JPS63207154A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63207154A
JPS63207154A JP4071587A JP4071587A JPS63207154A JP S63207154 A JPS63207154 A JP S63207154A JP 4071587 A JP4071587 A JP 4071587A JP 4071587 A JP4071587 A JP 4071587A JP S63207154 A JPS63207154 A JP S63207154A
Authority
JP
Japan
Prior art keywords
insulating film
film
insulating
wiring
diffusion region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4071587A
Other languages
Japanese (ja)
Other versions
JP2641856B2 (en
Inventor
Mitsuru Sakamoto
充 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62040715A priority Critical patent/JP2641856B2/en
Publication of JPS63207154A publication Critical patent/JPS63207154A/en
Application granted granted Critical
Publication of JP2641856B2 publication Critical patent/JP2641856B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the degree of integration of a semiconductor integrated circuit device easily by coating the side surface of a conductive substance layer, the upper surface of a first insulating film and a surface, from which the conductive substance layer is removed selectively, with a second insulating film and uniformly getting rid of the second insulating film. CONSTITUTION:An insulating element-isolation region 102 is formed to the surface of an silicon semiconductor substarte 101, and an insulating film 105 is shaped so as to be applied onto the upper surface of a gate electrode 104 formed onto a gate insulating film 103 for an insulated gate field-effect transistor. An N<+> diffusion region 109 is shaped through the implantation of arsenic ions, an insulating film 106 is formed so as to be applied onto the side surface of the gate electrode 104, an insulating film 107 different from the insulating film 105 and the insulating film 106 by boring a window, and a wiring 108 is shaped. Consequently, the diffusion region 109 for a source and a drain and the wiring 108 are connected electrically, employing the insulating films 105, 106, 107 as interlayer insulating films. Lastly, a protective film 110 is applied, thus constituting a semiconductor element with a self-alignment type opening section. Accordingly, density can be increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に係わり、特に半導体素
子の電極配線で必要な開孔部の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of manufacturing an opening required for electrode wiring of a semiconductor element.

〔従来の技術〕[Conventional technology]

半導体集積回路装置、特に、シリコン半導体基板に搭載
した集積回路装置は、製造プロセス技術特に微細加工技
術の進展と共に大容量化。
Semiconductor integrated circuit devices, especially integrated circuit devices mounted on silicon semiconductor substrates, have increased in capacity as manufacturing process technology, especially microfabrication technology, advances.

高密度化が急速に進んできた。Densification has progressed rapidly.

しかしながら斯くなる微細加工技術の発展の中にあって
回路形成パターンの転写工程に何階した回路形成パター
ン間の目ズレを見込したパターンの面積的マージン(余
裕)が集積回路の高密度化の大きな阻害要因となってき
た。以下この点に関し詳細に説明を加える。
However, with the development of microfabrication technology, the pattern area margin (margin) that takes into account misalignment between circuit forming patterns at several levels during the transfer process of circuit forming patterns has become a major factor in increasing the density of integrated circuits. This has become a hindrance. This point will be explained in detail below.

