JPS63206490A - Production of high-purity copper - Google Patents

Production of high-purity copper

Info

Publication number
JPS63206490A
JPS63206490A JP61239794A JP23979486A JPS63206490A JP S63206490 A JPS63206490 A JP S63206490A JP 61239794 A JP61239794 A JP 61239794A JP 23979486 A JP23979486 A JP 23979486A JP S63206490 A JPS63206490 A JP S63206490A
Authority
JP
Japan
Prior art keywords
electrolytic
bath
electrolytic cell
main
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61239794A
Other languages
Japanese (ja)
Inventor
Yuichi Iga
祐人 伊賀
Kenichi Kurihara
健一 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Denshi Kogyo KK
Original Assignee
Tanaka Denshi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Denshi Kogyo KK filed Critical Tanaka Denshi Kogyo KK
Priority to JP61239794A priority Critical patent/JPS63206490A/en
Publication of JPS63206490A publication Critical patent/JPS63206490A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To produce the title high-purity copper capable of being used for bonding wire by specifying the relation between the current densities of the main and auxiliary electrolytic baths constituting an electrolytic cell, and carrying out electrolytic refining while circulating an electrolyte from the main electrolytic bath to the auxiliary electrolytic bath. CONSTITUTION:A connecting pipe 4 provided with a pump 3 is furnished at the bottom of the electrolytic cell A wherein the main electrolytic bath 1 and the auxiliary electrolytic bath 2 are formed adjacent to each other, and an inflow hole 5 is bored through the upper part of a partition wall separating the baths 1 and 2. The anode Cu plates (n) and (n') of the baths 1 and 2 are made of electrolytically refined copper, and the cathodes (s) and (s') are made of stainless steel sheet insoluble in the electrolyte. The current density of the auxiliary electrolytic bath 2 is made 1-5 times higher than that of the main electrolytic bath 1, and electrolytic refining is carried out while circulating the electrolytes (m) and (m') from the bath 1 to the bath 2 through the pump 3 and the hole 5. Accordingly, since a trace amt. of impurities eluted from the anode (n) in the bath 1 into the electrolyte (m) is deposited on the cathode (s'), the pure electrolyte (m') is returned to the bath 1. As a result, the copper eluted from the anode (n) practically contains no impurities and is deposited on the cathode (s), and high-purity copper is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電解精製法による高純度銅の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing high-purity copper by electrolytic refining.

(従来の技術とその問題点) 従来、高純度の銅を¥J造する方法としては、電解精製
法或いはゾーン精製法を何回かくり返して行う方法又は
両者を併用する方法等がとられている。
(Conventional technology and its problems) Conventionally, methods for producing high-purity copper include repeating electrolytic refining or zone refining several times, or a combination of both. There is.

しかしながら、これらの方法では一定の純度(残留抵抗
比1000程度)の銅しか製造することができなかった
However, these methods could only produce copper of a certain purity (residual resistance ratio of about 1000).

これは、陽極側の銅板に含有されている微りの不純物を
除去することができないためであった。そのため例えば
、近年金の代替として半導体装置の結線に使用されてい
るボンディング用銅線は、ボンディングワイヤーに供せ
る程度の純度に高めることができず、アルミや金線より
も硬いため結線の際に半導体素子に割れ等のボンディン
グダメージをあたえる欠点があった。
This was because it was not possible to remove minute impurities contained in the copper plate on the anode side. For example, copper wire for bonding, which has recently been used as a substitute for gold to connect semiconductor devices, cannot be made to a purity level that can be used as bonding wire, and because it is harder than aluminum or gold wire, This method has the drawback of causing bonding damage such as cracking to the semiconductor element.

(発明が解決しようとする技術的課題)以上の問題を解
決しようとする本発明の技術的課題は、銅に含有される
微m不純物の除去を可能とするこにより高純度の銅の精
製をすることである。
(Technical problem to be solved by the invention) The technical problem to be solved by the present invention is to purify high-purity copper by making it possible to remove minute impurities contained in copper. It is to be.

(技術的課題を達成するための技術的手段)以上の技術
的課題を達成するための本発明の第1の技術的手段は電
解精製法による高純度銅の製造方法において、電解槽を
主電解槽と副電解槽とにより形成し、該副電解槽内の電
流密度を主電解槽の電流密度の1倍より大きく5倍以下
にすると共に、これらの電解液を主電解槽から副電解槽
へ循環させながら電解精製を行うことであり、第2の技
術的課題は電解精製法による高純度銅の製造方法におい
て、電解槽を主電解槽と副電解槽とにより形成し、該副
電解槽内の電流密度を主電解槽の電流密度の1倍より大
きく5倍以下にすると共に、これら電解液を主電解槽か
ら副電解層へ循環させながら電解精製を行って高純度の
銅を得、該銅にゾーン精製を行って高純度銅を製造する
ことであり、副電解槽の電流密度が主電解槽の電流密度
の1倍以下である場合は効果がなく、5倍より大きくな
ると不純物の溶出が多くなりすぎるため逆効果となる。
(Technical Means for Achieving the Technical Problem) The first technical means of the present invention for achieving the above-mentioned technical problem is to use an electrolytic cell as the main electrolytic The electrolyte is formed by a cell and a sub-electrolytic cell, and the current density in the sub-electrolytic cell is set to be more than 1 times and 5 times or less than the current density of the main electrolytic cell, and these electrolytes are transferred from the main electrolytic cell to the sub-electrolytic cell. The second technical problem is to perform electrolytic refining while circulating.The second technical problem is that in a method for producing high-purity copper by electrolytic refining, an electrolytic cell is formed of a main electrolytic cell and a sub-electrolytic cell, and a The current density of the main electrolytic cell is set to more than 1 times and 5 times or less of the current density of the main electrolytic cell, and the electrolytic solution is circulated from the main electrolytic cell to the sub-electrolytic layer while performing electrolytic refining to obtain high-purity copper. The process involves zone refining copper to produce high-purity copper. If the current density in the sub-electrolyzer is less than 1 times the current density in the main electrolyzer, it is ineffective, and if it is more than 5 times, impurities will be leached. If there are too many, it will have the opposite effect.

Di!明の効果) 本発明は以上の様な方法にしたことにより、電解精製法
による高純度銅の製造方法において、微量の不純物を除
去することができたので、高純度銅の純度をボンディン
グワイヤーとして使用しうる程度の純度にまで高めるこ
とができた。
Di! (Effects of Light) By using the method described above, the present invention has been able to remove trace amounts of impurities in the method for producing high-purity copper by electrolytic refining. It was possible to improve the purity to a usable level.

(実施例) 以下、本発明の一実施例を図面に基づいて説明する。(Example) Hereinafter, one embodiment of the present invention will be described based on the drawings.

図中(A)は主電解槽(1)と予備電解槽(2)が隣接
して形成された電解槽であり、その底部にはポンプ(3
)を備える連結管(4)が配設されて両電解槽(1)(
2>を連結すると共に、これら両電解槽(1)(2)を
区画する隔壁(d)の上部には流入孔(5)が開穿され
ている。
In the figure, (A) is an electrolytic cell in which a main electrolytic cell (1) and a preliminary electrolytic cell (2) are formed adjacent to each other, and a pump (3) is located at the bottom of the electrolytic cell.
) is arranged so that both electrolytic cells (1) (
An inflow hole (5) is formed in the upper part of the partition wall (d) that connects the electrolytic cells (1) and (2) and partitions the two electrolytic cells (1) and (2).

また、両電解槽(1)(2)の陽極の銅板(n)(n’
 )は電解精製により一定の純度に精製されたものが使
用され、陰極の金属板(S)(S′)は電解液により溶
解されないステンレス板等が使用される。
In addition, the copper plates (n) (n') of the anodes of both electrolytic cells (1) and (2)
) are used which have been purified to a certain purity by electrolytic refining, and the metal plates (S) and (S') of the cathode are made of stainless steel plates or the like which are not dissolved by the electrolytic solution.

而して、本発明の電解精製は主電解槽(1)の電流密度
が主電解MI(1)の1倍より大きく5倍以下、副電解
m(2)の電流密度が5〜25A/dlll’・で行な
われると共に、主電解槽(1)の電解液(m)が連結管
(4)のポンプ(3)により副電解4ff(2)内へ強
制移送される一方、&I11電解槽(2)内の電解液(
m′)が流入孔(5)から主電解槽(1)へ流入されて
、これら電解液(m)(m’ )が循環しながら行なわ
れる。
Therefore, in the electrolytic refining of the present invention, the current density of the main electrolytic cell (1) is greater than 1 times and less than 5 times that of the main electrolytic MI (1), and the current density of the sub-electrolytic m(2) is 5 to 25 A/dlll. At the same time, the electrolyte (m) in the main electrolytic cell (1) is forcibly transferred into the auxiliary electrolytic cell 4ff (2) by the pump (3) of the connecting pipe (4), while the &I11 electrolytic cell (2 ) in electrolyte (
The electrolytic solution (m') flows into the main electrolytic cell (1) from the inflow hole (5), and the electrolytic solutions (m) and (m') are circulated.

したがって主電解1(1)内の陽極の銅板(n>から電
解液(m>内に溶出された微mの不純物は、主電解槽(
1)より高い電流密度の副電解槽(2)の陰極のステン
レス板(S′)に付着される。
Therefore, the minute impurities eluted from the anode copper plate (n> into the electrolyte (m>) in the main electrolytic tank (1) are
1) It is attached to the stainless steel plate (S') of the cathode of the sub-electrolytic cell (2) with higher current density.

依って、不純物の混入のないより純粋な電解液(m゛)
が流入孔(5)から主電解槽(1)にもどされる。
Therefore, a purer electrolyte (m゛) without contamination with impurities
is returned to the main electrolytic cell (1) through the inflow hole (5).

従って、主電解槽(1)における陽極の銅板(n)から
溶出された銅は、はとんど不純物のない状態で陰極のス
テンレス板(S′)に付着してより純度の高い銅が精製
される。
Therefore, the copper eluted from the copper plate (n) of the anode in the main electrolytic cell (1) adheres to the stainless steel plate (S') of the cathode in an almost impurity-free state, and the copper with higher purity is purified. be done.

そして、以上の精製法により¥#製された銅を次の精製
段階における主電解槽(1)の陽極の銅板(n)に使用
して電解精製を行ない、かつ以上の様な方法でこのN製
法を数回くり返すことにより、より純度の高い銅が精製
され、ざらにこの銅にゾーン精製を数回くり返すことに
よりより純度の高い銅を得ることができる。
Then, the copper produced by the above refining method is used for the copper plate (n) of the anode of the main electrolytic cell (1) in the next refining step, and electrolytic refining is carried out. By repeating the manufacturing process several times, copper with higher purity is refined, and by repeating zone refining on this copper several times, copper with higher purity can be obtained.

次の表は本発明により製造された高純度銅の残留抵抗比
(RRR)を測定したものである。
The following table shows the measured residual resistance ratio (RRR) of high purity copper produced according to the present invention.

以上の様な結果から前記発明の効果を確認することがで
きた。
From the above results, the effects of the invention could be confirmed.

【図面の簡単な説明】 図は本発明を実施するための電解槽の断面図である。 尚図中 (A):電解槽 (1):1電N1fl (2):副電解槽 を示す。[Brief explanation of the drawing] The figure is a sectional view of an electrolytic cell for implementing the present invention. Also in the diagram (A): Electrolytic cell (1): 1 electric N1 fl (2): Sub-electrolyzer shows.

Claims (1)

【特許請求の範囲】 1)電解精製法による高純度銅の製造方法において、電
解槽を主電解槽と副電解槽とにより形成し、該副電解槽
内の電流密度を主電解槽の電流密度の1倍より大きく5
倍以下にすると共に、これらの電解液を主電解槽から副
電解槽へ循環させながら電解精製を行うことを特徴とす
る高純度銅の製造方法。 2)電解精製法による高純度銅の製造方法において、電
解槽を主電解槽と副電解槽とにより形成し、該副電解槽
内の電流密度を主電解槽の電流密度の1倍より大きく5
倍以下にすると共に、これら電解液を主電解槽から副電
解槽へ循環させながら電解精製を行つて高純度の銅を得
、該銅にゾーン精製を行つて製造する高純度銅の製造方
法。
[Claims] 1) In a method for producing high-purity copper by electrolytic refining, an electrolytic cell is formed of a main electrolytic cell and a sub-electrolytic cell, and the current density in the sub-electrolytic cell is set to the current density of the main electrolytic cell. greater than 1 times 5
A method for producing high-purity copper, which is characterized in that electrolytic refining is carried out while the electrolytic solution is circulated from a main electrolytic cell to a sub-electrolytic cell. 2) In a method for producing high-purity copper by electrolytic refining, an electrolytic cell is formed of a main electrolytic cell and a sub-electrolytic cell, and the current density in the sub-electrolytic cell is set to be greater than 1 times the current density of the main electrolytic cell.
A method for producing high-purity copper, in which the electrolytic solution is circulated from a main electrolytic cell to a sub-electrolytic cell while electrolytically refining to obtain high-purity copper, and the copper is subjected to zone refining.
JP61239794A 1986-10-07 1986-10-07 Production of high-purity copper Pending JPS63206490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61239794A JPS63206490A (en) 1986-10-07 1986-10-07 Production of high-purity copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61239794A JPS63206490A (en) 1986-10-07 1986-10-07 Production of high-purity copper

Publications (1)

Publication Number Publication Date
JPS63206490A true JPS63206490A (en) 1988-08-25

Family

ID=17049973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61239794A Pending JPS63206490A (en) 1986-10-07 1986-10-07 Production of high-purity copper

Country Status (1)

Country Link
JP (1) JPS63206490A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015054982A (en) * 2013-09-11 2015-03-23 アサヒプリテック株式会社 ELECTROLYTIC PURIFICATION APPARATUS OF Ag AND ELECTROLYTIC PURIFICATION METHOD OF Ag USING THE SAME APPARATUS
JP2017155343A (en) * 2017-06-15 2017-09-07 アサヒプリテック株式会社 Ag ELECTROLYTIC REFINING DEVICE

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52111818A (en) * 1976-03-18 1977-09-19 Sumitomo Metal Mining Co Electrolytic decoppering method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52111818A (en) * 1976-03-18 1977-09-19 Sumitomo Metal Mining Co Electrolytic decoppering method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015054982A (en) * 2013-09-11 2015-03-23 アサヒプリテック株式会社 ELECTROLYTIC PURIFICATION APPARATUS OF Ag AND ELECTROLYTIC PURIFICATION METHOD OF Ag USING THE SAME APPARATUS
JP2017155343A (en) * 2017-06-15 2017-09-07 アサヒプリテック株式会社 Ag ELECTROLYTIC REFINING DEVICE

Similar Documents

Publication Publication Date Title
US2828251A (en) Electrolytic cladding process
US3219561A (en) Dual cell refining of silicon and germanium
HUT58831A (en) Melted electrode and process for producing polyvalent metal
US2541721A (en) Process for replenishing nickel plating electrolyte
CA1072055A (en) Electrolytic cell and circulating method for electrolyte
JPS63206490A (en) Production of high-purity copper
US2913378A (en) Two-step electrorefining of titanium alloys
JP3146706B2 (en) Gallium electrolysis method
US2785066A (en) Solid plates of titanium and zirconium
JPH034629B2 (en)
JP2005163096A5 (en)
JPS63307291A (en) Manufacture of high-purity copper
JPH0423000B2 (en)
US792307A (en) Process of electrodepositing antimony.
US2224831A (en) Electrolysis cell
JPS636639B2 (en)
US4483752A (en) Valve metal electrodeposition onto graphite
US1375631A (en) Process of separating and refining metals
US2552423A (en) Process for the direct production of refined aluminum
JP2622560B2 (en) Manufacturing method of electrodeposited plate
JPH06192866A (en) Production of potassium dicyanoaurate
KR100349445B1 (en) Cementation apparatus of high purity copper
US1157830A (en) Electrolytic refining of tin.
US3409465A (en) Process for improving the wettability of solid metallic surfaces by molten alkali metals
Ryan Electrodeposition of High‐Purity Chromium from Electrolytes Containing Fluoride or Fluosilicate