1989-02-27 1993-12-10 Masanori Okamoto
JPH07114908B2 (en) * 1989-05-22 1995-12-13 謹造 神田 Air cleaner cleaning equipment

Also Published As

Publication number Publication date
JPS5773194A (en) 1982-05-07

Similar Documents

Publication Publication Date Title
CN107017443B (en) A method of the comprehensively recovering valuable metal from waste and old lithium ion battery
Ku et al. Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching
WO2022161087A1 (en) Method for separating nickel and iron from nickel-iron alloy and use
US8945275B2 (en) Method for recovering valuable metals from lithium secondary battery wastes
de Oliveira Demarco et al. Recovery of metals from spent lithium-ion batteries using organic acids
CN111118294A (en) Method for recycling valuable metals from waste lithium ion battery materials step by step
KR20200060695A (en) Method for recovery of cobalt, lithium and other metals from waste lithium-based batteries and other supplies
JP2021530838A (en) Recycling process for used lithium-ion batteries
JP5719792B2 (en) Method for producing chemical manganese dioxide from ternary positive electrode active material, chemical manganese dioxide produced by the production method, and secondary battery containing chemical manganese dioxide
JP5262627B2 (en) Method for recovering nickel concentrate from used nickel metal hydride batteries
CN112111650B (en) Method for recovering valuable metals of waste lithium ion batteries by selective reduction
CN113039295A (en) Method for extracting metals from lithium ion batteries
CN112250120B (en) Method for preparing ternary precursor and lithium carbonate by using waste lithium ion battery black powder and nickel cobalt sulfide ore in synergy mode and application
CN113921931B (en) Method for recycling lithium carbonate from retired lithium ion battery black powder through carbothermic reduction
JPS6320916B2 (en)
CN117926027A (en) Comprehensive utilization method of laterite nickel ore
JP6314730B2 (en) Method for recovering valuable metals from waste nickel metal hydride batteries
JP4215547B2 (en) Cobalt recovery method
JPH08115752A (en) Method for recovering effective component from nickel-hydrogen storage alloy secondary battery
WO2013076812A1 (en) Method for producing nickel-containing acidic solution
JP4439804B2 (en) Cobalt recovery method
US4548684A (en) Treatment of manganese nodules
CN114381605B (en) Method for comprehensively recovering valuable metals in black powder of waste lithium ion battery
KR102576614B1 (en) Method for recovering valuable metals from waste lithium ion batteries
Botelho Junior et al. Cobalt Recovery from Li-Ion Battery Recycling: A Critical Review. Metals 2021, 11, 1999