一般に半導体素子の製造には、半導体基板表面への回路
形成パターン転写のために、公知のホトレジスト工程、
及びこのホトレジストをマスクとして使用した半導体表
面の加工工程か含まれる。尚、ここで回路形成パターン
転写には、賎重かのホトレジストマスクが必要とされ、
それに応じて数段階の加工工程が存在する。この各段階
の加工工程では、それぞれそれ以前の加エバターンに整
合する姿態に所望の加エバターンを形成する必要がある
。しかしながら回路形成パターンの転写には目合せが必
要であり、目合せズレによるパターンの整合ズレは回避
できない。この整合ズレはホトレジスト技術に太き(依
存するが現在、0.1〜0.3μm程度である。そこで
、この整合ズレを見込んで回路形成パターン間には、面
積的マージンを持たしている。この面積的マージンが、
特に高密度化が進められている絶縁ゲート電界効果トラ
ンジスタを能動素子とした集積回路に於いて、高密度化
の阻害要因として顕在化してきた。このような中にあっ
て、集積回路の電極配線に必須な開孔部形成に付随する
回路形成パターン間のマージン面積が高密度化に対する
特に強い阻害要因となっている。
Generally, in the manufacture of semiconductor devices, a known photoresist process is used to transfer a circuit formation pattern onto the surface of a semiconductor substrate.
It also includes a semiconductor surface processing step using this photoresist as a mask. In addition, here, a heavy photoresist mask is required to transfer the circuit formation pattern.
Accordingly, there are several stages of processing steps. In each of these processing steps, it is necessary to form a desired patterned pattern in a shape that matches the previous patterned pattern. However, alignment is required for transferring the circuit forming pattern, and misalignment of the pattern due to misalignment cannot be avoided. This misalignment is large (currently about 0.1 to 0.3 μm, depending on the photoresist technology).Therefore, in consideration of this misalignment, an area margin is provided between the circuit forming patterns. This areal margin is
In particular, in integrated circuits that use insulated gate field effect transistors as active elements, which are being increasingly densified, this has emerged as an impediment to the densification. Under these circumstances, the margin area between circuit formation patterns accompanying the formation of openings essential for electrode wiring of integrated circuits has become a particularly strong impediment to higher density.

従来のこの開孔部形成は、第3図に示すように、シリコ
ン半導体基板301表面に選択的に形成した絶縁素子分
離領域302.絶縁ゲート電界効果トランジスタのゲー
ト膜303.ゲート電極304及びソース書ドレインの
拡散領域305を被覆するように眉間絶縁膜306を形
成した後、公知のホトレジストを用いたリングラフィ技
術、エツチング技術を用い、この層間絶縁膜306に開
孔を設けることで行なう。斯くした後配線307を形成
し、拡散領域305と電気的に接続して能動素子を形成
する。ここで保護膜308は半導体素子を保護するため
に最終段階で被覆する。
Conventionally, this opening is formed by forming an insulating element isolation region 302. which is selectively formed on the surface of a silicon semiconductor substrate 301, as shown in FIG. Gate film 303 of insulated gate field effect transistor. After a glabellar insulating film 306 is formed to cover the gate electrode 304 and the source/drain diffusion region 305, openings are formed in the interlayer insulating film 306 using known photoresist phosphorography technology and etching technology. Let's do it by doing this. After this, a wiring 307 is formed and electrically connected to the diffusion region 305 to form an active element. Here, the protective film 308 is coated at the final stage to protect the semiconductor element.

このような形成方法では、前述したリングラフィ技術で
の目合せズレを考慮し、ゲート電極304又は、絶縁素
子分離域302と開孔部に充分面積的マージンをもたせ
ることが必要と;る。このためこの面積が増加し、高密
度化が阻害されてくる。
In such a formation method, it is necessary to provide a sufficient area margin between the gate electrode 304 or the insulating element isolation region 302 and the opening, taking into account the misalignment in the phosphorography technique described above. For this reason, this area increases, and higher density is hindered.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述しん従来の開孔部形成法ではかかる集積回路素子製
造に於いて、電極取り出しに必要とされる開孔形成に起
因した上記回路形成パターン面積の増加が避けられず、
回路素子の層密度・化が進まないという欠点を有してい
る。
In the above-mentioned conventional hole forming method, in manufacturing such an integrated circuit device, an increase in the area of the circuit forming pattern due to the hole formation required for taking out the electrodes is unavoidable.
It has the disadvantage that the layer density and miniaturization of circuit elements do not progress.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置の製造方法は、半導体基板の一生面
に導電物質層を形成する工程と、この導電物質層上に第
一の絶縁膜を形成する工程と、この第一の絶縁膜を選択
的に除去する工程と、第一の絶縁膜をマスクにして導電
物質層を選択的に除去する工程と、その後、導電物質層
の側面、第一の絶縁膜の上表面および導電物質層が選択
的に除去された表面を第二の絶縁膜により被覆する工程
と、第二の絶縁膜を均一に除れた表面を露出する工程と
を存して(・る。
The method for manufacturing a semiconductor device of the present invention includes a step of forming a conductive material layer on the entire surface of a semiconductor substrate, a step of forming a first insulating film on the conductive material layer, and a step of selecting the first insulating film. a step of selectively removing the conductive material layer using the first insulating film as a mask, and then selectively removing the side surface of the conductive material layer, the upper surface of the first insulating film, and the conductive material layer; The method includes a step of covering the surface from which the second insulating film has been uniformly removed with a second insulating film, and a step of exposing the surface from which the second insulating film has been uniformly removed.

