JP4181297B2 - Electrolytic production method of organic compound and electrode for electrolytic production - Google Patents

Electrolytic production method of organic compound and electrode for electrolytic production Download PDF

Info

Publication number
JP4181297B2
JP4181297B2 JP2000386998A JP2000386998A JP4181297B2 JP 4181297 B2 JP4181297 B2 JP 4181297B2 JP 2000386998 A JP2000386998 A JP 2000386998A JP 2000386998 A JP2000386998 A JP 2000386998A JP 4181297 B2 JP4181297 B2 JP 4181297B2
Authority
JP
Japan
Prior art keywords
electrode
electrolytic
electrolysis
reaction
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000386998A
Other languages
Japanese (ja)
Other versions
JP2002180288A (en
Inventor
壽雄 淵上
邦尭 百田
美和子 奈良
善則 錦
常人 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd, Tokyo Institute of Technology NUC filed Critical Permelec Electrode Ltd
Priority to JP2000386998A priority Critical patent/JP4181297B2/en
Publication of JP2002180288A publication Critical patent/JP2002180288A/en
Application granted granted Critical
Publication of JP4181297B2 publication Critical patent/JP4181297B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、有機硫黄化合物を効率良く製造するための方法、及び該方法に使用できる電解製造用電極に関する。
【0002】
【従来の技術】
電解法はクリーンな電気エネルギーを利用して、反応試薬を用いずに化学を行うことができる化学合成手段のひとつであり、電流密度により反応速度を制御でき、また電位を規制することで生成物を選択できる特徴を有している。有機化合物の電解合成の分野では、安定で反応を促進する非水溶媒を利用することにより、多くの有機化合物の酸化還元プロセスが実用化されている。電解法は電極表面での不均一相反応であるため大量生産には不向きであるが、選択的な合成が可能であるため、付加価値の大きい物質を新規な電解合成系で製造することが検討されている。
含フッ素有機硫黄化合物は、医薬や農薬として重要な化学合成品であり、所望の効果を得るために、多種多様な分子構造を有する化合物が開発されている。含フッ素化合物の分子構造を選択的に変換したり、有機化合物を選択的にフッ素化して所望の含フッ素有機硫黄化合物を得るために電解法が有用であることが知られている。
【0003】
酸化を行う電極である陽極としては、一般に酸化鉛、酸化錫、白金、DSA、黒鉛、アモルファスカーボン(grassy carbon:GC)等が使用され、還元を行う電極である陰極としては、一般に鉛、鉄、白金、チタン、カーボン等が使用される。電極基体として使用しうる材料は、寿命の長期化を達成しかつ処理表面の汚染を防止するために耐食性を有することが好ましく、電極への給電のための給電体は陽極用としてはチタン等の弁金属又はその合金の使用が望ましく、陽極触媒としては白金やイリジウム等の貴金属及びそれらの酸化物の使用が望ましい。しかしながらこれらの高価な材料を使用しても、通電を行うと電流密度や通電時間に応じて材料が消耗し、電解液中に溶出することが知られており、より耐食性の優れた電極が望まれている。特に有機系の電解液中で耐性のある電極材料が少なく、通常は炭素系材料が使用されるが、消耗が激しく安定な操業が困難であった。白金などの貴金属は比較的安定であるが、収率及び選択性の面で不十分で、更に高価であることが実用化の障害となっている。
【0004】
ダイヤモンドは、熱伝導性、光学的透過性、高温かつ酸化に対する耐久性に優れており、特にドーピングにより電気伝導性の制御も可能であることから、半導体デバイス、エネルギー変換素子等として有望視されている。電気化学用電極としては、Swainらはダイヤモンドの酸性電解液中での安定性を報告し[Journal of Electrochemical Society, Vol.141, p.3382 (1994)]、他のカーボン材料に比較して遥かに優れていることを示唆した。米国特許第5,399,247号明細書は、ダイヤモンドを陽極材料に用いて有機廃水が分解できることを示唆している。Fotiは、有機物の電解酸化分解において白金と異なる分解機構により有機物の二酸化炭素への分解が促進されることを報告している[Electrochemical and Solid-State Letters, Vol.2, p.228-230 (1999)] 。更に安藤が有機化合物の電解合成について報告し[Electrochemical and Solid-State Letters, Vol.2, p.382-384 (1999)]、フッ素化用電極としてダイヤモンド電極が有効であることを指摘したが、収率などの詳細な検討は行われていない。
【0005】
高電流密度及び高電位領域での工業的な利用に関する報告は十分ではないが、最近になってダイヤモンド電極は水の分解反応に対して不活性であり、酸化反応以外では酸素やオゾンの生成に利用できることが報告されている[Japanese Journal of Applied Physics, Vol.36, L260, (1997)] 。従って反応物質である有機化合物が電位的に酸化還元が進行しうる範囲であれば、それらの電解反応が優先し、水系においても有機化合物の電解が容易に進行する。
【0006】
【発明が解決しようとする課題】
有機化合物の一種である有機硫黄化合物も電解合成の望ましい対象であり、従来からフッ素化反応等が電解合成反応として行われている。しかしながらこの電解反応には白金電極や炭素電極等が使用され、白金電極は高価で経済的に問題があり、炭素電極は安価であるが消耗しやすく十分に寿命を有しえないという欠点がある。
本発明は、従来の有機硫黄化合物の電解製造におけるコスト面と操業上の効率面が両立し得ない問題点を解消し、貴金属電極を使用するのとほぼ同等の収率及び選択率で有機硫黄化合物を電解製造できる比較的安価な電極及び電極を使用する有機硫黄化合物の電解製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、少なくともその表面に導電性ダイヤモンドを含む電解用電極を使用して有機化合物を電解製造する方法において、電解反応の原料が、α‐フェニルチオ酢酸エチル、オキシインドール誘導体、ベンゾチアゾリルスルフィド類、エバンスの不斉補助基を有するスルフィド類及びフェニル2,2,2−トリフルオロエチルスルフィドから成る群から選択される有機化合物であり、製造する有機化合物が有機硫黄化合物であることを特徴とする有機化合物の電解製造方法である。
【0008】
以下本発明を詳細に説明する。
本発明は、有機硫黄化合物の電解合成用の電極として導電性ダイヤモンド電極を使用することを特徴とする。このダイヤモンド電極は特に反応選択性に顕著な改良が見られ、比較的高収率で目的の有機硫黄化合物を合成できる。その理由は明確になっていないが、有機硫黄化合物のダイヤモンド電極上への吸着挙動が白金やGCと異なるからであると推察できる。
本発明の原料となる有機硫黄化合物は、α‐フェニルチオ酢酸エチル、オキシインドール誘導体、ベンゾチアゾリルスルフィド類、エバンスの不斉補助基を有するスルフィド類及びフェニル2,2,2−トリフルオロエチルスルフィドの各種硫黄化合物から選択される。電解反応の種類は特に限定されず、得ようとする有機硫黄化合物の化学構造や用途等を考慮して、原料となる有機硫黄化合物の化学構造や電解反応の種類を選択する。反応の種類としては、ハロゲン化、アルコキシ化、カルボキシル化、エステル化、水素添加、脱水素化などが含まれる。
【0009】
使用する導電性ダイヤモンド電極は、金属などの給電体上に形成することが望ましい。ダイヤモンド電極は、熱フィラメント法、CVD法、マイクロ波プラズマCVD法、プラズマアークジェット法及びPVD法等により形成できる。
ダイヤモンドの合成法によっては一部が非ダイヤモンド成分を生成し、ダイヤモンド成分中に含有されることがある。これら非ダイヤモンド成分等の耐食性のない炭素成分は電解液中に溶液して消耗するため実用的な影響は小さいが、使用前に酸洗浄などにより除去しておくことが望ましい。
【0010】
代表的なダイヤモンド電極製造方法である熱フィラメント法について説明する。炭素源となるアルコール等の有機化合物を水素ガス等の還元雰囲気に保ち、フィラメントを炭素ラジカルが生成する温度1800−2400℃に加熱する。そして前記雰囲気内に、ダイヤモンドが析出する温度領域(750−950℃)になるように給電体や電極基体を配置する。このときの原料有機硫黄化合物の望ましい水素に対する濃度は0.1−10容量%、供給速度は反応容器のサイズにも依るが0.01−10リットル/分、圧力が15−760mmHgであることが好ましい。前記電極基体上には通常0.01−1μmの粒径のダイヤモンド微粒子が析出する。このダイヤモンドの層の厚さは操作時間の増減により調節すれば良く、該厚さは電極基体への電解液の浸入を防ぐ目的ために0.1−50μmとすることが好ましく、1−10μmとすることが特に好ましい。
【0011】
良好な導電性を得るためには、原子価の異なる元素を微量添加することが不可欠であり、ホウ素やリンの好ましい含有率は1−100000ppmであり、より好ましい含有率は100−10000ppmである。具体的な化合物としては、毒性の低い酸化ホウ素や五酸化リンなどがある。無定形酸化珪素との複合物質であるDLN(diamond-like nano-composite)なども使用できる。
このようにして製造したダイヤモンド粒子は前述の通り基体や給電体上に担持させて通常の電極として使用しても良いが、流動床や固定床で三次元電極として使用すると、反応面積が増大して処理能力が向上する。
電解槽材料としては、有機化合物に対する耐久性、安定性の観点から、ガラスライニング材料、カーボン、耐食性の優れたチタン、ステンレス及びPTFE樹脂などが好ましく使用できる。
電解条件は、温度が5〜40℃、通常の電極を使用する場合の電流密度が0.01〜10A/dm2であることが好ましい。
【0012】
【発明の実施の形態】
次に添付図面に基づいて本発明の有機硫黄化合物製造用導電性ダイヤモンド電極を有する電解槽の一実施形態を説明するが、本発明はこれに限定されるものではない。
図1は、本発明の有機化合物の電解製造方法に使用可能な無隔膜型電解槽の概略断面図である。
上面が開口する円筒形の電解槽本体1内には、板状の陽極給電体2の下端部の一方面に、ドーパントが添加されたダイヤモンド粒子から成形された陽極3、及び板状の陰極給電体4の下端部の一方面に、白金金属から成る陰極5がそれぞれ互いに離間して吊支され、両給電体2、4の基端同士は電解槽本体1外の電源6を介して接続されている。
【0013】
該電解槽本体1内部には少なくとも陽極3及び陰極5が浸漬するように電解液7が満たされ、かつ電解槽本体1の底面上には磁力により回転する攪拌子8が置かれている。
このような構成から成る電解槽本体1を使用して、フッ素化、メトキシ化、アセトキシ化等の反応による有機硫黄化合物の電解合成を行うためには、原料である有機硫黄化合物、フッ素源、メトキシ基源、アセトキシ基源としての電解質、溶媒と電解液を前記電解槽本体1に注入し、攪拌子を回転させながら両極間に通電すると、電解液中の原料が陽極又は陰極表面で酸化的又は還元的に所望の電解反応を受けて所定の有機硫黄化合物が合成される。
【0014】
次に本発明に係る有機硫黄化合物の電解製造の実施例及び比較例を記載するが、これらは本発明を限定するものではない。
【0015】
実施例1
縦20mm×横20mmのシリコン基板の両面にプラズマCVD法により5μmの厚さになるように導電性ダイヤモンドを析出させて陽極とし、陰極には縦20mm×横20mmの白金板を使用した。これらの電極を使用して。図1に示した無隔膜型電解槽を組み立てた。
電解質はフッ素源としても機能する(C253N・3HFを0.17M使用し、溶媒はアセトニトリルとした。基質(原料の有機硫黄化合物)として、鎖状スルフィドである50mMのα-フェニルチオ酢酸エチル(C65−S−CH2−CO−O−C25)を用いた。窒素雰囲気下で攪拌し、室温下で定電流電解(電流密度:0.25A/dm2、2.5F/モル)を行った。反応終了後に溶媒を減圧濾過し、残留物の分析をNMRを用いて行ったところ、反応生成物としてフッ素が水素と置換した化合物(C65−S−CHF−CO−O−C25)が得られ、収率は32%であった。電解後に電極を観察したが消耗は見られなかった。
【0016】
比較例1
陽極を同面積のGCとしたこと以外は実施例1と同様の条件で電解を行ったところ、収率は26%であり、電解後に電極の消耗が観察された。
【0017】
実施例2
電解質としてフッ素源としても機能する(C254NF・4HFを0.1M、基質として複素環状のオキシインドール誘導体である1−フェニル−3−(フェニルチオ)オキシインドールを50mMそれぞれ使用したこと以外は実施例1と同様の無隔膜電解槽を使用した。窒素雰囲気下で攪拌し、室温下で定電流電解(電流密度:0.25A/dm2、3.5F/モル)を行った。反応終了後に溶媒を減圧濾過し、残留物の分析をNMRを用いて行ったところ、反応生成物としてフッ素が水素と置換した化合物〔1−フェニル−3−フルオロ−3−(フェニルチオ)オキシインドール〕が得られ、収率は66%であった。電解後に電極を観察したが消耗は見られなかった。
【0018】
比較例2
陽極を白金としたこと以外は実施例2と同様の条件で電解を行ったところ、収率は67%であった。
【0019】
比較例3
陽極をGCとしたこと以外は実施例2と同様の条件で電解を行ったところ、収率は31%であり、電解後に電極の消耗が観察された。
【0020】
実施例3
電解質としてフッ素源としても機能する(C254NF・3HFを0.1M、溶媒としてDME(ジメトキシエタン)、基質として2−ベンゾチアゾリルメチルカルボニルメチルスルフィド15mMをそれぞれ使用したこと以外は実施例1と同様の無隔膜電解槽を使用した。窒素雰囲気下で攪拌し、室温下で定電流電解(電流密度:0.25A/dm2、3.5F/モル)を行った。反応終了後に溶媒を減圧濾過し、残留物の分析をNMRを用いて行ったところ、反応生成物としてフッ素が水素と置換した化合物(メチルα−フルオロ−α−(2−ベンゾチアゾリルチオ)アセテート)が得られ、収率は29%であった。
【0021】
比較例4
陽極を同面積のGCとしたこと以外は実施例3と同様の条件で電解を行ったところ、収率は23%であり、電解後に電極の消耗が観察された。
【0022】
実施例4
基質として2−ベンゾチアゾリルメチルスルフィドの代わりに5−クロロベンゾチアゾリルメチルカルボニルメチルスルフィドを50mM使用したこと以外は実施例3と同様の無隔膜電解槽を使用して基質の電解フッ素化を行ったところ(電流密度:0.25A/dm2、2.5F/モル)、反応生成物としてフッ素が水素と置換した化合物(メチルα−フルオロ−α−[[2−(5−クロロベンゾチアゾリル)]チオ]アセテート)が得られ、収率は53%であった。
【0023】
比較例5
陽極を同面積のGCとしたこと以外は実施例3と同様の条件で電解を行ったところ、収率は43%であり、電解後に電極の消耗が観察された。
【0024】
実施例5
基質として50mMのエバンスの不斉補助基を有するスルフィドである(4S)−3−(2−フェニルチオ−1−オキソエチル)−4−フェニル−2−オキサゾリジン)を使用したこと以外は実施例3と同様の無隔膜電解槽を使用して基質の電解フッ素化を行ったところ(電流密度:0.5A/dm2、3F/モル)、反応生成物としてフッ素が水素と置換した化合物(3−(2−フルオロ−2−フェニルチオ−1−オキソエチル)−4−フェニル−2−オキサゾリジン)が得られ、収率は32%であった。不斉合成の度合いを示すジアステレオ過剰率(d.e.)は24%であった。
【0025】
比較例6
陽極を同面積の白金としたこと以外は実施例5と同様の条件で電解を行ったところ、収率は50%であり、d.e.は18%であった。
【0026】
比較例7
陽極を同面積のGCとしたこと以外は実施例5と同様の条件で電解を行ったところ、収率は30%であり、d.e.は16%であった。
【0027】
実施例6
電解質として(C254NO−SO2−C64−CH3を0.2M含むメタノール溶媒を、基質として70mMのフェニル2,2,2−トリフルオロエチルスルフィドをそれぞれ使用したこと以外は実施例1と同様の無隔膜電解槽を使用して電解メトキシ化を行った。窒素雰囲気下で攪拌し、室温下で定電流電解(電流密度:0.16A/dm2、5F/モル)を行った。反応終了後に溶媒を減圧濾過し、残留物の分析をNMRを用いて行ったところ、反応生成物として水素がメトキシ基で置換された化合物(フェニル1−メトキシ−2,2,2−トリフルオロエチルスルフィド)が得られ、収率は68%であった。
【0028】
比較例8
陽極を同面積の白金としたこと以外は実施例6と同様の条件で電解を行ったところ、収率は70%であった。
【0029】
比較例9
陽極を同面積のGCとしたこと以外は実施例6と同様の条件で電解を行ったところ、収率は34%であった。
【0030】
実施例7
電解質として(C254NF・3HFを1M、溶媒としてメタノールとアセトンの1:1混合溶媒をそれぞれ使用したこと以外は実施例5と同様の無隔膜電解槽を用い実施例5の基質のメトキシ化を行った(電流密度:0.5A/dm2、3F/モル)ところ、反応生成物としてメトキシ基が水素と置換した化合物(3−(2−メトキシ−2−フェニルチオ−1−オキソエチル)−4−フェニル−2−オキサゾリジン)が得られ、収率は43%であり、d.e.は11%であった。
【0031】
比較例 10
陽極を同面積の白金としたこと以外は実施例7と同様の条件で電解を行ったところ、収率は78%であったが、d.e.は7%であった。
【0032】
実施例8
電解質として酢酸ナトリウム及び過塩素酸ナトリウムを各0.1M、溶媒として酢酸をそれぞれ使用したこと以外は実施例6と同様の無隔膜電解槽を使用して70mMのフェニル−2,2,2−トリフルオロエチルスルフィド電解アセトキシ化を行ったところ(電流密度:0.6A/dm2、4.5F/モル)、反応生成物として水素がメトキシ基で置換された化合物(フェニル1−アセトキシ−2,2,2−トリフルオロエチルスルフィド)が得られ、収率は45%であった。
【0033】
比較例 11
陽極を同面積の白金としたこと以外は実施例8と同様の条件で電解を行ったところ、収率は52%であった。
【0034】
比較例 12
陽極を同面積のGCとしたこと以外は実施例8と同様の条件で電解を行ったところ、収率12%であり、GCに消耗が観察された。
【0035】
【発明の効果】
本発明は、少なくともその表面に導電性ダイヤモンドを含む電解用電極を使用して有機化合物を電解製造する方法において、電解反応の原料が、α‐フェニルチオ酢酸エチル、オキシインドール誘導体、ベンゾチアゾリルスルフィド類、エバンスの不斉補助基を有するスルフィド類及びフェニル2,2,2−トリフルオロエチルスルフィドから成る群から選択される有機化合物であり、製造する有機化合物が有機硫黄化合物であることを特徴とする有機化合物の電解製造方法である。
本発明方法によると、貴金属電極より安価なダイヤモンド電極を使用して該貴金属電極を使用するのとほぼ同等の収率及び選択率で有機硫黄化合物を電解製造できる。
【0036】
前記電解反応の原料は、α‐フェニルチオ酢酸エチル、オキシインドール誘導体、ベンゾチアゾリルスルフィド類、エバンスの不斉補助基を有するスルフィド類及びフェニル2,2,2−トリフルオロエチルスルフィドを原料とし、前記電解反応は、これらの化合物をフッ素化、メトキシ化又はアセトキシ化する反応を含む。
【図面の簡単な説明】
【図1】本発明の有機化合物の電解製造方法に使用可能な無隔膜型電解槽の概略断面図。
【符号の説明】
1 電解槽本体
2 陽極給電体
3 陽極
4 陰極給電体
5 陰極
6 電源
7 電解液
8 攪拌子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for efficiently producing an organic sulfur compound, and an electrode for electrolytic production that can be used in the method.
[0002]
[Prior art]
Electrolysis is a chemical synthesis method that uses clean electrical energy to perform chemistry without the use of reaction reagents. The reaction rate can be controlled by the current density, and the product can be controlled by regulating the potential. It has the feature that can be selected. In the field of electrolytic synthesis of organic compounds, many organic compound oxidation-reduction processes have been put to practical use by utilizing a non-aqueous solvent that is stable and promotes the reaction. The electrolysis method is not suitable for mass production because it is a heterogeneous phase reaction on the electrode surface, but since selective synthesis is possible, it is considered to produce a high added-value substance in a new electrosynthesis system. Has been.
Fluorine-containing organic sulfur compounds are chemical synthetic products important as pharmaceuticals and agricultural chemicals, and compounds having a wide variety of molecular structures have been developed in order to obtain desired effects. It is known that an electrolytic method is useful for selectively converting the molecular structure of a fluorine-containing compound or selectively fluorinating an organic compound to obtain a desired fluorine-containing organic sulfur compound.
[0003]
As an anode that is an electrode that performs oxidation, lead oxide, tin oxide, platinum, DSA, graphite, amorphous carbon (GC) or the like is generally used, and as a cathode that is an electrode that performs reduction, generally, lead, iron, or the like is used. Platinum, titanium, carbon, etc. are used. The material that can be used as the electrode substrate preferably has corrosion resistance in order to achieve a long life and prevent contamination of the treated surface, and the power supply for supplying power to the electrode is made of titanium or the like for the anode. It is desirable to use a valve metal or an alloy thereof, and it is desirable to use noble metals such as platinum and iridium and oxides thereof as the anode catalyst. However, even if these expensive materials are used, it is known that when energized, the materials are consumed depending on the current density and energization time and are eluted in the electrolyte solution, and an electrode with better corrosion resistance is desired. It is rare. In particular, there are few electrode materials that are resistant in organic electrolytes, and carbon-based materials are usually used. However, they are exhausted and stable operation is difficult. Precious metals such as platinum are relatively stable, but are insufficient in terms of yield and selectivity, and are expensive, which is an obstacle to practical use.
[0004]
Diamond is promising as a semiconductor device, energy conversion element, etc. because it has excellent thermal conductivity, optical transparency, high temperature and durability against oxidation, and can control electrical conductivity, especially by doping. Yes. As an electrode for electrochemistry, Swain et al. Reported the stability of diamond in acidic electrolyte [Journal of Electrochemical Society, Vol.141, p.3382 (1994)], far more than other carbon materials. Suggested to be excellent. US Pat. No. 5,399,247 suggests that organic wastewater can be decomposed using diamond as the anode material. Foti reports that the decomposition of organic matter into carbon dioxide is promoted by the decomposition mechanism different from that of platinum in electrolytic oxidative decomposition of organic matter [Electrochemical and Solid-State Letters, Vol.2, p.228-230 ( 1999)]. Furthermore, Ando reported on the electrosynthesis of organic compounds [Electrochemical and Solid-State Letters, Vol.2, p.382-384 (1999)] and pointed out that diamond electrodes are effective as fluorination electrodes. Detailed examination such as yield has not been conducted.
[0005]
Although reports on industrial applications in the high current density and high potential region are not sufficient, recently diamond electrodes are inactive against water decomposition reactions, and other than oxidation reactions, they generate oxygen and ozone. It is reported that it can be used [Japanese Journal of Applied Physics, Vol.36, L260, (1997)]. Accordingly, if the organic compound as a reactant is in a range where oxidation-reduction can proceed in terms of potential, the electrolytic reaction takes precedence, and electrolysis of the organic compound proceeds easily even in an aqueous system.
[0006]
[Problems to be solved by the invention]
Organic sulfur compounds, which are a kind of organic compounds, are also desirable targets for electrolytic synthesis, and conventionally, fluorination reactions and the like have been carried out as electrolytic synthesis reactions. However, a platinum electrode, a carbon electrode, or the like is used for this electrolytic reaction, and the platinum electrode is expensive and economically problematic, and the carbon electrode has a drawback that it is inexpensive but easily consumed and cannot have a sufficient life. .
The present invention solves the problem that the cost and operational efficiency in the conventional electrolytic production of organic sulfur compounds cannot be achieved, and the organic sulfur is produced in a yield and selectivity almost equivalent to those using noble metal electrodes. It is an object to provide a relatively inexpensive electrode capable of electrolytically producing a compound and an organic sulfur compound producing method using the electrode.
[0007]
[Means for Solving the Problems]
The present invention relates to a method for electrolytically producing an organic compound using an electrode for electrolysis containing at least a conductive diamond on its surface, wherein the raw material for the electrolytic reaction is ethyl α- phenylthioacetate, oxindole derivative, benzothiazolyl sulfide , An organic compound selected from the group consisting of sulfides having an asymmetric auxiliary group of Evans and phenyl 2,2,2-trifluoroethyl sulfide, and the organic compound to be produced is an organic sulfur compound, an electrolytic production how the organic compound.
[0008]
The present invention will be described in detail below.
The present invention is characterized in that a conductive diamond electrode is used as an electrode for electrolytic synthesis of an organic sulfur compound. This diamond electrode has a particularly marked improvement in reaction selectivity, and can synthesize the target organic sulfur compound in a relatively high yield. The reason is not clear, but it can be assumed that the adsorption behavior of the organic sulfur compound on the diamond electrode is different from that of platinum or GC.
The organic sulfur compound used as a raw material of the present invention includes ethyl α- phenylthioacetate, oxindole derivatives, benzothiazolyl sulfides, sulfides having an asymmetric auxiliary group of Evans, and phenyl 2,2,2-trifluoroethyl sulfide Selected from various sulfur compounds. The type of electrolytic reaction is not particularly limited, and the chemical structure of the organic sulfur compound to be obtained and the type of electrolytic reaction are selected in consideration of the chemical structure and application of the organic sulfur compound to be obtained. Types of reaction include halogenation, alkoxylation, carboxylation, esterification, hydrogenation, dehydrogenation and the like.
[0009]
The conductive diamond electrode to be used is desirably formed on a power feeding body such as metal. The diamond electrode can be formed by a hot filament method, a CVD method, a microwave plasma CVD method, a plasma arc jet method, a PVD method, or the like.
Depending on the diamond synthesis method, a part of the diamond component may be generated and contained in the diamond component. These non-corrosion-resistant carbon components such as non-diamond components are consumed in solution in the electrolyte solution, and thus have little practical effect. However, it is desirable to remove them by acid washing before use.
[0010]
The hot filament method, which is a typical diamond electrode manufacturing method, will be described. An organic compound such as alcohol serving as a carbon source is kept in a reducing atmosphere such as hydrogen gas, and the filament is heated to a temperature of 1800-2400 ° C. at which carbon radicals are generated. Then, a power feeder and an electrode base are arranged in the atmosphere so as to be in a temperature region (750 to 950 ° C.) where diamond is deposited. In this case, it is preferable that the concentration of the starting organic sulfur compound with respect to hydrogen is 0.1-10% by volume, the supply rate is 0.01-10 liters / minute, and the pressure is 15-760 mmHg, depending on the size of the reaction vessel. Diamond fine particles having a particle size of 0.01-1 μm are usually deposited on the electrode substrate. The thickness of the diamond layer may be adjusted by increasing / decreasing the operation time, and the thickness is preferably 0.1-50 μm and 1-10 μm for the purpose of preventing the electrolyte from entering the electrode substrate. Is particularly preferred.
[0011]
In order to obtain good conductivity, it is indispensable to add a trace amount of elements having different valences. The preferable content of boron and phosphorus is 1-100000 ppm, and the more preferable content is 100-10000 ppm. Specific compounds include boron oxide and phosphorus pentoxide which have low toxicity. DLN (diamond-like nano-composite) which is a composite material with amorphous silicon oxide can also be used.
The diamond particles thus produced may be supported on a substrate or a feeder as described above and used as a normal electrode. However, when used as a three-dimensional electrode in a fluidized bed or a fixed bed, the reaction area increases. Processing capacity is improved.
As the electrolytic cell material, glass lining material, carbon, titanium, stainless steel and PTFE resin having excellent corrosion resistance can be preferably used from the viewpoints of durability and stability against organic compounds.
The electrolysis conditions are preferably a temperature of 5 to 40 ° C. and a current density of 0.01 to 10 A / dm 2 when a normal electrode is used.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of an electrolytic cell having a conductive diamond electrode for producing an organic sulfur compound of the present invention will be described with reference to the accompanying drawings, but the present invention is not limited to this.
FIG. 1 is a schematic cross-sectional view of a diaphragm type electrolytic cell that can be used in the method for electrolytically producing an organic compound of the present invention.
In the cylindrical electrolytic cell main body 1 whose upper surface is open, an anode 3 formed from diamond particles to which a dopant is added is formed on one surface of the lower end portion of the plate-like anode feeder 2, and a plate-like cathode feed. A cathode 5 made of platinum metal is suspended from one side of the lower end of the body 4 so as to be separated from each other, and the base ends of both the feeders 2 and 4 are connected via a power source 6 outside the electrolytic cell body 1. ing.
[0013]
The electrolytic cell body 1 is filled with an electrolytic solution 7 so that at least the anode 3 and the cathode 5 are immersed, and a stirring bar 8 that is rotated by magnetic force is placed on the bottom surface of the electrolytic cell body 1.
In order to perform electrolytic synthesis of organic sulfur compounds by reactions such as fluorination, methoxylation, acetoxylation using the electrolytic cell main body 1 having such a configuration, the raw material organic sulfur compound, fluorine source, methoxy When a base source, an electrolyte as an acetoxy base source, a solvent and an electrolytic solution are injected into the electrolytic cell main body 1 and a current is passed between both electrodes while rotating a stirrer, the raw material in the electrolytic solution is oxidized or oxidized on the surface of the anode or the cathode. A predetermined organic sulfur compound is synthesized by receiving a desired electrolytic reaction reductively.
[0014]
Next, examples and comparative examples of electrolytic production of organic sulfur compounds according to the present invention are described, but these do not limit the present invention.
[0015]
Example 1
Conductive diamond was deposited on both sides of a 20 mm long by 20 mm wide silicon substrate by plasma CVD so as to have a thickness of 5 μm as an anode, and a 20 mm long by 20 mm wide platinum plate was used as the cathode. Using these electrodes. The diaphragm type electrolytic cell shown in FIG. 1 was assembled.
The electrolyte used also as a fluorine source was 0.17 M of (C 2 H 5 ) 3 N · 3HF, and the solvent was acetonitrile. As a substrate (raw organic sulfur compound), 50 mM ethyl α-phenylthioacetate (C 6 H 5 —S—CH 2 —CO—O—C 2 H 5 ), which is a chain sulfide, was used. The mixture was stirred in a nitrogen atmosphere, and constant current electrolysis (current density: 0.25 A / dm 2 , 2.5 F / mol) was performed at room temperature. After completion of the reaction, the solvent was filtered under reduced pressure, and the residue was analyzed using NMR. As a reaction product, a compound in which fluorine was replaced with hydrogen (C 6 H 5 —S—CHF—CO—O—C 2 H 5 ) was obtained, and the yield was 32%. The electrode was observed after electrolysis, but no consumption was observed.
[0016]
Comparative Example 1
When electrolysis was carried out under the same conditions as in Example 1 except that the anode was GC of the same area, the yield was 26%, and electrode consumption was observed after electrolysis.
[0017]
Example 2
Other than using 0.1M of (C 2 H 5 ) 4 NF · 4HF as a fluorine source as an electrolyte and 50 mM of 1-phenyl-3- (phenylthio) oxindole which is a heterocyclic oxindole derivative as a substrate. Used the same diaphragmless electrolytic cell as in Example 1. The mixture was stirred in a nitrogen atmosphere, and constant current electrolysis (current density: 0.25 A / dm 2 , 3.5 F / mol) was performed at room temperature. After completion of the reaction, the solvent was filtered under reduced pressure, and the residue was analyzed using NMR. As a reaction product, a compound in which fluorine was substituted with hydrogen [1-phenyl-3-fluoro-3- (phenylthio) oxindole] The yield was 66%. The electrode was observed after electrolysis, but no consumption was observed.
[0018]
Comparative Example 2
When electrolysis was performed under the same conditions as in Example 2 except that the anode was platinum, the yield was 67%.
[0019]
Comparative Example 3
When electrolysis was performed under the same conditions as in Example 2 except that the anode was GC, the yield was 31%, and consumption of the electrode was observed after electrolysis.
[0020]
Example 3
Except that (C 2 H 5 ) 4 NF · 3HF is 0.1M, DME (dimethoxyethane) is used as a solvent, and 2-benzothiazolylmethylcarbonylmethyl sulfide 15mM is used as a substrate. The same diaphragm electrolyzer as in Example 1 was used. The mixture was stirred in a nitrogen atmosphere, and constant current electrolysis (current density: 0.25 A / dm 2 , 3.5 F / mol) was performed at room temperature. After completion of the reaction, the solvent was filtered under reduced pressure, and the residue was analyzed using NMR. As a reaction product, a compound in which fluorine was replaced with hydrogen (methyl α-fluoro-α- (2-benzothiazolylthio) acetate ) Was obtained, and the yield was 29%.
[0021]
Comparative Example 4
When electrolysis was performed under the same conditions as in Example 3 except that the anode was GC of the same area, the yield was 23%, and consumption of the electrode was observed after electrolysis.
[0022]
Example 4
Electrolytic fluorination of the substrate using the same membrane electrolyzer as in Example 3 except that 50 mM 5-chlorobenzothiazolylmethylcarbonylmethyl sulfide was used instead of 2-benzothiazolyl methyl sulfide as the substrate. (Current density: 0.25 A / dm 2 , 2.5 F / mol), a compound in which fluorine is substituted with hydrogen as a reaction product (methyl α-fluoro-α-[[2- (5-chlorobenzothiazoli L)] thio] acetate), and the yield was 53%.
[0023]
Comparative Example 5
When electrolysis was performed under the same conditions as in Example 3 except that the anode was GC of the same area, the yield was 43%, and consumption of the electrode was observed after electrolysis.
[0024]
Example 5
Same as Example 3 except that (4S) -3- (2-phenylthio-1-oxoethyl) -4-phenyl-2-oxazolidine), a sulfide having a 50 mM Evans asymmetric auxiliary group, was used as the substrate. When the substrate was electrolytically fluorinated using a non-diaphragm electrolyzer (current density: 0.5 A / dm 2 , 3 F / mol), a compound in which fluorine was substituted with hydrogen as a reaction product (3- (2- Fluoro-2-phenylthio-1-oxoethyl) -4-phenyl-2-oxazolidine) was obtained, and the yield was 32%. The diastereomeric excess (de) indicating the degree of asymmetric synthesis was 24%.
[0025]
Comparative Example 6
When electrolysis was performed under the same conditions as in Example 5 except that the anode was platinum of the same area, the yield was 50% and de was 18%.
[0026]
Comparative Example 7
When electrolysis was performed under the same conditions as in Example 5 except that the anode was GC of the same area, the yield was 30% and de was 16%.
[0027]
Example 6
Other than using methanol solvent containing 0.2 M of (C 2 H 5 ) 4 NO—SO 2 —C 6 H 4 —CH 3 as electrolyte and 70 mM phenyl 2,2,2-trifluoroethyl sulfide as substrate. Was subjected to electrolytic methoxylation using the same diaphragmless electrolytic cell as in Example 1. The mixture was stirred under a nitrogen atmosphere, and constant current electrolysis (current density: 0.16 A / dm 2 , 5 F / mol) was performed at room temperature. After completion of the reaction, the solvent was filtered under reduced pressure, and the residue was analyzed using NMR. As a reaction product, a compound in which hydrogen was substituted with a methoxy group (phenyl 1-methoxy-2,2,2-trifluoroethyl) Sulfide) was obtained, and the yield was 68%.
[0028]
Comparative Example 8
When electrolysis was carried out under the same conditions as in Example 6 except that the anode was platinum having the same area, the yield was 70%.
[0029]
Comparative Example 9
When electrolysis was performed under the same conditions as in Example 6 except that the anode was GC of the same area, the yield was 34%.
[0030]
Example 7
Substrate of Example 5 using a non-diaphragm electrolytic cell similar to Example 5 except that 1M of (C 2 H 5 ) 4 NF · 3HF was used as the electrolyte and a 1: 1 mixed solvent of methanol and acetone was used as the solvent. Was obtained (current density: 0.5 A / dm 2 , 3F / mol). As a reaction product, a compound in which a methoxy group was replaced with hydrogen (3- (2-methoxy-2-phenylthio-1-oxoethyl) -4-phenyl-2-oxazolidine) was obtained with a yield of 43% and a de of 11%.
[0031]
Comparative Example 10
When electrolysis was performed under the same conditions as in Example 7 except that the anode was platinum having the same area, the yield was 78%, but de was 7%.
[0032]
Example 8
70 mM phenyl-2,2,2-trifluoro is used in the same electrolyzer as in Example 6 except that 0.1 M each of sodium acetate and sodium perchlorate are used as the electrolyte and acetic acid is used as the solvent. When ethyl sulfide electrolytic acetoxylation was performed (current density: 0.6 A / dm 2 , 4.5 F / mol), a compound in which hydrogen was substituted with a methoxy group as a reaction product (phenyl 1-acetoxy-2,2,2- Trifluoroethyl sulfide) was obtained, and the yield was 45%.
[0033]
Comparative Example 11
When electrolysis was carried out under the same conditions as in Example 8 except that the anode was platinum having the same area, the yield was 52%.
[0034]
Comparative Example 12
When electrolysis was performed under the same conditions as in Example 8 except that the anode was a GC with the same area, the yield was 12% and consumption of GC was observed.
[0035]
【The invention's effect】
The present invention relates to a method for electrolytically producing an organic compound using an electrode for electrolysis containing at least a conductive diamond on its surface, wherein the raw material for the electrolytic reaction is ethyl α- phenylthioacetate, oxindole derivative, benzothiazolyl sulfide , An organic compound selected from the group consisting of sulfides having an asymmetric auxiliary group of Evans and phenyl 2,2,2-trifluoroethyl sulfide, and the organic compound to be produced is an organic sulfur compound, This is an electrolytic production method of an organic compound.
According to the method of the present invention, an organic sulfur compound can be electrolytically produced with a yield and selectivity substantially equal to that of using a noble metal electrode by using a diamond electrode that is less expensive than the noble metal electrode.
[0036]
Raw materials for the electrolytic reaction are ethyl α- phenylthioacetate, oxindole derivatives, benzothiazolyl sulfides, sulfides having an asymmetric auxiliary group of Evans, and phenyl 2,2,2-trifluoroethyl sulfide. the electrolytic reaction, the fluorinated these compounds, including the reaction of methoxylated or acetoxylation.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a diaphragmless electrolytic cell that can be used in the method for electrolytically producing an organic compound of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electrolyzer main body 2 Anode feeder 3 Anode 4 Cathode feeder 5 Cathode 6 Power supply 7 Electrolyte 8 Stirrer

Claims (2)

少なくともその表面に導電性ダイヤモンドを含む電解用電極を使用して有機化合物を電解製造する方法において、電解反応の原料が、α‐フェニルチオ酢酸エチル、オキシインドール誘導体、ベンゾチアゾリルスルフィド類、エバンスの不斉補助基を有するスルフィド類及びフェニル2,2,2−トリフルオロエチルスルフィドから成る群から選択される有機化合物であり、製造する有機化合物が有機硫黄化合物であることを特徴とする有機化合物の電解製造方法。In a method for electrolytically producing an organic compound using an electrode for electrolysis containing conductive diamond at least on its surface, the raw material for the electrolytic reaction is ethyl α- phenylthioacetate, oxindole derivatives, benzothiazolyl sulfides, Evans An organic compound selected from the group consisting of sulfides having an asymmetric auxiliary group and phenyl 2,2,2-trifluoroethyl sulfide, wherein the organic compound to be produced is an organic sulfur compound Electrolytic manufacturing method. 電解反応が、フッ素化、メトキシ化又はアセトキシ化である請求項1に記載の電解製造方法。 Electrolysis reaction, electrolysis producing how according to claim 1 fluorination is methoxylated or acetoxylation.
JP2000386998A 2000-12-20 2000-12-20 Electrolytic production method of organic compound and electrode for electrolytic production Expired - Fee Related JP4181297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000386998A JP4181297B2 (en) 2000-12-20 2000-12-20 Electrolytic production method of organic compound and electrode for electrolytic production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000386998A JP4181297B2 (en) 2000-12-20 2000-12-20 Electrolytic production method of organic compound and electrode for electrolytic production

Publications (2)

Publication Number Publication Date
JP2002180288A JP2002180288A (en) 2002-06-26
JP4181297B2 true JP4181297B2 (en) 2008-11-12

Family

ID=18854011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000386998A Expired - Fee Related JP4181297B2 (en) 2000-12-20 2000-12-20 Electrolytic production method of organic compound and electrode for electrolytic production

Country Status (1)

Country Link
JP (1) JP4181297B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6582513B1 (en) 1998-05-15 2003-06-24 Apollo Diamond, Inc. System and method for producing synthetic diamond
US8591856B2 (en) * 1998-05-15 2013-11-26 SCIO Diamond Technology Corporation Single crystal diamond electrochemical electrode
WO2004104272A1 (en) * 2003-05-26 2004-12-02 Sumitomo Electric Industries, Ltd. Diamond-coated electrode and method for producing same
DE10324558A1 (en) * 2003-05-30 2004-12-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Diamond electrode for electrochemical applications and process for their manufacture and use
JP5028800B2 (en) * 2003-12-11 2012-09-19 住友電気工業株式会社 High hardness conductive diamond polycrystal and method for producing the same
JP2007238989A (en) * 2006-03-07 2007-09-20 Ebara Corp Method for manufacturing diamond electrode

Also Published As

Publication number Publication date
JP2002180288A (en) 2002-06-26

Similar Documents

Publication Publication Date Title
US6533916B1 (en) Diamond electrodes
US4362707A (en) Preparation of chlorine dioxide with platinum group metal oxide catalysts
Polat et al. Electroreduction of nitrobenzene to p-aminophenol using voltammetric and semipilot scale preparative electrolysis techniques
JP2001192874A (en) Method for preparing persulfuric acid-dissolving water
JP4811844B2 (en) Method for producing percarbonate
EP0065819A1 (en) Process for making chlorine dioxide
JP2007197740A (en) Electrolytic cell for synthesizing perchloric acid compound and electrolytic synthesis method
CN1382229A (en) Amorphous metal/metallic glass electrodes for electrochemical processes
US4426263A (en) Method and electrocatalyst for making chlorine dioxide
Massa et al. Enhanced electrochemical oxidation of phenol over manganese oxides under mild wet air oxidation conditions
JP4201703B2 (en) Organic electrolysis reactor for electrolytic oxidation and method for producing compound using the same
US7211177B2 (en) Electrode for electrolysis in acidic media
EP0246957B1 (en) A method for treating organic waste material and a catalyst/cocatalyst composition useful therefor
CA2130552A1 (en) Electrochemical process for preparing glyoxylic acid
JP4181297B2 (en) Electrolytic production method of organic compound and electrode for electrolytic production
Martínez-Huitle et al. Trends of organic electrosynthesis by using boron-doped diamond electrodes
JP3716204B2 (en) Electrolytic production method of organic compound and electrode for electrolytic production
Depecker et al. Trifluoromethylation of aromatic compounds via Kolbe electrolysis in pure organic solvent. Study on laboratory and pilot scale
US4501824A (en) Catalyst for making chlorine dioxide
JPH0730475B2 (en) Method for producing 1-aminoanthraquinones
EP2018446B1 (en) An electrochemical process to prepare a halogenated carbonyl group-containing compound
EP3854910A1 (en) Electrochemical production of formaldehyde
JP3846778B2 (en) Method for electrolytic fluorination of organic ether compounds
JP2004099914A (en) Method for producing peroxodisulfate
CA1189821A (en) Electrochemical maintenance of optimum catalytic activity in copper-catalyzed nitrile hydrolysis processes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080318

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080318

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080829

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees