JP3846778B2 - Method for electrolytic fluorination of organic ether compounds - Google Patents

Method for electrolytic fluorination of organic ether compounds Download PDF

Info

Publication number
JP3846778B2
JP3846778B2 JP2001264220A JP2001264220A JP3846778B2 JP 3846778 B2 JP3846778 B2 JP 3846778B2 JP 2001264220 A JP2001264220 A JP 2001264220A JP 2001264220 A JP2001264220 A JP 2001264220A JP 3846778 B2 JP3846778 B2 JP 3846778B2
Authority
JP
Japan
Prior art keywords
compound
reaction
organic
fluorine
organic ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001264220A
Other languages
Japanese (ja)
Other versions
JP2003073873A (en
Inventor
壽雄 淵上
英樹 石川
勝 長谷川
善則 錦
常人 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP2001264220A priority Critical patent/JP3846778B2/en
Publication of JP2003073873A publication Critical patent/JP2003073873A/en
Application granted granted Critical
Publication of JP3846778B2 publication Critical patent/JP3846778B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)
  • Furan Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機エーテル化合物の電解フッ素方法に関し、より詳細には実質的に副反応がなく、煩雑な単離を行うことなく目的のフッ素化化合物を得ることのできる電解フッ素方法に関する。
【0002】
【従来の技術】
電解法はクリーンな電気エネルギーを利用して、反応試薬を用いずに化学を行うことができる化学合成手段のひとつであり、電流密度により反応速度を制御でき、また電位を規制することで生成物を選択できる特徴を有している。有機化合物の電解合成の分野では、安定で反応を促進する非水溶媒を利用することにより、多くの有機化合物の酸化還元プロセスが実用化されている。電解法は電極表面での不均一相反応であるため大量生産には不向きであるが、選択的な合成が可能であるため、付加価値の大きい物質を新規な電解合成系で製造することが検討されている。
含フッ素有機化合物は、医薬や農薬として重要な化学合成品であり、目的の作用効果を高めるために、多種多様な分子構造を有する化合物が開発されている。含フッ素有機化合物の選択的分子変換や有機化合物の選択的フッ素化の手法として電解法が有用であることが知られている。
【0003】
【発明が解決しようとする課題】
従来の各種電解反応のうち、部分フッ素化体の電解合成反応では、通常有機溶媒を用いるため、該有機溶媒の酸化分解などの副反応が起こり、電流効率が低下したり、生成した目的物質を電解液から分離し、精製する必要があった。従ってこの従来法は、収率及び選択性の面で不十分であり、特に単離操作の問題点から実用化に至っていない。
本発明は、このような従来の有機化合物の電解による部分フッ素化反応における収率や選択性を改良し、かつ実質的に単離操作を不要にできる有機エーテル化合物の電解フッ素化方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明は、電解槽内に、(化1)又は(化2)で表されるジメトキシエタン、又はテトラヒドロフラン、1,4−ジオキサン及び1,3−ジオキソランから選択される1又は2以上の有機エーテル化合物((化2)中、Xは酸素又は炭素、nは0又は1)と、溶媒として機能する、常温溶融可能なテトラアルキルアンモニウムフロリドポリフッ化水素化合物及び/又はトリアルキルアミンポリフッ化水素塩化合物である含フッ素溶融塩を含む電解液を収容し、該電解液に通電することにより前記有機エーテル化合物をフッ素すること特徴とする方法である。
【化1】