〔実施例] 次に本発明について図面を参照して説明する第1−a図
は本発明の第1の実施例の半導装置の断面図を示したも
のであり、第i−b図及・至第1−i図は本発明の第1
の実施例の半導体装置の主たる製造工程の断面図を示し
たものである。
[Example] Next, the present invention will be explained with reference to the drawings. Figure 1-a shows a sectional view of a semiconductor device according to a first embodiment of the present invention, and Figures ib and・Figure 1-i is the first diagram of the present invention.
FIG. 3 is a cross-sectional view of the main manufacturing process of the semiconductor device according to the embodiment.

シリコン半導体基板101の表面に絶縁素子分離領域1
02を形成し、絶縁ゲート電界効果トランジスタのゲー
ト絶縁膜103上に形成したゲート電極104上面を被
覆するように絶縁膜105を形成しく第i−b図)、次
に砒素イオン注入によりn 拡散領域10θを形成しく
第1−c〜第1−d図)、次にゲート電極104の側面
を被覆するように絶縁膜106を形成する(第1−e〜
第1−f図)。斯くした後絶縁膜105及び絶縁膜10
6と異なる絶縁膜107を窓開けを設けて形成しく第1
−g図、第1−h図)、配線108を形成する(第1−
i図) 。このようにして絶&tl1105,106,107を
層間絶縁膜として、ソース・ドレインの拡散領域109
と配線108を電気的に接続する。最後に保護膜110
を被覆し、自己整合型開孔部を宵する半導体素子が構成
される。第1の実施例では、絶縁素子分離領域102と
ゲート電極104パターンに自己型合する姿態に開孔部
たる製造工程を示す断面図である。
An insulating element isolation region 1 is formed on the surface of a silicon semiconductor substrate 101.
02 is formed, and an insulating film 105 is formed to cover the upper surface of the gate electrode 104 formed on the gate insulating film 103 of the insulated gate field effect transistor (Figures ib-b), and then an n diffusion region is formed by arsenic ion implantation. 1-c to 1-d), and then an insulating film 106 is formed to cover the side surface of the gate electrode 104 (FIGS. 1-e to 1-d).
Figures 1-f). After doing so, the insulating film 105 and the insulating film 10
An insulating film 107 different from 6 is formed with a window opening.
Figure 1-g, Figure 1-h), and wiring 108 is formed (Figure 1-h).
Figure i). In this way, the source/drain diffusion regions 109 are
and wiring 108 are electrically connected. Finally, the protective film 110
A semiconductor device having self-aligned openings is constructed. In the first embodiment, it is a cross-sectional view showing a manufacturing process in which the opening portion is formed so as to self-fit into the pattern of the insulating element isolation region 102 and the gate electrode 104.

第4図に示すようにP型シリコン基板401表面にゲー
ト膜用のシリコン酸化膜402を膜厚が100〜20O
Aとなるよう熱酸化法にて形成した後、ポリシリコン、
ポリサイド、あるいは高融点金属等の導電性膜403を
、スパッターあるいはCVD法にて堆積後頁にシリコン
オキシナイトライド等の絶縁膜404を膜厚2000〜
4000−A、程形成する。
As shown in FIG. 4, a silicon oxide film 402 for a gate film is formed on the surface of a P-type silicon substrate 401 to a thickness of 100 to 200 nm.
After forming by thermal oxidation method to form A, polysilicon,
After depositing a conductive film 403 made of polycide or high-melting point metal by sputtering or CVD, an insulating film 404 made of silicon oxynitride or the like is deposited to a thickness of 2000 to 2000 nm.
4000-A, approximately formed.

次に第5図に示すように公知のリングラフ1技術でホト
レジスト!405をマスクにして下層の絶縁膜404.
導電性膜403をドライエツチングした後、第6図に示
すようにエツチングのマスクとして用いたホトレジスト
層405を除去した後、砒素のイオン406を注入エネ
ルギー50〜100 K e v 、注入ff1lX1
0イオン/d条件で注入しn 拡散領域407を形成す
る。続いて第7図に示すように、絶縁膜408をステッ
プカバレッジのよいCVD法にて膜厚2000〜500
0A程堆積する。ここでこの絶縁膜408としては、絶
縁膜404と同材料のシリコンオキシナイトライドても
よいし、その他の絶縁膜でもよい。
Next, as shown in Figure 5, photoresist is applied using the known Lingraph 1 technology! 405 as a mask, the lower insulating film 404.
After dry etching the conductive film 403 and removing the photoresist layer 405 used as an etching mask as shown in FIG.
An n diffusion region 407 is formed by implanting under the condition of 0 ions/d. Subsequently, as shown in FIG. 7, the insulating film 408 is formed to a thickness of 2000 to 500 using the CVD method with good step coverage.
It accumulates about 0A. Here, the insulating film 408 may be made of silicon oxynitride made of the same material as the insulating film 404, or may be any other insulating film.

このようにした後絶縁膜408を異方性の高いドライエ
ツチング法で、n+ 拡散領域407の中央部上の絶縁
1408か除去されるまで、エツチングする。この高い
異方性エツチングのため導電性膜403及び絶縁膜40
4の側壁、こ第8図に示すように絶縁膜408が残留T
る。
After this, the insulating film 408 is etched by a highly anisotropic dry etching method until the insulating film 1408 on the center of the n+ diffusion region 407 is removed. Because of this highly anisotropic etching, the conductive film 403 and the insulating film 40
4, as shown in FIG.
Ru.

続いて第9図に示すように絶縁膜409をCVD法、あ
るいは塗布法で膜厚400OA程度形成する。ここでこ
の絶縁膜409は、絶縁膜404.408とは別種のも
のにする必要がある。例えば、絶縁膜404.408が
シリコンオキシナイトライド膜で構成される場合には、
シリコン酸化膜あるいは、シリコン窒化膜で絶縁膜40
9を形成すればよい。
Subsequently, as shown in FIG. 9, an insulating film 409 is formed to a thickness of about 400 OA by CVD or coating. Here, the insulating film 409 needs to be of a different type from the insulating films 404 and 408. For example, when the insulating films 404 and 408 are made of silicon oxynitride film,
Insulating film 40 with silicon oxide film or silicon nitride film
9 should be formed.

次に第1θ図に示すように絶縁膜409を選択的に除去
するためにホトレジスト層410をマスクにしてエツチ
ングする。この窓開けはドライエッチでもウェットエツ
チングでもどちらでもよい。但し、絶縁膜404,40
8のエツチングレートが低く、且つ絶縁膜409のエツ
チングレートの富いものを使う必要がある。例えば、絶
縁膜404,408がシリコンオキシナイトライド、絶
縁膜409がシリコン酸化膜の場合には、ウェットエツ
チングの薬品としては、弗化アンモニウム、夜を用いれ
ばよい。ここでドライエツチングの場合には、沃素ある
いは臭素を含むハロゲン化炭化水素ガスを用いればよい
。この絶縁膜409に形成される開口部は、絶RK 4
08に囲まれる開口部を通してn+拡散領域407に接
続をとるためのものであり、目合わせには高精度が要求
されることはない。
Next, as shown in FIG. 1θ, etching is performed using the photoresist layer 410 as a mask to selectively remove the insulating film 409. This window opening can be done by dry etching or wet etching. However, the insulating films 404, 40
It is necessary to use a film having a low etching rate for the insulating film 409 and a high etching rate for the insulating film 409. For example, when the insulating films 404 and 408 are silicon oxynitride and the insulating film 409 is a silicon oxide film, ammonium fluoride or chloride may be used as the wet etching chemical. In the case of dry etching, a halogenated hydrocarbon gas containing iodine or bromine may be used. The opening formed in this insulating film 409 is absolutely RK 4
This is for connecting to the n+ diffusion region 407 through the opening surrounded by 08, and high accuracy is not required for alignment.

このようにして開孔部の絶縁膜409を除去し5、更に
薄いゲート膜用のシリコン酸化膜402の絶縁膜408
(こ囲まれた部分も除去した後、第1I図に示すように
アルミ等で配線411を形成する。
In this way, the insulating film 409 in the opening is removed 5, and the insulating film 409 of the silicon oxide film 402 for the thin gate film is further removed.
(After removing the enclosed portion, a wiring 411 is formed of aluminum or the like as shown in FIG. 1I.

このように、以前に転写された回路形成パターン即ち、
絶縁ゲート電界効果トランジスタのゲート電極となる導
電性膜403パターンで自動的に形成された自己整合型
の開孔を通してn拡散領域407と配線411が電気的
に接続される。
In this way, the previously transferred circuit forming pattern, i.e.
The n-diffusion region 407 and the wiring 411 are electrically connected through self-aligned openings that are automatically formed in the pattern of the conductive film 403 which becomes the gate electrode of the insulated gate field effect transistor.

19図は大発明の第3の実施例の半導体装置の主たる製
造工程のど面図を示し1こものである。第2図に示すよ
うに第1図に示した第1の実施例の場合と同様、シリコ
ン半導体基板201表面に絶縁素子分離域202.絶縁
ゲート電界効果トランジスタのゲート3203.ゲート
電極204、絶縁膜205.絶縁膜206を形成し、薄
い導電性膜を絶縁素子分離域202の一部及び絶縁膜2
05,206の一部を被覆する姿態に形成する。絶縁膜
205,206と異なる絶縁膜208を薄い導電性膜2
07上部に窓開けを設けた姿態で形成し、配線209を
設ける。
FIG. 19 is a cross-sectional view showing the main manufacturing process of a semiconductor device according to the third embodiment of the invention. As shown in FIG. 2, as in the first embodiment shown in FIG. 1, an insulating element isolation region 202 is formed on the surface of a silicon semiconductor substrate 201. Gate 3203 of an insulated gate field effect transistor. Gate electrode 204, insulating film 205. An insulating film 206 is formed, and a thin conductive film is formed on a part of the insulating element isolation region 202 and insulating film 2.
05, 206 is formed in such a manner as to cover part of it. An insulating film 208 different from the insulating films 205 and 206 is a thin conductive film 2.
07 is formed with a window opening provided in the upper part, and wiring 209 is provided.

斯くして絶縁膜205,206,207を層間絶縁膜と
して、ソース・ドレインの拡散領域210と配線209
を薄い導電性膜207を介して電気的に接続する。最後
に保護膜211を被覆し、自己整合型開孔部を有する半
導体素子かの実施例の製法について述べる。
In this way, the insulating films 205, 206, and 207 are used as interlayer insulating films to connect the source/drain diffusion regions 210 and the wiring 209.
are electrically connected via a thin conductive film 207. Finally, a manufacturing method of an embodiment of a semiconductor element covered with a protective film 211 and having self-aligned openings will be described.

第12図に示すように、P型シリコン基板201表面に
選択的に厚いシリコン酸化膜を熱酸化法にて形成し絶縁
素子分離域202を形成した後ゲート用のシリコン酸化
膜203.導電性膜204.絶縁膜205を形成する。
As shown in FIG. 12, a thick silicon oxide film is selectively formed on the surface of a P-type silicon substrate 201 by thermal oxidation to form an insulating element isolation region 202, and then a silicon oxide film 203 for a gate is formed. Conductive film 204. An insulating film 205 is formed.

ここでこれ等の膜厚は第2の実施例の場合に述べた値と
同じでよい。
Here, these film thicknesses may be the same as the values described in the case of the second embodiment.

次に第13図に示すように公知のりソグラフィ′技術で
ホトレジスト層506をマスクにして絶縁膜205.金
属薄膜204をエツチングした後、第14図に示すよう
に、n+ 拡散領域210及び絶縁膜206を前記第2
の実施例の場合と同様に形成する。
Next, as shown in FIG. 13, the insulating film 205 is formed using the photoresist layer 506 as a mask using a known lithography technique. After etching the metal thin film 204, as shown in FIG.
It is formed in the same manner as in the embodiment.

続いて第15図に示すように導電性膜2o4゜絶縁膜2
05の側壁に絶縁膜206が残るよう異方性のドライエ
ツチングを施す。かくしてn+拡散領域210表面を露
出した後、第16図に示すように、n型の宵効不純物を
含む膜厚が500〜1000Aのポリシリコン薄膜層あ
るいは、高融点金属含有薄膜層等の薄い導電性膜207
を露出したnl  拡散領域210の表面より、絶縁膜
206及び絶縁膜205上、さらに絶縁素子分離領域2
02上に延在するようにバターニングして形成する。か
くした後、第17図に示すように絶縁膜208を全面に
堆積又は塗布し、第18図に示すように、薄い導電性膜
207上の領域のみホトレジスト511をマスクにして
選択除去し窓開けを施した後、第19図に示すように配
線209を形成する。
Next, as shown in FIG.
Anisotropic dry etching is performed so that the insulating film 206 remains on the sidewalls of the wafer 05. After exposing the surface of the n+ diffusion region 210 in this way, as shown in FIG. 16, a thin conductive layer such as a polysilicon thin film layer with a thickness of 500 to 1000 A containing n-type emissive impurities or a thin film layer containing a high melting point metal is formed. sexual membrane 207
From the surface of the exposed nl diffusion region 210, on the insulating film 206 and the insulating film 205, and further on the insulating element isolation region 2.
It is formed by patterning so as to extend over 02. After this, as shown in FIG. 17, an insulating film 208 is deposited or applied over the entire surface, and as shown in FIG. 18, only the area on the thin conductive film 207 is selectively removed using the photoresist 511 as a mask to open a window. After that, wiring 209 is formed as shown in FIG.

本実施例においても、以前に転写された回路形成パター
ン即ち、絶縁素子分離領域202と、絶縁ゲート電界効
果トランジスタのゲート電極となる導電性膜204との
パターンで自動的に形成された自己整合型の開孔を通し
てn+ 拡散領域210と配線209が電気的に接続さ
れる。
In this embodiment as well, a self-aligned type circuit is automatically formed using the previously transferred circuit formation pattern, that is, the pattern of the insulating element isolation region 202 and the conductive film 204 that becomes the gate electrode of the insulated gate field effect transistor. The n+ diffusion region 210 and the wiring 209 are electrically connected through the opening.

ここで薄い導電性膜207は、第18図に示した工程で
第3の絶縁膜208に窓開けを施す時、エツチングのバ
ッファとしての役目を有し、下層の絶縁素子分離領域2
02及び絶縁膜205及び絶縁M2O6の表面が蝕刻さ
れるのを防止する[有]きをもっている。更には又、配
線209にアルミニウムを使用した場合に、配線209
とn+ 拡散領域210が正常に接続できるようにする
動きも有している。
Here, the thin conductive film 207 serves as an etching buffer when opening a window in the third insulating film 208 in the step shown in FIG.
02, the insulating film 205, and the surface of the insulating M2O6 from being etched. Furthermore, when aluminum is used for the wiring 209, the wiring 209
It also has a movement that allows the n+ diffusion region 210 to connect normally.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、電極取り出しに必要とさ
れる開孔部の形成をそれ以前の工程で転写された回路形
成パターンで自動的に行える自己整合型開孔を容易に形
成できるため、整合ズレを見込した面積マージンが不要
となり、半導体集積回路装置の高集積度化を容易にする
効果を有している。
As explained above, the present invention can easily form a self-aligned hole in which the hole required for taking out the electrode can be automatically formed using the circuit formation pattern transferred in the previous process. This eliminates the need for an area margin that takes into account misalignment, and has the effect of facilitating higher integration of semiconductor integrated circuit devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1−a図は本発明の第1の実施例の半導体装置の断面
図、第1−b喪主第1−i図は本発明の第1の実施例の
主たる製造工程を示す断面図、第2図は本発明の第3の
実施例の半導体装置の断面図、第3図は従来の半導体装
置の断面層 図、第4図換至第11図は本発明の第2の実施例用 の主たる製造工程を示す断面図、第12図侯至第19図
は本発明の第3の実施例の主たる製造工程を示す断面図
である。 101.201.301・・・シリコン半導体基板。 102、202.302・・・絶縁素子分離領域。 103、 203. 303・・・ゲート膜。 104、204.304・・・ゲート電極。 ’105.205・・・絶縁膜、 108.20G・・
・絶縁膜。 107、208・・・絶縁膜、207・・・薄い導電性
膜。 108、209.307・・・配線。 109、210.305・・・拡散領域、306・・・
層間絶縁膜。 110、211.308・・・保護膜。 401・・・P型シリコン基板。 402・・・シリコン酸化膜、403・・・導電性膜。 404・・・絶縁膜、 405.50G・・・ホトレジ
スト層。 406・・・砒素イオン、407・・・n+’拡散領域
。 408・・・絶縁膜、409・・・絶縁膜。 410、511・・・ホトレジスト層、411・・・配
線。 代理人 弁理士 内 原  晋1/ 峯1−cL図 半2V 卒1−d(2)         峯IJ+剥茅1−e
記        半1−L1月峯3ゾ
Figure 1-a is a cross-sectional view of a semiconductor device according to the first embodiment of the present invention, Figure 1-b is a cross-sectional view showing the main manufacturing process of the first embodiment of the present invention, and Figure 1-i is a cross-sectional view showing the main manufacturing process of the first embodiment of the present invention. 2 is a cross-sectional view of a semiconductor device according to a third embodiment of the present invention, FIG. 3 is a cross-sectional layer diagram of a conventional semiconductor device, and FIGS. 12 to 19 are cross-sectional views showing the main manufacturing steps of the third embodiment of the present invention. 101.201.301...Silicon semiconductor substrate. 102, 202.302... Insulating element isolation region. 103, 203. 303...Gate film. 104, 204.304...Gate electrode. '105.205...Insulating film, 108.20G...
・Insulating film. 107, 208... Insulating film, 207... Thin conductive film. 108, 209.307...Wiring. 109, 210.305...diffusion area, 306...
Interlayer insulation film. 110, 211.308...Protective film. 401...P-type silicon substrate. 402... Silicon oxide film, 403... Conductive film. 404... Insulating film, 405.50G... Photoresist layer. 406...Arsenic ion, 407...n+' diffusion region. 408... Insulating film, 409... Insulating film. 410, 511... Photoresist layer, 411... Wiring. Agent Patent Attorney Susumu Uchihara 1/Mine 1-cL Figure Half 2V Graduation 1-d (2) Mine IJ + Haruka 1-e
Note Half 1-L January Tsukimine 3zo

Claims (1)

【特許請求の範囲】[Claims] 半導体基板の一主面上に導電物質層を形成する工程と、
該導電物質層上に第一の絶縁膜を形成する工程と、前記
第一の絶縁膜を選択的に除去する工程と、前記第一の絶
縁膜をマスクにして前記導電物質層を選択的に除去する
工程と、その後、前記導電物質層の側面、前記第一の絶
縁膜の上表面および前記導電物質層が選択的に除去され
た表面を第二の絶縁膜により被覆する工程と、該第二の
絶縁膜を均一に除去することにより前記導電物質層の側
面を前記第二の絶縁膜により被覆しかつ前記導電物質層
が選択的に除去された表面を露出する工程とを有するこ
とを特徴とする半導体装置の製造方法。
forming a conductive material layer on one main surface of the semiconductor substrate;
forming a first insulating film on the conductive material layer; selectively removing the first insulating film; and selectively removing the conductive material layer using the first insulating film as a mask. removing the conductive material layer, and then covering the side surfaces of the conductive material layer, the upper surface of the first insulating film, and the surface from which the conductive material layer has been selectively removed with a second insulating film; The second insulating film is uniformly removed to cover the side surfaces of the conductive material layer with the second insulating film, and the surface from which the conductive material layer is selectively removed is exposed. A method for manufacturing a semiconductor device.
JP62040715A 1987-02-23 1987-02-23 Method for manufacturing semiconductor device Expired - Lifetime JP2641856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62040715A JP2641856B2 (en) 1987-02-23 1987-02-23 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62040715A JP2641856B2 (en) 1987-02-23 1987-02-23 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS63207154A true JPS63207154A (en) 1988-08-26
JP2641856B2 JP2641856B2 (en) 1997-08-20

Family

ID=12588281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62040715A Expired - Lifetime JP2641856B2 (en) 1987-02-23 1987-02-23 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2641856B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04290232A (en) * 1991-03-19 1992-10-14 Toshiba Corp Formation method of groove-buried interconnection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154966A (en) * 1978-05-29 1979-12-06 Nippon Telegr & Teleph Corp <Ntt> Semiconductor electron device
JPS60175452A (en) * 1984-02-20 1985-09-09 Matsushita Electronics Corp Manufacture of transistor
JPS62150746A (en) * 1985-12-24 1987-07-04 Rohm Co Ltd Wiring formation of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154966A (en) * 1978-05-29 1979-12-06 Nippon Telegr & Teleph Corp <Ntt> Semiconductor electron device
JPS60175452A (en) * 1984-02-20 1985-09-09 Matsushita Electronics Corp Manufacture of transistor
JPS62150746A (en) * 1985-12-24 1987-07-04 Rohm Co Ltd Wiring formation of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04290232A (en) * 1991-03-19 1992-10-14 Toshiba Corp Formation method of groove-buried interconnection

Also Published As

Publication number Publication date
JP2641856B2 (en) 1997-08-20

Similar Documents

Publication Publication Date Title
US5807779A (en) Method of making tungsten local interconnect using a silicon nitride capped self-aligned contact process
US4425700A (en) Semiconductor device and method for manufacturing the same
US5838051A (en) Tungsten policide contacts for semiconductor devices
JPH04229616A (en) Method for boring an opening on semicon- ductor layer structure
JP3215320B2 (en) Method for manufacturing semiconductor device
US6261882B1 (en) Method for fabricating a semiconductor device
JPH04348077A (en) Thin-film transistor
US5321282A (en) Integrated circuit having a charge coupled device and MOS transistor and method for manufacturing thereof
JPS60194570A (en) Manufacture of semiconductor device
JPH05166835A (en) Self-aligning polysilicon contact
JPH11135779A (en) Semiconductor device and manufacture thereof
JPS63207154A (en) Manufacture of semiconductor device
JPH10326896A (en) Semiconductor device and manufacture thereof
JPH03235336A (en) Manufacture of semiconductor device
JP2550302B2 (en) Method for manufacturing semiconductor device
JP3389510B2 (en) Method for manufacturing semiconductor device
JP2001102570A (en) Semiconductor transistor and manufacturing method therefor
JPS6154661A (en) Manufacture of semiconductor device
JPH1126756A (en) Manufacture of semiconductor device
JPH08236608A (en) Fabrication of semiconductor device
JPS59124767A (en) Manufacture of semiconductor-integrated circuit device
JPH02156542A (en) Semiconductor device and manufacture thereof
JPS6194369A (en) Manufacture of semiconductor device
JPH03276763A (en) Semiconductor device
JPH05343515A (en) Semiconductor device and its manufacture