JPS63206489A - Production of m-hydroxybenzyl alcohol by electrolysis - Google Patents

Production of m-hydroxybenzyl alcohol by electrolysis

Info

Publication number
JPS63206489A
JPS63206489A JP62039130A JP3913087A JPS63206489A JP S63206489 A JPS63206489 A JP S63206489A JP 62039130 A JP62039130 A JP 62039130A JP 3913087 A JP3913087 A JP 3913087A JP S63206489 A JPS63206489 A JP S63206489A
Authority
JP
Japan
Prior art keywords
hydrochloric acid
cathode
anode
soln
acidic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62039130A
Other languages
Japanese (ja)
Inventor
Shinji Takenaka
竹中 慎司
Tatsu Oi
龍 大井
Chitoshi Shimakawa
千年 島川
Yasushi Shimokawa
下河 靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP62039130A priority Critical patent/JPS63206489A/en
Publication of JPS63206489A publication Critical patent/JPS63206489A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To simultaneously produce chlorine by using an aq. hydrochloric acid soln. as the electrolyte at the time of electrolytically reducing m- hydroxybenzoic acid in the aq. acidic soln. in the cathode chamber of an electrolytic cell wherein the anode and the cathode are separated. CONSTITUTION:m-Hydroxybenzoic acid is electrolytically reduced at 20-70 deg.C in the aq. acidic soln. in the cathode chamber by using the electrolytic cell wherein the anode and the cathode are separated, and m-hydroxybenzyl alcohol is obtained. In this case, an aq. hydrochloric acid soln. is used as the anolyte, and chlorine can be produced in the anode chamber simultaneously with the cathodic reduction. Although any acidic substance inert to the electrolytic reaction at the cathode can be used as the aq. acidic soln. to be used as the catholyte, a mineral acid is preferably used from the standpoint of cost. When hydrochloric acid is used as the catholyte, the concn. of the hydrochloric acid is appropriately controlled to about 3-30wt.% to carry out oxidation with high current efficiency.

Description

【発明の詳細な説明】 童呈上夙机■分立 本発明は、m−ヒドロキシベンジルアルコール(以下m
−H80Hと略記する)の製造方法に関するものである
[Detailed description of the invention] The present invention provides m-hydroxybenzyl alcohol (hereinafter m-hydroxybenzyl alcohol).
-H80H).

m−118(INは工薬、あるいはamの中間体として
任用な化合物であるが、現状ではこれの安価な製造方法
による工業的供給には至っていない。
m-118 (IN is a compound that is used as a chemical agent or an intermediate for am, but at present it has not been industrially supplied by an inexpensive manufacturing method.

丈米p用玉 5−IIBOHの合成法として、m−クレゾールを原料
とする発酵法、m−ヒドロキシベンズアルデヒドを原料
とするナトリウム・アマルガム、#a8L、LiA I
 Ha等による還元及び水素添加反応等があるが、収率
的に不十分であったりして、実用化には至っていない、
また水素添加反応は高温、高圧下の反応であり工業的製
法には種々問題がある。
As a synthesis method of Tama5-IIBOH for long rice p, fermentation method using m-cresol as raw material, sodium amalgam using m-hydroxybenzaldehyde as raw material, #a8L, LiA I
There are reduction and hydrogenation reactions using Ha, etc., but they have not been put into practical use due to insufficient yields.
Furthermore, the hydrogenation reaction is a reaction at high temperature and high pressure, and there are various problems with industrial production methods.

また、トヒドロキシ安息香酸(以下、a+−118Aと
略記する)を原料とする方法については、ナトリウム・
アマルガム及び電解還元法が提案(Berict+te
 381752(1905))されているが収率的にも
低く工業的方法にはなり得なかった。
In addition, regarding the method using hydroxybenzoic acid (hereinafter abbreviated as a+-118A) as a raw material, sodium
Amalgam and electrolytic reduction method proposed (Beric+te
381752 (1905)), but the yield was low and it could not be used as an industrial method.

本発明者らは、先にa+−11808の製造方法につい
て検討し、5−IIBAの電解還元を水溶液、あるいは
水可溶性有機溶媒中で行う方法、更に陰極液中に支持電
解質を添加する方法で高収率でm−88011をうる方
法も既に見出している。(特開昭60−234987、
Uが”ンしようとする間 Iさ 本発明者らは、更にo+−88011の工業的製法につ
いて、鋭意検討を行い、mJI8Aを酸性水溶液中で電
解還元を行い高収率で高純度の−11808を得る方法
を先に提案した(特願昭60−263858 、特願昭
60−272467 )。
The present inventors have previously investigated the production method of a+-11808, and found that the electrolytic reduction of 5-IIBA is carried out in an aqueous solution or a water-soluble organic solvent, and that a supporting electrolyte is added to the catholyte. A method for obtaining m-88011 in high yield has already been found. (Unexamined Japanese Patent Publication No. 60-234987,
The present inventors further conducted intensive studies on the industrial production method of o+-88011, and conducted electrolytic reduction of mJI8A in an acidic aqueous solution to produce -11808 with high yield and high purity. We have previously proposed a method for obtaining (Japanese Patent Applications No. 60-263858 and No. 60-272467).

本電解反応は通常、陽陰極を分離した電解槽を用い、陰
極側で反応を行う。しかし反応中、陽極側は水の電気分
解による酸素発生が起こるのみで有効に利用されていな
い。すなわち、本電解還元反応をより効果的に実施する
ためには、陽極側を有効に利用することが重要である。
This electrolytic reaction usually uses an electrolytic cell with separate anodes and cathodes, and the reaction is carried out on the cathode side. However, during the reaction, the anode side is not used effectively, as oxygen is only generated by electrolysis of water. That is, in order to carry out the present electrolytic reduction reaction more effectively, it is important to effectively utilize the anode side.

本発明の課題は、陽陰極を分離した陰極側で−HBAの
還元反応を行うと同時に、陽極側で起こる酸化反応を利
用して、陽極でも付加価値のある製品を生産する方法を
提供することである。
An object of the present invention is to provide a method for producing value-added products at the anode by performing a -HBA reduction reaction on the cathode side separated from the anode and at the same time utilizing an oxidation reaction occurring on the anode side. It is.

ro  占をllするだめの 本発明者らは、上記課題を解決するために鋭意検討を行
い、塩酸水溶液を陽極液に用いることで陽極側で塩酸の
酸化が効率よく起こり、塩素が製造できることを見出し
、本発明を完成させた。
In order to solve the above problem, the inventors of the present invention, who have no choice but to solve the above problem, conducted intensive studies and found that by using an aqueous solution of hydrochloric acid as the anolyte, the oxidation of hydrochloric acid occurs efficiently on the anode side, and chlorine can be produced. The present invention has been completed.

即ち、本発明はトヒドロキシ安息香酸を陽、陰極を分離
した電解槽を用いて、陰極室で酸性水溶液中20〜70
゛Cで電解還元するに際し陽極液には塩酸水溶液を用い
、陰極還元と同時に陽極室では塩素を製造することを特
徴とするm−ヒドロキシヘンシルアルコールの電解によ
る製造法である。
That is, the present invention uses an electrolytic cell with separated anode and cathode for tohydroxybenzoic acid, and injects 20 to 70 g
This is a method for producing m-hydroxyhensyl alcohol by electrolysis, which is characterized in that an aqueous hydrochloric acid solution is used as the anolyte during electrolytic reduction at C, and chlorine is produced in the anode chamber at the same time as the cathode reduction.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明において、陰極液に用いる酸性水溶液としては、
陰極での電解反応に不活性な酸性物質であれば、特に限
定するものではないが、コスト的に通常鉱酸を用いるの
が望ましく、特に材質及び収率の点から硫酸、あるいは
塩酸が好ましい鉱酸であり、通常1〜30重量%の水溶
液が用いられる。
In the present invention, the acidic aqueous solution used for the catholyte is
Although there are no particular limitations on acidic substances as long as they are inert to the electrolytic reaction at the cathode, it is usually desirable to use mineral acids in terms of cost, and in particular sulfuric acid or hydrochloric acid is preferred in terms of material quality and yield. It is an acid, and an aqueous solution of 1 to 30% by weight is usually used.

陽極に塩酸を用いる場合は塩酸水の塩酸濃度は任意であ
るが酸化反応を電流効率良く行うために3〜30重量%
、好ましくは5〜25重世%の範囲で行うのが良い。
When using hydrochloric acid for the anode, the concentration of hydrochloric acid in the hydrochloric acid water is arbitrary, but it is 3 to 30% by weight in order to carry out the oxidation reaction with high current efficiency.
, preferably in the range of 5-25%.

また塩素発生にともない、塩酸濃度が低下するため、上
記塩酸濃度を保つために、反応中適時濃塩酸水、あるい
は塩酸ガスを陽極中に加えても良い。
Further, as the hydrochloric acid concentration decreases as chlorine is generated, concentrated hydrochloric acid water or hydrochloric acid gas may be added to the anode at appropriate times during the reaction in order to maintain the above-mentioned hydrochloric acid concentration.

m−ヒドロキシ安息香酸の酸性水溶液中の濃度は通常5
〜20重量%である。
The concentration of m-hydroxybenzoic acid in acidic aqueous solution is usually 5
~20% by weight.

本発明方法において、電解還元反応は20〜70℃の温
度範囲で実施する。又、電解に用いる電極のうち特に陰
極材料は水素過電圧の高いもの、具体的には亜鉛、鉛、
カドミウム、水銀を用いる。対する陽極については、通
常の電極材料であれば特に限定しない。
In the method of the present invention, the electrolytic reduction reaction is carried out at a temperature range of 20 to 70°C. In addition, among the electrodes used for electrolysis, the cathode material is one with a high hydrogen overvoltage, specifically zinc, lead,
Uses cadmium and mercury. The anode, on the other hand, is not particularly limited as long as it is made of a normal electrode material.

電解槽はイオン交換隔膜により、陽極室、陰極室を隔離
することが必要である。その他の隔ng!の材質として
は、アスベスト、セラミックス、シンタードグラス等も
使用できる。
The electrolytic cell requires an ion exchange membrane to separate the anode chamber and cathode chamber. Other gaps! As the material, asbestos, ceramics, sintered glass, etc. can also be used.

本発明の電解還元において、電流密度は好ましくは5〜
30A/d rrlである。理論的には4電子還元であ
り、4 Fr/mole通電世である通電流効率は50
〜70%である為、反応を完結させるには5〜8Pr/
mole電気量を通す必要がある。
In the electrolytic reduction of the present invention, the current density is preferably 5 to
30A/drrl. Theoretically, it is a 4-electron reduction, and the current efficiency at 4 Fr/mole current flow is 50
~70%, so to complete the reaction 5~8Pr/
It is necessary to pass mole electricity.

務■反グ四果 本発明方法は陽陰極を分離した電解槽を用いて、陰極側
でm418Aを酸性液中電解還元反応を行うと同時に陽
極液には、塩酸水を用い塩酸を電解酸化し、塩素を製造
することにより、従来、陽極側では無駄に使われていた
電気を有効に利用できるようになり、工業的に極めて価
値ある発明であるる。
The method of the present invention uses an electrolytic cell with separate anodes and cathodes, and performs an electrolytic reduction reaction of m418A in an acidic solution on the cathode side, and at the same time electrolytically oxidizes the hydrochloric acid using hydrochloric acid water as the anolyte. By producing chlorine, it is now possible to effectively utilize electricity that was previously wasted on the anode side, making it an extremely valuable invention from an industrial perspective.

実施例1 両極室とも300−の容量を有し、隔膜としてセレミオ
ンCMV  (旭硝子(株)の商品名のイオン交換膜)
で隔離されたト■型の電解セルを使用して、陰極室に1
0%硫酸水、陽極室に20%の塩酸水をそれぞれ200
 ttdlづつ仕込む。陰極として50cfflの鉛板
、陽極として50cdの・白金板を用いた。さらに陽極
側は発生する塩素ガスが逃げないようにフタをし、ガラ
ス配管を設けて0.2Nヨウ化カリ水?fI液の1−ラ
ップをつけた。
Example 1 Both electrode chambers had a capacity of 300-, and the diaphragm was Selemion CMV (ion exchange membrane under the trade name of Asahi Glass Co., Ltd.).
Using a T-type electrolytic cell isolated with
0% sulfuric acid water and 20% hydrochloric acid water in the anode chamber, respectively.
Prepare ttdl one by one. A 50 cffl lead plate was used as the cathode, and a 50 cd platinum plate was used as the anode. Furthermore, the anode side is covered with a lid to prevent the generated chlorine gas from escaping, and a glass pipe is installed to prepare 0.2N potassium iodide water. A 1-wrap of fI solution was applied.

電解セルを50″Cに保ちつつ、6Aの直流定電流を通
電しつつ、5−NBA 25gをマイクロフィーダーを
用いて6g/時間の割合で陰極液中に添加し、4,2時
間でs+−IIBAを全量添加した。この後更に電解を
0.8時間継続した(6.2Fr/s+ole) 、電
解終了後陰極液は抜取った後、エーテル抽出し、エーテ
ルを留出し、21.8 gの結晶を得た。鋼−1180
11の純度98%、単離収率95%であった。さらに陽
極側の塩素をトラップしたヨウ化カリ水溶液のヨウ素を
チオ硫酸ナトリウムで滴定した結果、陽極側からの塩素
の発生量36.8g 、酸化反応の電流効率90%であ
った。
While maintaining the electrolytic cell at 50"C and applying a constant DC current of 6A, 25g of 5-NBA was added to the catholyte at a rate of 6g/hour using a microfeeder, and s+- The entire amount of IIBA was added. After this, electrolysis was further continued for 0.8 hours (6.2 Fr/s + ole). After the electrolysis was completed, the catholyte was drained, extracted with ether, and the ether was distilled off. Crystals were obtained. Steel-1180
The purity of 11 was 98%, and the isolation yield was 95%. Further, the iodine in the potassium iodide aqueous solution that had trapped chlorine on the anode side was titrated with sodium thiosulfate, and the result was that the amount of chlorine generated from the anode side was 36.8 g, and the current efficiency of the oxidation reaction was 90%.

実施例2 陽陰極液とも10%の塩酸水を仕込、陽極液中には塩酸
ガスを1時間ごとに0.25モルづつ添加(0゜25モ
ル×4回、合計1モル)した以外は実施例1と同様の反
応を行った。 m−HBOHの単離収率94%、塩素発
生量39.3g 、酸化反応の電流効率96%であった
Example 2 10% hydrochloric acid water was added to both the anode and catholyte solutions, and 0.25 mol of hydrochloric acid gas was added to the anolyte every hour (0°25 mol x 4 times, total 1 mol). A reaction similar to Example 1 was carried out. The isolated yield of m-HBOH was 94%, the amount of chlorine generated was 39.3 g, and the current efficiency of the oxidation reaction was 96%.

光肌見処果 実施例の結果から明らかな通り、s−)IBMの電解還
元によるa+−)180Hの製造において、陽極液とじ
て塩酸水を用いると、電流効率良く塩素ガスが得られ、
陽極側が有効に利用できるようになった。
As is clear from the results of the Examples, when hydrochloric acid water is used as the anolyte in the production of s-) IBM's a+-) 180H by electrolytic reduction, chlorine gas can be obtained with high current efficiency.
The anode side can now be used effectively.

Claims (1)

【特許請求の範囲】[Claims] m−ヒドロキシ安息香酸を陽、陰極室を分離した電解槽
を用い陰極室で酸性水溶液中20〜70℃で電解還元す
るに際し、陽極液には塩酸水溶液を用い、陰極還元と同
時に陽極室では塩素を製造することを特徴とするm−ヒ
ドロキシベンジルアルコールの電解による製造法。
When m-hydroxybenzoic acid is electrolytically reduced at 20 to 70°C in an acidic aqueous solution in the cathode chamber using an electrolytic cell with separate anode and cathode chambers, a hydrochloric acid aqueous solution is used as the anolyte, and chlorine is added in the anode chamber at the same time as the cathode reduction. A method for producing m-hydroxybenzyl alcohol by electrolysis, the method comprising: producing m-hydroxybenzyl alcohol.
JP62039130A 1987-02-24 1987-02-24 Production of m-hydroxybenzyl alcohol by electrolysis Pending JPS63206489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62039130A JPS63206489A (en) 1987-02-24 1987-02-24 Production of m-hydroxybenzyl alcohol by electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62039130A JPS63206489A (en) 1987-02-24 1987-02-24 Production of m-hydroxybenzyl alcohol by electrolysis

Publications (1)

Publication Number Publication Date
JPS63206489A true JPS63206489A (en) 1988-08-25

Family

ID=12544519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62039130A Pending JPS63206489A (en) 1987-02-24 1987-02-24 Production of m-hydroxybenzyl alcohol by electrolysis

Country Status (1)

Country Link
JP (1) JPS63206489A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855577A (en) * 1981-09-25 1983-04-01 Yuasa Battery Co Ltd Preparation of amino acid
JPS60243293A (en) * 1984-05-16 1985-12-03 Mitsui Toatsu Chem Inc Manufacture of m-hydroxybenzyl alcohol

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855577A (en) * 1981-09-25 1983-04-01 Yuasa Battery Co Ltd Preparation of amino acid
JPS60243293A (en) * 1984-05-16 1985-12-03 Mitsui Toatsu Chem Inc Manufacture of m-hydroxybenzyl alcohol

Similar Documents

Publication Publication Date Title
US4714530A (en) Method for producing high purity quaternary ammonium hydroxides
CA1335973C (en) Process for preparing quaternary ammonium hydroxides
JPS60243293A (en) Manufacture of m-hydroxybenzyl alcohol
JPS63206489A (en) Production of m-hydroxybenzyl alcohol by electrolysis
JPS6342712B2 (en)
JP2023504839A (en) Method for preparing periodate
KR890002864B1 (en) Process for the preparation of m-hydroxy benzyl alcohol
JP3846778B2 (en) Method for electrolytic fluorination of organic ether compounds
JP2902755B2 (en) Method for producing m-hydroxybenzyl alcohol
JPS6347791B2 (en)
JPH0676671B2 (en) Method for producing m-hydroxybenzyl alcohol
JP2622115B2 (en) Method for producing benzyl alcohols
JPH0715151B2 (en) Method for producing m-hydroxybenzyl alcohol
JPS6347792B2 (en)
JPS63206488A (en) Production of m-hydroxybenzyl alcohol by electrolysis
SU423749A1 (en) METHOD FOR OBTAINING CHLORINE BY ELECTROLYSIS OF SALTIC ACID SOLUTION
JPS62294191A (en) Production of alkoxy acetate
RU2202002C2 (en) Process of production of arsenic acid by electrochemical oxidation of aqueous suspension of arsenic oxide (iii)
JPH0718033B2 (en) Process for producing 3-hydroxybenzyl alcohol
JP2599746B2 (en) Cleavage method of epoxy ketone
JPS63157891A (en) Production of m-hydroxybenzyl alcohol
JPH028386A (en) Method for electrolytically reducing m-hydroxybenzoic acid
JPH01157924A (en) Production of bromofluoromethane
JPS63103093A (en) Production of 3-hydroxybenzyl alcohol
JPS6396284A (en) Production of 5-methyl-2-pyrazinecarboxylic acid