Figure 0003846778
【化2】
Figure 0003846778
【0005】
以下本発明を詳細に説明する。
本発明は、実質的に溶媒を使用することなく、有機エーテル化合物の電解フッ素反応を行うことを特徴とする。
有機エーテル化合物は電解合成用、リチウム2次電池などの電解溶媒として広く使用されており、又フッ素化された有機エーテル化合物は、電解溶媒、2次電池電解液、代替フロン、洗浄剤等として使用され、或いは今後の使用が期待されている。
【0006】
有機電解合成の1種であるフッ素化プロセスでは、通常反応原料の目的生成物への電解反応を進行させるために、電解条件下で安定な溶媒(例えばアセトニトリル)を選択し使用する必要がある。この溶媒には通常イオン伝導性がないため、電解に対して安定でかつ目的反応を阻害しない電解質(例えば過塩素酸化合物)を溶解混合しておく必要がある。しかしこのような溶媒を使用する有機電解反応では副反応が起こり易く、収率低下と生成物単離の必要性が生じている。
最近になって、テトラアルキルアンモニウムフロリドポリフッ化水素化合物[R4NF・nHF(n=1〜10)]或いはトリアルキルアミンポリフッ化水素塩化合物[R3N・nHF(n=1〜10)]などの電解質が合成され、これらはフッ素化原料でもあるため、電解質とフッ素化原料を単一化合物で兼用できる。従って従来と比較して生成物の分離精製が容易になり、電解質に掛かるコストを低減でき、しかも危険なフッ素原料を別途準備する必要がなくなる。
【0007】
そしてポリフッ化水素化合物は、通常イオン性液体(ionic liquid)と呼ばれる常温溶融塩(常温でも溶液状態でイオン伝導性を有する塩)であり、有機エーテル化合物の多くは液体で、基質が前記溶融塩に溶けるため、溶媒の使用も省略できる理想的な電解系となる可能性がある。
本発明者らは、ポリフッ化水素化合物と有機エーテル化合物から成る電解系で反応を行わせたところ、反応収率が高く、実用性に富むことを見出し、本発明に到達したものである。
【0008】
【発明の実施の形態】
本発明の有機エーテル化合物は、(化1)又は(化2)で表されるジメトキシエタン(化1)、テトラヒドロフラン(化2でXが炭素でn=0)、1,4−ジオキサン(化2でXが酸素でn=1)及び1,3−ジオキソラン(化2でXが酸素でn=0)ある。
【0009】
本発明では、前述の通りフッ素原料である含フッ素溶融塩に反応原料である有機エーテル化合物を溶解して電解液とし、専用の溶媒は使用しない。
前記含フッ素溶融塩として、テトラアルキルアンモニウムフロリドポリフッ化水素化合物及びトリアルキルアミンポリフッ化水素塩化合物がある。これらの化合物は常温で溶融しているため、反応原料の有機エーテル化合物を溶解して均一相の電解液を調製できる。
この電解液に通電すると、有機エーテル化合物の水素原子がフッ素原子で置換されてフッ素化エーテルが生成する。フッ素化は通常エーテル酸素に隣接する炭素原子に結合している水素原子で最も起こり易く、モノ置換体が多く得られる。原料の有機エーテル化合物にも依るが、通電時間を延ばすことによりジ置換体やトリ置換体も得られることがある。
【0010】
反応時間が経過し、原料の有機エーテル化合物が全て消費された後は目的とするフッ素化物と溶融塩の分離のみを行えば良く、特にモノ置換体のみが得られる場合には分離が簡単で、経済的かつ実用的である。
フッ素源である溶融塩が消費された場合には、溶融塩全体でなく、消費対象であるフッ化水素(HF)のみを補充すれば良く、原料コストが安価になり、かつ原料添加が容易である。従って電解槽に原料の有機エーテル化合物と消費するHFのみを添加すれば、連続的な電解合成が可能になる。
生成するフッ素化有機エーテル化合物の沸点が高い場合には、一旦溶媒抽出して電解質である溶融塩と分離し、抽出液から目的のフッ素化有機エーテル化合物を単離することが望ましい。
【0011】
前記電解液に通電するために、酸化鉛、酸化錫、白金、白金族酸化物被覆陽極(DSA)、黒鉛、アモルファスカーボン(grassy carbon、GC)及び導電性ダイヤモンド等から選択される陽極、及び鉛、鉄、白金、チタン及びカーボン系材料から選択される陰極が使用される。
これらの電極の基体は、長寿命(耐久性)の観点と、処理表面への汚染が生じさせない耐食性の観点から、その材料を選択する必要がある。陽極基体としては、チタンなどの弁金属又はその合金が望ましく、陽極触媒としては白金やイリジウム等の貴金属又はそれらの酸化物が望ましい。集電体は導電性材料であれば問題はないが、チタン、ニオブ、タンタル、シリコン、カーボン、ニッケル、タングステンカーバイドなどの板、打ち抜き板、金網、粉末焼結体、金属繊維焼結体が好ましい。ダイヤモンドを金属などの集電体上に被覆形成しても良い。表面を研磨すると密着性と反応面積が増大する。
【0012】
電解槽材料としては、有機化合物に対する耐久性、安定性の観点から、ガラスライニング材料、カーボン、耐食性の優れたチタン、ステンレス及びPTFE樹脂などが好ましく使用できる。
電解条件は、温度が0〜60℃、電流密度が0.1〜100A/dm2であることが好ましい。反応効率を向上させるために、超音波を照射し、物質移動を促進しても良い。
【0013】
次に本発明に係る有機エーテル化合物の電解フッ素化反応の実施例及び比較例を記載するが、これらは本発明を限定するものではない。
【0014】
実施例1
陽極及び陰極としてそれぞれ白金板(縦20mm×横20mm)を無隔膜電解槽内に装着した。
フッ素化原料であるEt3N・4HFを2M、有機エーテル化合物であるジメトキシエタンを60ミリモル使用して、10mlの電解液を作製した。この電解液を、窒素雰囲気とした前記無隔膜電解槽内に入れ、室温下で定電流電解(電流密度:0.1A、2F/モル)を行った。
反応終了後、電解液を常圧蒸留し、NMR及びMSを使用して単離された生成エーテルの構造決定を行ったところ、反応生成物としてメチル基炭素或いはメチレン炭素上の水素がフッ素と置換したフッ化エーテル化合物(CH3−O−CH2CH2−O−CH2F及びCH3−O−CH2CHF−O−CH3)が、合わせて収率89%で得られたことが分かった。
【0015】
実施例2
ジメトキシエタンの替わりにテトラヒドロフラン60ミリモルを原料として使用したこと以外は実施例1と同様な条件で電解を行い、反応終了後、電解液を常圧蒸留し、NMR及びMSを使用して単離された生成エーテルの構造決定を行ったところ、反応生成物として2位の水素がフッ素で置換したフッ化エーテル化合物(2-フルオロテトラヒドロフラン)が、収率56%で得られたことが分かった。
【0016】
実施例3
ジメトキシエタンの替わりに1,4−ジオキサン60ミリモルを原料として使用したこと以外は実施例1と同様な条件で電解を行い、反応終了後、電解液をヘキサン/クロロホルム=1/5と混合して生成物を抽出した。得られた有機エーテル化合物の構造決定を、NMR及びMSを使用して行ったところ、反応生成物としてα位の水素がフッ素で置換したフッ化エーテル化合物(2−フルオロ−1,4−ジオキサン)が、収率77%で得られたことが分かった。
【0017】
比較例1
実施例3の系にアセトニトリルを溶媒として添加し、実施例3と同様の条件で電解を行った。反応終了後、電解液をヘキサン/クロロホルム=1/5と混合して生成物を抽出した。NMR及びMSを使用して生成物の構造決定を試みたが、原料の1,4−ジオキサンの炭素−炭素結合の開裂による副生成物が多量に検出され、2−フルオロ−1,4−ジオキサンの収率は50%に達しなかった。
【0018】
【発明の効果】
本発明は、電解槽内に、(化1)又は(化2)で表されるジメトキシエタン、又はテトラヒドロフラン、1,4−ジオキサン及び1,3−ジオキソランから選択される1又は2以上の有機エーテル化合物((化2)中、Xは酸素又は炭素、nは0又は1)と、溶媒として機能する、常温溶融可能なテトラアルキルアンモニウムフロリドポリフッ化水素化合物及び/又はトリアルキルアミンポリフッ化水素塩化合物である含フッ素溶融塩を含む電解液を収容し、該電解液に通電することにより前記有機エーテル化合物をフッ素すること特徴とする方法である。
本発明方法によると、含フッ素溶融塩が溶媒として機能し専用の溶媒を必要としないため、専用の溶媒を使用する有機電解反応と比較して副生成物量が大きく減少し、条件に依っては実質的にゼロになる。従って反応の収率及び選択性が大幅に向上する。
【0019】
又このように副生成物がないか又は非常に少ないため、副生成物を単離する工程が実質的に不要になり、簡単な操作で目的とするフッ素化有機エーテル化合物が得られる。
フッ素源である前記含フッ素溶融塩は、反応が進行しても消費されるのはフッ化水素のみで、高価な含フッ素溶融塩自体は消耗せず、有機エーテル化合物とフッ化水素の添加のみで反応を継続できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrolytic fluorine method for an organic ether compound, and more particularly, to an electrolytic fluorine method that is substantially free of side reactions and that can provide a desired fluorinated compound without complicated isolation.
[0002]
[Prior art]
