JPS63206488A - Production of m-hydroxybenzyl alcohol by electrolysis - Google Patents

Production of m-hydroxybenzyl alcohol by electrolysis

Info

Publication number
JPS63206488A
JPS63206488A JP62039129A JP3912987A JPS63206488A JP S63206488 A JPS63206488 A JP S63206488A JP 62039129 A JP62039129 A JP 62039129A JP 3912987 A JP3912987 A JP 3912987A JP S63206488 A JPS63206488 A JP S63206488A
Authority
JP
Japan
Prior art keywords
cathode
nitric acid
soln
reaction
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62039129A
Other languages
Japanese (ja)
Inventor
Shinji Takenaka
竹中 慎司
Tatsu Oi
龍 大井
Chitoshi Shimakawa
千年 島川
Yasushi Shimokawa
下河 靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP62039129A priority Critical patent/JPS63206488A/en
Publication of JPS63206488A publication Critical patent/JPS63206488A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To continue an efficient electrolytic reaction for a long period by previously washing a cathode with an aq. nitric acid soln. to conveniently restore the activity of the cathode at the time of electrolytically reducing m- hydroxybenzoic acid in an aq. acidic soln. CONSTITUTION:m-Hydroxybenzoic acid is electrolytically reduced in an aq. acidic soln. to obtain m-hydroxybenzyl alcohol. In this case, when electrolysis is industrially carried out for a long period, the activity of the cathode is deteriorated, and the efficiency is decreased. Accordingly, when the cathode is deactivated, an aq. nitric acid soln. is charged into the cathode chamber, and the soln. is agitated to wash the cathode for a specified time. By this method, the cathode can be activated without being taken out from an electrolytic cell, and efficient operation can be carried out for a long period.

Description

【発明の詳細な説明】 皮粟上■剋里分立 本発明は、m−ヒドロキシベンジルアルコール(以下、
TI〜IIBOHと略記する)の製造方法に関するもの
である。
[Detailed Description of the Invention] The present invention provides m-hydroxybenzyl alcohol (hereinafter referred to as
The present invention relates to a manufacturing method of TI to IIBOH).

m−HBOHは工薬、あるいは農薬の中間体として有角
な化合物であるが、現状ではこれの安価な製造方法によ
る工業的供給には至っていない。
Although m-HBOH is a useful compound as an intermediate for industrial medicines or agricultural chemicals, at present it has not been commercially supplied by an inexpensive manufacturing method.

u11幻札 ■−HBOHの合成法として、m−クレゾールを原料と
する発酵法、m−ヒドロキシベンズアルデヒドルを原料
とするナトリウム・アマルガム、NaBHa、LiA 
I H4等による還元及び水素添加反応等があるが、収
率的に不十分であったりして、実用化には至っていない
、また、水素添加反応は高温高圧下の反応であり工業的
製造法には種々問題がある。
u11 phantom card■-HBOH synthesis methods include fermentation using m-cresol as a raw material, sodium amalgam, NaBHa, and LiA using m-hydroxybenzaldehyde as a raw material.
There are reduction and hydrogenation reactions using IH4, etc., but they have not been put into practical use due to insufficient yields, and the hydrogenation reaction is a reaction at high temperature and high pressure, so it is not an industrial production method. There are various problems.

また、m−ヒドロキシ安息香酸(以下、鴎−HB^と略
記する)を原料とする方法については、ナトリウム・ア
マルガム及び電解還元法が提’l−(kricht  
381752(1905))されているが収率的にも低
く工業的方法にはなり得なかった。
In addition, regarding the method using m-hydroxybenzoic acid (hereinafter abbreviated as O-HB^) as a raw material, sodium amalgam and electrolytic reduction method are proposed.
381752 (1905)), but the yield was low and it could not be used as an industrial method.

本発明者らは、先にm−HBOI−1の製造方法につい
て検討し、m−HBAの電解還元を水溶液、あるいは水
可溶性有機溶媒中で行う方法、更に、陰極液中に支持電
解質を添加する方法で高収率でm−HBOIIをうる方
法も既に見出している(特開昭60−234987、特
開昭60−243293 > 。
The present inventors first studied a method for producing m-HBOI-1, and found a method in which m-HBA is electrolytically reduced in an aqueous solution or a water-soluble organic solvent, and a supporting electrolyte is added to the catholyte. A method for obtaining m-HBOII in high yield has already been found (JP-A-60-234987, JP-A-60-243293).

更に、電解時に不活性化した電極の活性化法として陽極
の前処理法については知られている(電気化学便覧(丸
#)参照)が、陰極についての記載は特にない。しかし
ながら、上記便覧を参考にして、例えば、鉛を前処理す
る方法として、(1)過塩素酸−無水詐酸一水(35:
 63 : 2)中で電解研摩する方法、(2)過酸化
水素−酢酸(20:80)中5〜10秒間化学研摩する
方法、等が従業されている。
Further, although a pretreatment method for an anode is known as a method for activating an electrode that has been inactivated during electrolysis (see Electrochemistry Handbook (circle #)), there is no particular description regarding the cathode. However, referring to the above handbook, for example, as a method for pre-treating lead, (1) perchloric acid-anhydrous false acid monohydrate (35:
63: 2) a method of electrolytic polishing in a mixture of hydrogen peroxide and acetic acid (20:80), and (2) a method of chemical polishing for 5 to 10 seconds in hydrogen peroxide-acetic acid (20:80).

しかしこれらの方法は実験室的に小スケールで実施する
には便利であるが、工業的に実施するには取扱う物質、
操作面で実施困難な方法である。
However, although these methods are convenient to carry out on a small scale in the laboratory, they require the materials to be handled and
This method is difficult to implement in terms of operation.

、FIがlしようとする間 占 本電解反応において用いる陰極材料は水素過電圧の高い
もの、具体的には亜鉛、鉛、カドミウム、水銀あるいは
それらの合金が用いられる。又、電解還元を再現性良く
行ううえで、陰極表面はつねに電極本来の活性を保って
おく必要がある。
, while FI is about to rise. The cathode material used in the Shiramoto electrolytic reaction is one with a high hydrogen overvoltage, specifically zinc, lead, cadmium, mercury, or an alloy thereof. Furthermore, in order to perform electrolytic reduction with good reproducibility, the cathode surface must always maintain its original activity.

しかし、本電解反応を工業的に実施する上で長期間活性
を維持することは容易ではない0例えば本電解反応は酸
性水溶液中で行われるため、反応中に酸に不安定な−−
HBAとm−118OHの分解が避けられず、タール状
の分解物が副生じ、−都電極表面に付着し、電極活性が
低下する。
However, when carrying out this electrolytic reaction industrially, it is not easy to maintain its activity for a long period of time.For example, since this electrolytic reaction is carried out in an acidic aqueous solution, it is unstable to acids during the reaction.
The decomposition of HBA and m-118OH is unavoidable, and a tar-like decomposition product is produced as a by-product and adheres to the surface of the electrode, resulting in a decrease in electrode activity.

その問題点に関しては既に反応液中に界面活性剤を仕込
んで電解を行うことで電極へのタールの付着を防ぐ方法
(特願昭6l−226134)、あるいは定期的にアル
コール系の溶媒で洗浄する方法(特願昭61−3014
70 )を実施することで、ある程度長期間の運転が可
能となった。しかし、本電解反応をさらに長期間すなわ
ち数ケ月単位で運転を継続すると電極活性は徐々に低下
し、上記方法では回iuしないことがわかった。
Regarding this problem, there is already a method to prevent tar from adhering to the electrode by adding a surfactant to the reaction solution and performing electrolysis (Japanese Patent Application No. 6L-226134), or by periodically cleaning with an alcohol-based solvent. Method (Patent Application 1986-3014)
70), it became possible to operate for a fairly long period of time. However, it was found that when this electrolytic reaction was continued for a longer period of time, that is, for several months, the electrode activity gradually decreased, and the above method did not recover.

本発明の課題は長期に効率良く電解反応を行ううえで、
陰極が不活性化した場合、簡便に陰極の活性を回復させ
る方法を提供することである。
The problem of the present invention is to carry out electrolytic reactions efficiently over a long period of time.
An object of the present invention is to provide a method for easily restoring the activity of a cathode when the cathode is inactivated.

ル 占を”°するための手r 本発明者らは、上記課題を解決するため鋭意検討を行い
、電解反応を工業的に長期間運転するに際して、陰極が
不活性化した場合、陰極室に硝酸水溶液を仕込み、一定
時間撹拌洗浄することで電解槽より、電極を取り出すこ
となく陰極の活性化が簡便に行えることを見出し本発明
を完成した。
In order to solve the above problems, the present inventors have conducted extensive studies and found that when the cathode becomes inactive during industrial long-term operation of an electrolytic reaction, the cathode chamber The present invention was completed based on the discovery that the cathode could be easily activated without removing the electrode from the electrolytic cell by charging an aqueous nitric acid solution and stirring and washing for a certain period of time.

即ち、本発明はm−ヒドロキシ安息香酸を酸性水溶液中
で電解還元し、m−ヒドロキシベンジルアルコールを得
る反応において、電解反応終了後に電解槽内を硝酸水溶
液で洗浄することを特徴とするm−ヒドロキシベンジル
アルコールの製造法である。
That is, the present invention relates to a reaction in which m-hydroxybenzoic acid is electrolytically reduced in an acidic aqueous solution to obtain m-hydroxybenzyl alcohol, and the inside of the electrolytic cell is washed with a nitric acid aqueous solution after the electrolytic reaction is completed. This is a method for producing benzyl alcohol.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明において、酸性水溶液としては、陰極での電解反
応に不活性な酸性物質であれば、特に限定するものでは
ないが、コスト的に通常鉱酸を用いるのが望ましく、特
に材質及び収率の点から硫酸が好ましい鉱酸であり、通
常5〜30重量%の硫酸水溶液が用いられる。
In the present invention, the acidic aqueous solution is not particularly limited as long as it is an acidic substance that is inert to the electrolytic reaction at the cathode, but mineral acids are preferably used in terms of cost, especially in terms of material and yield. From this point of view, sulfuric acid is a preferred mineral acid, and a 5-30% by weight aqueous sulfuric acid solution is usually used.

m−ヒドロキシ安息香酸の硫酸水溶液中の濃度は通常5
〜20重量%である。
The concentration of m-hydroxybenzoic acid in an aqueous sulfuric acid solution is usually 5
~20% by weight.

本発明に用いる陰極活性化のための硝酸水溶液としては
、硝酸の含量が0.1〜30重量%、好ましくは0.5
〜10重量%の水溶液を用い、陰極室に仕込んで1〜5
0時間撹拌する。陰極活性化に際して、陽極側は、特に
同時に液を仕込んで撹拌する必要はないが、陰極液の撹
拌による膜のブレを防止するため通常、水あるいは通常
の電解液を仕込み撹拌するのが好ましい。
The nitric acid aqueous solution for cathode activation used in the present invention has a nitric acid content of 0.1 to 30% by weight, preferably 0.5% by weight.
Using ~10% by weight aqueous solution, charge it into the cathode chamber and
Stir for 0 hours. When activating the cathode, it is not necessary to charge and stir a solution at the same time on the anode side, but in order to prevent the membrane from shaking due to stirring of the catholyte, it is usually preferable to charge and stir water or a normal electrolyte.

陰極の硝酸水の洗浄による活性化する時期は任意であり
、1バツチ毎に毎回洗浄活性化しても良いが、反応の効
率化を計るために20〜40バツチ毎に1回、好ましく
は25〜35バツチ毎に1回の割合で活性化するのが最
も効率的である。又活性化に要する硝酸水の量は陰極全
体が液中に浸るだけの適宜な量で良い。
The timing of activating the cathode by washing with nitric acid water is arbitrary, and it may be activated every batch, but in order to increase the efficiency of the reaction, it may be activated once every 20 to 40 batches, preferably once every 25 to 40 batches. It is most efficient to activate once every 35 batches. Further, the amount of nitric acid water required for activation may be an appropriate amount such that the entire cathode is immersed in the liquid.

本発明方法において、電解還元反応は20〜70°Cの
温度範囲で実施する。又電解に用いる電極のうち特に陰
極材料は水素過電圧の高いもの、具体的に亜鉛、鉛、カ
ドミウム、水銀を用いる。対する陽極については、通常
の電極材料であれば特に限定しない。
In the method of the invention, the electrolytic reduction reaction is carried out at a temperature range of 20 to 70°C. Among the electrodes used for electrolysis, materials with high hydrogen overvoltage, specifically zinc, lead, cadmium, and mercury, are used as the cathode material. The anode, on the other hand, is not particularly limited as long as it is made of a normal electrode material.

イオン交換隔膜により、陽極室、陰極室を隔離すること
が好ましい。隔膜の材質としては、アスベスト、セラミ
ックス、シンタードグラス等が使用できる。
Preferably, the anode chamber and the cathode chamber are separated by an ion exchange membrane. As the material for the diaphragm, asbestos, ceramics, sintered glass, etc. can be used.

本発明の電解還元において、電流密度は好ましくは5〜
30^/drdである。理論的には4電子還元であり、
4Fr/mole通電量であるが電流効率は50〜70
%である為、反応を完結させるには5〜8Fr/mol
e電気量を通す必要がある。
In the electrolytic reduction of the present invention, the current density is preferably 5 to
It is 30^/drd. Theoretically, it is a four-electron reduction,
The current flow rate is 4Fr/mole, but the current efficiency is 50 to 70.
%, so 5 to 8 Fr/mol is required to complete the reaction.
eIt is necessary to pass an amount of electricity.

作用及び効果 m−ヒドロキシ安息香酸を酸性水溶液中で電解還元して
m−ヒドロキシベンジルアルコールを得る場合、工業的
に長期に運転を行うと陰極の活性低下を生じ、効率の低
下を招き問題となる。
Actions and Effects When m-hydroxybenzoic acid is electrolytically reduced in an acidic aqueous solution to obtain m-hydroxybenzyl alcohol, long-term industrial operation will cause a decrease in the activity of the cathode, leading to a decrease in efficiency and causing problems. .

本発明の方法では電解槽より陰極を取り出すこともなく
、槽に硝酸水溶液を注入し筒便に陰極を洗浄する事によ
り活性を取り戻すことができ、工業的Cζ極めて価値あ
るものである。
The method of the present invention does not require taking out the cathode from the electrolytic cell, and the activity can be restored by injecting a nitric acid aqueous solution into the cell and washing the cathode with a tube, making it extremely valuable for industrial use.

尖旌班 以下、実施例により本発明の方法を詳しく説明する。Tsimpei group Hereinafter, the method of the present invention will be explained in detail with reference to Examples.

実施例1 両極室とも300 dの容置を有し、隔膜としてセレミ
オンCMV (旭硝子(株)の商品名の陽イオン交換膜
)で隔離された夏1型の電解セルを使用して、両極室に
10%の硫酸水溶液を200dづつ仕込む。
Example 1 Both electrode chambers had a capacity of 300 d and were separated using a Summer 1 type electrolytic cell separated by Selemion CMV (cation exchange membrane, trade name of Asahi Glass Co., Ltd.) as a diaphragm. Pour 200 d of 10% sulfuric acid aqueous solution into each.

陰極として50cmの鉛板、陽極として50CIjの白
金板を用いた。電解セルを60°Cに保ちつつ、6Aの
直流定電流を通電しつつ、麟−HBA 25gをマイク
ロフィーダーを用いて6g/時間の割合で陰極液中に添
加し、4.2時間でm−HBAを全量添加した。この後
更に電解を0.8時間継続した(6.2Fr/5ole
)、電解終了後、陰極液は抜き取った後、再び10%硫
酸水溶液200 dを仕込んで、引続き第2バツチ目の
反応を第1回目と同様に行った。抜き取った陰極液は液
体クロマトグラフィー(IILC)で分析を行った。
A 50 cm lead plate was used as a cathode, and a 50 CIj platinum plate was used as an anode. While maintaining the electrolytic cell at 60°C and applying a constant DC current of 6A, 25g of Rin-HBA was added to the catholyte at a rate of 6g/hour using a microfeeder, and m- The entire amount of HBA was added. After this, electrolysis was further continued for 0.8 hours (6.2Fr/5ole
), after the electrolysis was completed, the catholyte was drained, 200 d of 10% sulfuric acid aqueous solution was charged again, and the second batch reaction was carried out in the same manner as the first batch. The extracted catholyte was analyzed by liquid chromatography (IILC).

反応は5バツ千目を終えた時点で、陰極槽に200dの
メタノールを仕込み、室温で1時間かきまぜた。メタノ
ールは抜き取り、再び10%硫酸水ン容液を加えて、引
続き実験を行った。メタノール洗浄は5バツチごとに行
い、合計30バッチ反応を続けた。
When the reaction was completed 5 times, 200 d of methanol was charged into the cathode tank and stirred at room temperature for 1 hour. Methanol was removed, 10% aqueous sulfuric acid solution was added again, and the experiment was continued. Methanol washing was performed every 5 batches, and a total of 30 batch reactions were continued.

そこで陰極槽に5%硝酸水を200 ml仕込み室温で
5時間かきまぜ、陰極の洗浄、活性化を行った。
Therefore, 200 ml of 5% nitric acid water was placed in the cathode tank and stirred at room temperature for 5 hours to clean and activate the cathode.

硝酸水は抜き取り、再び10%硫酸水溶液を加えて引続
き実験を行った。同様にメタノール洗浄は5バツチごと
に行い、さらに30バツチ目に陰極の硝酸洗浄活性化を
行った。同様の操作を繰り返し合計で120バンチ反応
を行ったが、電流効率、5HB011収率に顕著な低下
は見られなかった。120バンチの平均電流効率60.
7%、平均5−IIBOH収率91.9%であった。
The nitric acid water was removed, and a 10% sulfuric acid aqueous solution was added again, and the experiment was continued. Similarly, methanol cleaning was performed every 5 batches, and the cathode was further activated by nitric acid cleaning at the 30th batch. Similar operations were repeated to perform a total of 120 bunch reactions, but no significant decrease in current efficiency or 5HB011 yield was observed. Average current efficiency of 120 bunches 60.
7%, and the average 5-IIBOH yield was 91.9%.

比較例1 硝酸水洗浄による陰極活性化を行わなかった以外は実施
例と同様の実験を60バツチ連続で行った電流効率及び
n+−HBOH収率は35バツチ目では顕著な低下は見
られず、35バツチ目までの平均電流効率60.5%、
平均−〇BOH収率90.2%であった。しかし40バ
ツチ目をすぎたあたりから電流効率が低下し、50バツ
チ目において電流効率45.1%、m−IIBOH収率
65.2%であった。また60パツト目においては電流
効率21.9%、m−HBOH収率3061%まで低下
した。
Comparative Example 1 The same experiment as in Example was conducted in 60 consecutive batches except that the cathode activation by nitric acid water washing was not performed.The current efficiency and n+-HBOH yield did not show any significant decrease in the 35th batch. Average current efficiency up to 35th batch: 60.5%,
The average -〇BOH yield was 90.2%. However, the current efficiency decreased after the 40th batch, and at the 50th batch, the current efficiency was 45.1% and the m-IIBOH yield was 65.2%. Further, at the 60th patch, the current efficiency decreased to 21.9% and the m-HBOH yield decreased to 3061%.

発浬Iυ伽栗 実施例と比較例の結果から明らかな通り、m−JIBA
の電解還元による■−118OHの製造において陰極の
硝酸水溶液洗浄による活性化を行わない比較例の方法に
比べ、数十バッチごとに洗浄を行った場合には反応の繰
り返しによっても電流効率、および5−HBOH収率と
もほとんど低下することがない。
As is clear from the results of the practical examples and comparative examples, m-JIBA
In the production of ■-118OH by electrolytic reduction of -HBOH yield hardly decreases either.

すなわち、電解槽の洗浄を行わないで反応を続けた場合
、電流効率が低下し、工業的なm−1111Aの電解還
元プロセスとしては成り立たなくなる。しかし各バッチ
の途中、陰極の硝酸水溶液による洗浄工程を入れること
で本電解反応が長期に安定した運転が可能になった。
That is, if the reaction is continued without cleaning the electrolytic cell, the current efficiency will decrease and the process will no longer be viable as an industrial electrolytic reduction process for m-1111A. However, by adding a step of cleaning the cathode with an aqueous nitric acid solution during each batch, this electrolytic reaction was able to operate stably over a long period of time.

Claims (2)

【特許請求の範囲】[Claims] (1)m−ヒドロキシ安息香酸を酸性水溶液中で電解還
元し、m−ヒドロキシベンジルアルコールを得る反応に
おいて、電解還元反応を行う前に陰極を硝酸水溶液で洗
浄することを特徴とするm−ヒドロキシベンジルアルコ
ールの製造法。
(1) In the reaction of electrolytically reducing m-hydroxybenzoic acid in an acidic aqueous solution to obtain m-hydroxybenzyl alcohol, the cathode is washed with a nitric acid aqueous solution before performing the electrolytic reduction reaction. Alcohol manufacturing method.
(2)硝酸水溶液が硝酸の含量0.1〜30重量%の水
溶液である特許請求範囲第(1)項記載の方法。
(2) The method according to claim (1), wherein the nitric acid aqueous solution has a nitric acid content of 0.1 to 30% by weight.
JP62039129A 1987-02-24 1987-02-24 Production of m-hydroxybenzyl alcohol by electrolysis Pending JPS63206488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62039129A JPS63206488A (en) 1987-02-24 1987-02-24 Production of m-hydroxybenzyl alcohol by electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62039129A JPS63206488A (en) 1987-02-24 1987-02-24 Production of m-hydroxybenzyl alcohol by electrolysis

Publications (1)

Publication Number Publication Date
JPS63206488A true JPS63206488A (en) 1988-08-25

Family

ID=12544492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62039129A Pending JPS63206488A (en) 1987-02-24 1987-02-24 Production of m-hydroxybenzyl alcohol by electrolysis

Country Status (1)

Country Link
JP (1) JPS63206488A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60243293A (en) * 1984-05-16 1985-12-03 Mitsui Toatsu Chem Inc Manufacture of m-hydroxybenzyl alcohol

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60243293A (en) * 1984-05-16 1985-12-03 Mitsui Toatsu Chem Inc Manufacture of m-hydroxybenzyl alcohol

Similar Documents

Publication Publication Date Title
TWI406849B (en) Improved electrochemical reduction of halogenated 4-aminopicolinic acids
CN110468429B (en) Activation method of silver electrode
US7666293B2 (en) Electrochemical reduction of halogenated 4-aminopicolinic acids
JPS63206488A (en) Production of m-hydroxybenzyl alcohol by electrolysis
JPS6342713B2 (en)
Leeds et al. Electrochemical Reduction of Nitroalkanes: Preparation of N‐Alkylhydroxylamines (Hydroxaminoalkanes)
JPH01108389A (en) Production of fluorinated acrylic acid and its derivative
JPS6342712B2 (en)
EP0203851B1 (en) Electrochemical process for the preparation of organic trifluoro (or chlorodifluoro or dichlorofluoro) methylated derivatives
KR890002864B1 (en) Process for the preparation of m-hydroxy benzyl alcohol
JP3846778B2 (en) Method for electrolytic fluorination of organic ether compounds
JPH04341593A (en) Production of quaternary ammonium hydroxide aqueous solution
JPS63157892A (en) Production of m-hydroxybenzyl alcohol
JPS63277781A (en) Electrolytic reduction of aliphatic nitro compound
US4462875A (en) Preparation of nickel-oxide hydroxide electrode
JPS63206489A (en) Production of m-hydroxybenzyl alcohol by electrolysis
JP2622115B2 (en) Method for producing benzyl alcohols
JPH03100191A (en) Preparation of paraaminophenol
JPH01157924A (en) Production of bromofluoromethane
JPS6347791B2 (en)
JP2902755B2 (en) Method for producing m-hydroxybenzyl alcohol
KR100437483B1 (en) Electrochemical synthesis of p-aminophenol
JPH03120253A (en) Preparation of 3-hydroxymethylpyridine
JPS6347792B2 (en)
JPH0715151B2 (en) Method for producing m-hydroxybenzyl alcohol