Electrolysis is a chemical synthesis method that uses clean electrical energy to perform chemistry without the use of reaction reagents. The reaction rate can be controlled by the current density, and the product can be controlled by regulating the potential. It has a feature that can be selected. In the field of electrolytic synthesis of organic compounds, many organic compound oxidation-reduction processes have been put to practical use by utilizing a non-aqueous solvent that is stable and promotes the reaction. The electrolysis method is not suitable for mass production because it is a heterogeneous phase reaction on the electrode surface, but since selective synthesis is possible, it is considered to produce a high added-value substance in a new electrosynthesis system. Has been.
Fluorine-containing organic compounds are chemical synthetic products that are important as pharmaceuticals and agricultural chemicals, and compounds having a wide variety of molecular structures have been developed in order to enhance the intended effects. It is known that electrolysis is useful as a method for selective molecular conversion of fluorine-containing organic compounds and selective fluorination of organic compounds.
[0003]
[Problems to be solved by the invention]
Among the various conventional electrolysis reactions, the electrosynthesis reaction of partially fluorinated compounds usually uses an organic solvent, so side reactions such as oxidative decomposition of the organic solvent occur, current efficiency decreases, and the produced target substance is reduced. It had to be separated from the electrolyte and purified. Therefore, this conventional method is insufficient in terms of yield and selectivity, and has not been put into practical use particularly from the point of isolation operation.
The present invention provides a method for electrolytic fluorination of an organic ether compound that improves the yield and selectivity in the partial fluorination reaction by electrolysis of such a conventional organic compound and can substantially eliminate the need for isolation. For the purpose.
[0004]
[Means for Solving the Problems]
In the electrolytic cell, the present invention provides one or more organic ethers selected from dimethoxyethane represented by (Chemical Formula 1) or (Chemical Formula 2), or tetrahydrofuran, 1,4-dioxane and 1,3-dioxolane. Compound ((Chemical Formula 2), X is oxygen or carbon, n is 0 or 1), and tetraalkylammonium fluoride polyhydrofluoride compound and / or trialkylamine polyhydrofluoride salt that functions as a solvent and can be melted at room temperature an electrolytic solution containing a fluorine-containing molten salt is a compound containing a method characterized by fluorine the organic ether compound by energizing the electrolytic solution.
[Chemical 1]
Figure 0003846778
[Chemical 2]
Figure 0003846778
[0005]
The present invention will be described in detail below.
The present invention is characterized in that an electrolytic fluorine reaction of an organic ether compound is carried out substantially without using a solvent.
Organic ether compounds are widely used as electrolytic solvents for electrolytic synthesis, lithium secondary batteries, etc. Also, fluorinated organic ether compounds are used as electrolytic solvents, secondary battery electrolytes, CFC substitutes, cleaning agents, etc. Or expected to be used in the future.
[0006]
In the fluorination process, which is a kind of organic electrosynthesis, it is usually necessary to select and use a solvent (for example, acetonitrile) that is stable under electrolytic conditions in order to advance the electrolytic reaction of the reaction raw material to the target product. Since this solvent usually has no ionic conductivity, it is necessary to dissolve and mix an electrolyte (for example, a perchloric acid compound) that is stable to electrolysis and does not inhibit the target reaction. However, in the organic electrolysis reaction using such a solvent, side reactions are likely to occur, resulting in a need for yield reduction and product isolation.
Recently, tetraalkylammonium fluoride polyhydrofluoride compound [R 4 NF · nHF (n = 1 to 10)] or trialkylamine polyhydrofluoride compound [R 3 N · nHF (n = 1 to 10) ], And these are also fluorinated raw materials, so that the electrolyte and the fluorinated raw material can be used as a single compound. Accordingly, the product can be easily separated and purified as compared with the conventional case, the cost for the electrolyte can be reduced, and there is no need to separately prepare a dangerous fluorine raw material.
[0007]
The polyhydrofluoric compound is a room temperature molten salt (salt having ionic conductivity in a solution state even at room temperature) usually called an ionic liquid, and most of the organic ether compounds are liquid and the substrate is the molten salt. Therefore, there is a possibility that an ideal electrolytic system can be used in which the use of a solvent can be omitted.
The present inventors have reached the present invention by finding that the reaction is carried out in an electrolytic system composed of a polyhydrofluoride compound and an organic ether compound, and the reaction yield is high and practical.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The organic ether compound of the present invention includes dimethoxyethane represented by (Chemical Formula 1) or (Chemical Formula 2), tetrahydrofuran (Chemical Formula 2 where X is carbon and n = 0), 1,4-dioxane (Chemical Formula 2). in X is n = 1 in oxygen) and 1,3-dioxolane (of n = 0 X is oxygen in 2).
[0009]
In the present invention, as described above, an organic ether compound as a reaction raw material is dissolved in a fluorine-containing molten salt as a fluorine raw material to form an electrolytic solution, and no dedicated solvent is used.
Examples of the fluorine-containing molten salt include a tetraalkylammonium fluoride polyhydrofluoride compound and a trialkylamine polyhydrofluoride compound. Since these compounds are melted at room temperature, it is possible to prepare a homogeneous electrolyte by dissolving the organic ether compound as a reaction raw material.
When this electrolytic solution is energized, hydrogen atoms of the organic ether compound are replaced with fluorine atoms to produce fluorinated ether. Fluorination is most likely to occur with hydrogen atoms bonded to carbon atoms adjacent to ether oxygen, and many mono-substituted products are obtained. Although depending on the organic ether compound as a raw material, di-substituted products and tri-substituted products may be obtained by extending the current application time.
[0010]
After the reaction time has elapsed and all the organic ether compound as a raw material has been consumed, it is only necessary to separate the target fluorinated product and molten salt, especially when only a mono-substituted product is obtained. Economical and practical.
When the molten salt, which is a fluorine source, is consumed, it is only necessary to replenish not only the entire molten salt but also hydrogen fluoride (HF), which is the object of consumption, and the raw material cost is reduced and the addition of the raw material is easy. is there. Therefore, if only the organic ether compound as a raw material and HF to be consumed are added to the electrolytic cell, continuous electrolytic synthesis becomes possible.
When the boiling point of the fluorinated organic ether compound to be produced is high, it is desirable that the target fluorinated organic ether compound is isolated from the extract by once solvent extraction and separation from the molten salt as an electrolyte.
[0011]
A lead selected from lead oxide, tin oxide, platinum, platinum group oxide-coated anode (DSA), graphite, amorphous carbon (GC), conductive diamond, etc., and lead for energizing the electrolyte A cathode selected from iron, platinum, titanium and carbon-based materials is used.
These electrode substrates need to be selected from the viewpoints of long life (durability) and corrosion resistance that does not cause contamination of the treated surface. The anode substrate is preferably a valve metal such as titanium or an alloy thereof, and the anode catalyst is preferably a noble metal such as platinum or iridium or an oxide thereof. There is no problem as long as the current collector is a conductive material, but a plate of titanium, niobium, tantalum, silicon, carbon, nickel, tungsten carbide, etc., a punched plate, a wire mesh, a powder sintered body, and a metal fiber sintered body are preferable. . Diamond may be coated on a current collector such as a metal. Polishing the surface increases adhesion and reaction area.
[0012]
As the electrolytic cell material, glass lining material, carbon, titanium, stainless steel and PTFE resin having excellent corrosion resistance can be preferably used from the viewpoints of durability and stability against organic compounds.
The electrolysis conditions are preferably a temperature of 0 to 60 ° C. and a current density of 0.1 to 100 A / dm 2 . In order to improve reaction efficiency, ultrasonic waves may be irradiated to promote mass transfer.
[0013]
Next, examples and comparative examples of the electrolytic fluorination reaction of the organic ether compound according to the present invention will be described, but these do not limit the present invention.
[0014]
Example 1
Platinum plates (vertical 20 mm × horizontal 20 mm) were respectively mounted in the non-diaphragm electrolytic cell as an anode and a cathode.
Using 2M Et 3 N · 4HF as a fluorination raw material and 60 mmol of dimethoxyethane as an organic ether compound, 10 ml of an electrolytic solution was prepared. This electrolytic solution was placed in the non-diaphragm electrolytic bath in a nitrogen atmosphere, and constant current electrolysis (current density: 0.1 A, 2 F / mol) was performed at room temperature.
After completion of the reaction, the electrolytic solution was distilled at atmospheric pressure, and the structure of the isolated ether was determined using NMR and MS. As a reaction product, hydrogen on the methyl group carbon or methylene carbon was replaced with fluorine. The obtained fluorinated ether compounds (CH 3 —O—CH 2 CH 2 —O—CH 2 F and CH 3 —O—CH 2 CHF—O—CH 3 ) were obtained in a combined yield of 89%. I understood.
[0015]
Example 2
Electrolysis was carried out under the same conditions as in Example 1 except that 60 mmol of tetrahydrofuran was used as a raw material instead of dimethoxyethane. After completion of the reaction, the electrolyte was distilled at atmospheric pressure and isolated using NMR and MS. The structure of the produced ether was determined, and it was found that a fluorinated ether compound (2-fluorotetrahydrofuran) in which hydrogen at the 2-position was substituted with fluorine as a reaction product was obtained in a yield of 56%.
[0016]
Example 3
Electrolysis was carried out under the same conditions as in Example 1 except that 60 mmol of 1,4-dioxane was used as a raw material instead of dimethoxyethane. After the reaction was completed, the electrolyte was mixed with hexane / chloroform = 1/5. The product was extracted. When the structure of the obtained organic ether compound was determined using NMR and MS, a fluorine-containing ether compound (2-fluoro-1,4-dioxane) in which hydrogen at the α-position was substituted with fluorine as a reaction product. Was found to be obtained with a yield of 77%.
[0017]
Comparative Example 1
Acetonitrile was added as a solvent to the system of Example 3, and electrolysis was performed under the same conditions as in Example 3. After completion of the reaction, the electrolytic solution was mixed with hexane / chloroform = 1/5 to extract the product. An attempt was made to determine the structure of the product using NMR and MS, but a large amount of by-products due to the cleavage of the carbon-carbon bond of the starting 1,4-dioxane was detected, and 2-fluoro-1,4-dioxane was detected. The yield of did not reach 50%.
[0018]
【The invention's effect】
In the electrolytic cell, the present invention provides dimethoxyethane represented by (Chemical Formula 1) or (Chemical Formula 2), or one or more organic ethers selected from tetrahydrofuran, 1,4-dioxane and 1,3-dioxolane. Compound ((Chemical Formula 2), X is oxygen or carbon, n is 0 or 1), and tetraalkylammonium fluoride polyhydrofluoride compound and / or trialkylamine polyhydrofluoride salt that functions as a solvent and can be melted at room temperature an electrolytic solution containing a fluorine-containing molten salt is a compound containing a method characterized by fluorine the organic ether compound by energizing the electrolytic solution.
According to the method of the present invention, since the fluorine-containing molten salt functions as a solvent and does not require a dedicated solvent, the amount of by-products is greatly reduced compared to the organic electrolysis reaction using a dedicated solvent. It becomes virtually zero. Accordingly, the yield and selectivity of the reaction are greatly improved.
[0019]
Further, since in this way or very little or no by-products, by-products isolating becomes substantially unnecessary, Ru fluorinated organic ether compound of interest can be obtained by a simple operation.
The fluorine-containing molten salt that is a fluorine source is consumed only by hydrogen fluoride even if the reaction proceeds, the expensive fluorine-containing molten salt itself is not consumed, and only the addition of an organic ether compound and hydrogen fluoride. The reaction can be continued.

Claims (2)

電解槽内に、(化1)又は(化2)で表されるジメトキシエタン、又はテトラヒドロフラン、1,4−ジオキサン及び1,3−ジオキソランから選択される1又は2以上の有機エーテル化合物((化2)中、Xは酸素又は炭素、nは0又は1)と、溶媒として機能する、常温溶融可能なテトラアルキルアンモニウムフロリドポリフッ化水素化合物及び/又はトリアルキルアミンポリフッ化水素塩化合物である含フッ素溶融塩を含む電解液を収容し、該電解液に通電することにより前記有機エーテル化合物をフッ素すること特徴とする方法。
Figure 0003846778
Figure 0003846778
In the electrolytic cell, (Formula 1) or (Formula 2) dimethoxyethane represented by, or tetrahydrofuran, one or more organic ether compound selected from 1,4-dioxane and 1,3-dioxolane ((of In 2), X is oxygen or carbon, n is 0 or 1), and includes a tetraalkylammonium fluoride polyhydrofluoride compound and / or a trialkylamine polyhydrofluoride compound that functions as a solvent and can be melted at room temperature. wherein the electrolytic solution containing a containing fluorine molten salt, to fluorine the organic ether compound by energizing the electrolytic solution.
Figure 0003846778
Figure 0003846778
消費された有機エーテル化合物及びフッ化水素を添加しながら反応を継続するようにした請求項に記載の方法。The process according to claim 1 , wherein the reaction is continued while adding the consumed organic ether compound and hydrogen fluoride.
JP2001264220A 2001-08-31 2001-08-31 Method for electrolytic fluorination of organic ether compounds Expired - Fee Related JP3846778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001264220A JP3846778B2 (en) 2001-08-31 2001-08-31 Method for electrolytic fluorination of organic ether compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001264220A JP3846778B2 (en) 2001-08-31 2001-08-31 Method for electrolytic fluorination of organic ether compounds

Publications (2)

Publication Number Publication Date
JP2003073873A JP2003073873A (en) 2003-03-12
JP3846778B2 true JP3846778B2 (en) 2006-11-15

Family

ID=19090862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001264220A Expired - Fee Related JP3846778B2 (en) 2001-08-31 2001-08-31 Method for electrolytic fluorination of organic ether compounds

Country Status (1)

Country Link
JP (1) JP3846778B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5313579B2 (en) * 2008-07-24 2013-10-09 関東電化工業株式会社 Process for producing novel fluorinated 1,2-oxathiolane 2,2-dioxide
JP2010065242A (en) * 2008-09-08 2010-03-25 Tokyo Institute Of Technology Electrochemical modification of conductive polymer compound
ES2539704T3 (en) * 2010-12-15 2015-07-03 Basf Se Electrochemical fluorination procedure of organic compounds
CN116120262A (en) * 2023-02-24 2023-05-16 宁德时代新能源科技股份有限公司 Process for preparing fluorinated cyclic ethers

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02303785A (en) * 1989-05-17 1990-12-17 Fujitsu Ltd Robot hand
US5073674A (en) * 1990-04-20 1991-12-17 Olah George A Environmentally safe catalytic alkyation using liquid onium poly (hydrogen fluorides)
JP3301210B2 (en) * 1994-04-21 2002-07-15 三菱化学株式会社 Method for producing aliphatic acid fluoride
JPH10110284A (en) * 1996-10-07 1998-04-28 Tokuyama Corp Electrolytic fluorination method

Also Published As

Publication number Publication date
JP2003073873A (en) 2003-03-12

Similar Documents

Publication Publication Date Title
US6533916B1 (en) Diamond electrodes
JP3793586B2 (en) Process for producing high purity hydroxides and alkoxides
AU595683B2 (en) Electrochemical process for the replacement of halogen atoms in an organic compound
JP4755458B2 (en) Method for producing 2-alkyne-1-acetal
JP3846778B2 (en) Method for electrolytic fluorination of organic ether compounds
JP5313579B2 (en) Process for producing novel fluorinated 1,2-oxathiolane 2,2-dioxide
JP4587329B2 (en) Method for producing primary amines having a primary amino group and a cyclopropyl unit bonded to an aliphatic or alicyclic C-atom
JP4181297B2 (en) Electrolytic production method of organic compound and electrode for electrolytic production
CN114134522A (en) Electrochemical synthesis method of 4,4' -bipyridine
JPS6342713B2 (en)
US4990227A (en) Preparation of hydroxycarboxylic esters
US4592810A (en) Electrocatalytic production of 2,3,5,6-tetrachloropyridine from pentachloropyridine
JPS6342712B2 (en)
JPS6221876B2 (en)
JP3871191B2 (en) Method for electrolytic fluorination of aromatic nitrogen-containing heterocyclic compounds
EP0219484B1 (en) Electrolytic preparation of perfluoroalkanoic acids and perfluoroalkanols
JPH0219195B2 (en)
KR890002864B1 (en) Process for the preparation of m-hydroxy benzyl alcohol
JP2632832B2 (en) Method for producing polyfluorobenzyl alcohol
JP2009503266A (en) Process for producing 1,1,4,4-tetraalkoxy-but-2-ene derivative
JPH0647746B2 (en) Manufacturing method of phthalaldehyde acetal
JPH0143030B2 (en)
JPH01157924A (en) Production of bromofluoromethane
JPS6145644B2 (en)
JPS625164B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees