JPS6320601A - Numerical controller - Google Patents

Numerical controller

Info

Publication number
JPS6320601A
JPS6320601A JP16595486A JP16595486A JPS6320601A JP S6320601 A JPS6320601 A JP S6320601A JP 16595486 A JP16595486 A JP 16595486A JP 16595486 A JP16595486 A JP 16595486A JP S6320601 A JPS6320601 A JP S6320601A
Authority
JP
Japan
Prior art keywords
circuit
axis
movement
interpolation
coordinate values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16595486A
Other languages
Japanese (ja)
Inventor
Kenji Shirakata
白方 憲治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP16595486A priority Critical patent/JPS6320601A/en
Publication of JPS6320601A publication Critical patent/JPS6320601A/en
Pending legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)

Abstract

PURPOSE:To considerably shorten the program generation time and easily check programs by converting the move command on a cylinder side face to a move command on a cylinder coordinate system and performing the cutting work by simultaneous three-axis interpolation. CONSTITUTION:When a cylinder plane select command is inputted, a move command Y, Z on a rectangular coordinate system on a developed plane from a working program 1 is inputted to an interpolating circuit 3 to obtain coordinate values YN and ZN after an interpolation unit time DELTAT. These coordinate values are converted to cylinder coordinate values ZN and CN in a coordinate converting circuit 11 in accordance with formulas 1 and 2. Differences between these coordinate values and preceding values ZN1 and CN1 are obtained by an axis movement extent calculating circuit 5, and extents DELTAZ and DELTAC of movement per the interpolation unit time DELTAT for respective axes are calculated in accordance with equations 3 and 4. These results are given to an axial movement extent output circuit 5, and pulses are outputted from a pulse distributing circuit 6 which receives the output of the circuit 5, and a servo unit 7 is operated by these pulses to drive a motor 8. A detector 9 detects the extent of displacement of the motor and feeds back it to the servo unit 7 to drive it by a prescribed extent.

Description

【発明の詳細な説明】 t産業上の利用分野J この発191は、数値制御装置、4.)に回転軸と該回
転軸に対して直角でl#:いに直交する直線2軸を41
する複合1作機械により円筒側面l―の加]−を、円筒
側面を展開したモ面l二の座標系の移動指令により行う
ための数値制御装置に関すものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application J This issue 191 covers numerical control devices, 4. ) is a rotational axis and two straight axes perpendicular to the rotational axis are 41
This invention relates to a numerical control device for performing the addition of a cylindrical side face l- by a compound machine tool which performs the following operations using a movement command of a coordinate system of a face l2 which is an expanded cylinder side face.

[K来の技術J 従来、この種の11値制御装置として第4図に示すもの
がある0図(おいて、(1)は加重プログラム、(2)
はこの加1プログラム(+)を入力する制御回路で、補
間回路(3)、軸移動〜」算出回路(4)とからなる、
(5)は軸移動量出力回路、(6)はパルス分配回路、
(7)はサーボユニー2ト、(8)はモータ、(9)は
検出型、(lO)は旋盤等の1作機械を示し、このよう
な従来の構成による数イ偵ル制御装置の動作を第5図(
a)、(b)にノ、(いて説す1すると次のように動作
する。
[Current Technology J] Conventionally, this type of 11-value control device is shown in Fig. 4 (where (1) is a weighted program, (2)
is a control circuit that inputs this addition program (+), and is composed of an interpolation circuit (3) and an axis movement calculation circuit (4).
(5) is the axis movement amount output circuit, (6) is the pulse distribution circuit,
(7) indicates two servo units, (8) a motor, (9) a detection type, and (1O) one machine tool such as a lathe. Figure 5 (
If a) and (b) are explained below, the operation will be as follows.

円筒側面I―の任、きの曲線ヒを加にしたい場合、プロ
ゲラL・は、まず第51;6(a)に示すような円筒側
面の力φ開開を0成する1次に、このJ+<開国1−の
曲線を微小なII′r線指令に分;l;I L、第5図
(b)の拡大図のように各微小ブロックを回転軸とjf
f線袖0移動指令に分解して力11下プログラム(1)
を作成する。
When we want to add the curve H of the cylindrical side surface I, first, the progera L. Divide the curve of J+<Kaikoku 1- into minute II'r line commands; l;
Decompose into f line sleeve 0 movement command and force 11 lower program (1)
Create.

次いで、この加圧プロゲラf、(1)を制御回路(2〕
に入力する。制御回路(2)では補間回路(3)におい
て各微小ブロフクの移動指令から補間単位時間後T後の
座標値を求め、次の軸移動量算出回路(4)で前回の値
との差を求め各卸1毎の補間中位時間ΔT当りの移動1
11を算出する。
Next, this pressurized progera f, (1) is connected to the control circuit (2)
Enter. In the control circuit (2), the interpolation circuit (3) calculates the coordinate value after the interpolation unit time T from the movement command of each minute block, and the next axis movement calculation circuit (4) calculates the difference from the previous value. Movement 1 per interpolation median time ΔT for each wholesale 1
Calculate 11.

これらの結果を軸移動量出力回路(5)にit、え、こ
の軸移動量出力回路(5)の出力を受けるパルス分配回
路(6)からパルスを出力させ、そのパルスでサーボユ
ニット(7)を作動させモータ(8)を駆動する。
These results are sent to the axis movement amount output circuit (5), and pulses are output from the pulse distribution circuit (6) that receives the output of this axis movement amount output circuit (5), and the pulses are used to control the servo unit (7). is activated to drive the motor (8).

しかして、検出器(9)はモータ(8)の変位i+)を
検出しサーボユニット(7)にフィードバックして所定
の移動を行う、これにより、円筒側面にで指令された曲
線に沿って加圧を行い得る。
The detector (9) detects the displacement i+) of the motor (8) and feeds it back to the servo unit (7) to perform a predetermined movement. Pressure can be applied.

[発明が解決しようとする問題点コ 従来のこのような旋盤を制御する数値制御装置において
は、円筒状の工作物の側面の加重二を行いたい場合には
、I具経路を微小ブロンフレこj’、r :’+I シ
各徽小ブロンクの移動指令を円t1)座標系の回・?1
、itl+とII′IVj軸の移動指令に変換しなけれ
ばならなく1.11常に複雑で;膨大なプログラミング
が6黄となり、プログラム作成面間が長くプログラムチ
ェックか困難になるなどの問題【、vがあった。
[Problems to be Solved by the Invention] In a conventional numerical control device for controlling such a lathe, when it is desired to load the side surface of a cylindrical workpiece, it is necessary to ',r:'+I ?The movement command of each small bronc is circle t1) The rotation of the coordinate system. 1
, itl+ and II′IVj-axis movement commands must be converted into movement commands. 1.11 It is always complicated; a huge amount of programming becomes 6 yellow, and there are problems such as long intervals between program creation screens and difficult program checking [, v was there.

この発明はに記のような問題点を解消するためになされ
たもので1通常、円筒座標系の制御軸を持つ工作機械に
より円筒側面の加圧を行う際に、円筒側面を展開した下
面を定義し、その乎iI′1iL−でのプログラミング
された移動指令を円筒座標系の移動指令に変換すること
により加工を行い得る数値制御装置を?1)ることを[
1的とする。
This invention was made to solve the problems described in 1. Normally, when pressurizing the side surface of a cylinder with a machine tool having a control axis of a cylindrical coordinate system, the bottom surface of the side surface of the cylinder is What is a numerical control device that can perform machining by defining and converting movement commands programmed in iI'1iL- into movement commands in a cylindrical coordinate system? 1) To [
1 target.

L問題点を解決するためのp段〕 この発明に係る数&i制御装置は、加[プロゲラt・か
ら入力された円筒側面を展開した4i面上−での移動指
令に基いて桶間中イ々時間後のyP−標値を求める補間
回路、および該座標値を円筒座標(++’iに変換する
座標変換回路を設けるとともに、変換された上記円筒座
標イ直と前回変換された該円筒座標値との差分に基いて
各軸ごとの上記補間中位時間ちりの移動量を軸移動量算
出回路で検出し、回転軸と直線軸の同面2軸補間により
切削層Tするようにしたものである。
[P-stage for solving the L problem] The number & i control device according to the present invention moves the cylinder between the buckets based on the movement command on the 4i plane, which is the expanded cylinder side surface, which is input from the progera t. An interpolation circuit that calculates the yP-target value after several hours, and a coordinate conversion circuit that converts the coordinate value into cylindrical coordinates (++'i) are provided, and the converted cylindrical coordinates A and the previously converted cylindrical coordinates are provided. Based on the difference with the value, the movement amount of the interpolated intermediate time dust for each axis is detected by the axis movement calculation circuit, and the cutting layer T is calculated by coplanar two-axis interpolation of the rotary axis and the linear axis. It is.

[作用」 この発明による数値制御装置において座標変換回路は円
筒状の工作物の側面を、該側面を展開したモ面上のデー
タとして設定した直交I+標系の移動指令に基いて補間
単位時間後の座標値を求める補間回路の出力を入力とし
て、工作機械の制御軸に適合した円筒座標系1−の座標
値に変換して軸移動j11算出回路に出力する。
[Operation] In the numerical control device according to the present invention, the coordinate conversion circuit converts the side surface of the cylindrical workpiece after an interpolation unit time based on the movement command of the orthogonal I+ reference system set as data on the surface where the side surface is developed. The output of the interpolation circuit for determining the coordinate values of is input, and the output is converted into coordinate values of the cylindrical coordinate system 1- suitable for the control axis of the machine tool and output to the axis movement j11 calculation circuit.

[実施例] 以下、この発明の一実施例を図に基いて説明する。第1
図は第4図の従来例に対応するこの発明の一実施例によ
る構成を示すもので、同図において、制御回路(2)は
、加工プログラム(1)から入力された円筒状の工作物
の側面を展開した上面上の移動指令に基いて補間単位時
間後の座標イt1を求める補間回路(3)と、上記座標
領を円筒座標値に変換する座標変換回路(11)と、変
換された該円筒座ピ!イ1と1iノ回変換された該円筒
座標イ【^との差分にノふづいてl−記各軸毎の上記補
間中位時間当りの移動量を算出する軸移動量算出回路(
4)とを備えてなり、円筒側面上の移動指令を円筒座標
系の移動指令に変換して同時3411I?IO間により
ジノ削加圧するようになされている。その地の構成は従
来例と同様である。
[Example] Hereinafter, an example of the present invention will be described based on the drawings. 1st
The figure shows a configuration according to an embodiment of the present invention corresponding to the conventional example shown in FIG. An interpolation circuit (3) that calculates the coordinate t1 after the interpolation unit time based on a movement command on the top surface with the side surface expanded; and a coordinate conversion circuit (11) that converts the above coordinate area into cylindrical coordinate values; The cylindrical seat pi! An axis movement amount calculation circuit that calculates the movement amount per interpolation median time for each axis (l) based on the difference between the cylindrical coordinates (a) and (b) that have been converted 1 and 1i times.
4), converts a movement command on the cylinder side surface into a movement command in the cylindrical coordinate system and simultaneously performs 3411I? The cutting pressure is applied more between the IOs. The configuration of the area is the same as in the conventional example.

また、第2.3図は回転軸Cと直交する直線軸X、Zを
持つ3軸MSにより加丁する工作物Wを示し、0は旋盤
のプログラミンブトの座標系(円筒座標系)の原点であ
り、各点は円t51座標系(R、Z 、 C)でrえら
れる。そして、ト具は始点S (Rs、Zs、C:s)
にあるものとし、第3図に示すように円弧SE上を1具
が移動するようにしたい場合には加丁したい側面(゛t
′経R)を展開したモ面を仮定し、該平面を仮想直線軸
Yと2軸で定義し、このモ面」二で上記円偲SEを指令
するだけで数値制御装置内部でz、CIkIlにより補
間し円弧SELを1共が移動するように制御する。
In addition, Fig. 2.3 shows a workpiece W to be cut by a three-axis MS having linear axes X and Z perpendicular to the rotation axis C, where 0 is the origin of the coordinate system (cylindrical coordinate system) of the programming button of the lathe. , and each point is found in the circular t51 coordinate system (R, Z, C). And the tool is at the starting point S (Rs, Zs, C:s)
, and if you want one tool to move on the arc SE as shown in Figure 3, the side you want to cut (゛t
Assuming a plane that expands the plane R), define this plane by two axes, the virtual linear axis Y, and simply command the above SE on this plane '2 to calculate z, CIkIl inside the numerical controller. The arc SEL is interpolated and controlled so that both arcs SEL move.

このとき、仮想モ面トの直交座標系の原点は円筒座標系
上の点(R、0、0)である。
At this time, the origin of the orthogonal coordinate system of the virtual plane is a point (R, 0, 0) on the cylindrical coordinate system.

工作物Wの側面上の円弧SEに沿って切削を行う際には
まず側面を展開した平面上の直交座標系(Y −Z)で
指令された移動指令により通常の補間方法によって直交
座標系トの座標値(YN、ZN)を求める。
When cutting along the arc SE on the side surface of the workpiece W, first, the orthogonal coordinate system is created using a normal interpolation method using a movement command given in the orthogonal coordinate system (Y-Z) on the plane where the side surface is developed. Find the coordinate values (YN, ZN) of

次にこの直交座標系Eの座標値を次式によって円筒座標
系との座標値に変換する。
Next, the coordinate values of this orthogonal coordinate system E are converted into coordinate values of the cylindrical coordinate system using the following equation.

ZN=ZN          ・・・(1)CM=Y
N/R・180/π  ・・・(2)これによりr具が
Z、C軸方向にΔZ、ΔCだけ移動すれば工具は円弧S
Ehに沿って移動し所定の加工を実現できる。
ZN=ZN...(1)CM=Y
N/R・180/π...(2) With this, if the r tool moves in the Z and C axis directions by ΔZ and ΔC, the tool will move along the arc S.
It is possible to move along Eh and realize a predetermined processing.

次に具体的な動作について説明する。円筒乎面選択指仝
′″GIG°゛が入力されると、加工プログラム(1)
からの展開工面との直交座標系の移動指令Y、Zが補間
回路(3)に入力され補間単位時間Δτ後の座標イ直Y
N、ZNが求められる。
Next, specific operations will be explained. When the cylindrical surface selection finger '''GIG°'' is input, the machining program (1)
The movement commands Y and Z in the orthogonal coordinate system with respect to the developed work surface are input to the interpolation circuit (3), and after the interpolation unit time Δτ, the coordinates Y and Z are input to the interpolation circuit (3).
N and ZN are required.

次にこれらの座標値を座標変換回路(11)にて上記(
1)、(2)式を用いて円筒座標系上:Z+、CNに変
換する。ソL テ441+ ′4′j−動jI:算出r
++]路(5) テ+i+ f”l ノイ直ZN1、に
N+との差分を求め ΔZ=ZsZN1      ・・・(3)Δ C=C
N  CN +               ・・・
 (4ン各輛ごとの補間中位時間ΔT当りの移動呈ΔZ
Next, these coordinate values are converted into the above (
1) and (2) on the cylindrical coordinate system: converted to Z+, CN. SoL Te441+ '4'j-motion jI: Calculation r
++] road (5) Te+i+ f”l Find the difference between Neu direct ZN1 and N+ and ΔZ=ZsZN1...(3) Δ C=C
NCN+...
(Movement variation ΔZ per interpolated median time ΔT for each of the four cars
.

ΔCを上記(3)、(4)式により算出する。これらの
結果を軸移動量出力回路(5)にかえこの軸移動11!
出力回路(5)の出力を受けたパルス分配回路(6)か
らパルスを出力させ、このパルスでサーボユニット(7
)を作動させ、モータ(8)を駆動する。
ΔC is calculated using equations (3) and (4) above. Convert these results to the axis movement amount output circuit (5) and this axis movement 11!
A pulse is output from the pulse distribution circuit (6) which receives the output from the output circuit (5), and this pulse is used to control the servo unit (7).
) to drive the motor (8).

しかして検出器(9)はモータ(8)の変位1式を検出
しサーポユニツ)(7)にフィードバックして所定量の
駆動を行う。これにより工作物は円筒側面上−で指令さ
れた経路に沿って切削加工される。
The detector (9) detects a displacement of the motor (8) and feeds it back to the servo unit (7) to drive it by a predetermined amount. As a result, the workpiece is cut along the commanded path on the cylindrical side surface.

なお、上記実施例では円筒側面選択指令として”G16
”を用いたがその他の使用されていないGコード等を用
いることかできる。
In the above embodiment, "G16" is used as the cylinder side selection command.
”, but other unused G codes etc. can also be used.

[発明の効果] 以りのようにこの発明によれば円筒側面加重する際に円
筒側面を展開した平面上の直交座標系で加工プログラム
をプログラミングすることができ、プログラミングが容
易になるのでプログラム作成時間が大幅に短縮できプロ
グラムのチェックも簡単にできるという効果がある。
[Effects of the Invention] As described above, according to the present invention, when a cylinder side is loaded, a machining program can be programmed in a rectangular coordinate system on a plane in which the cylinder side surface is expanded, and programming is facilitated. This has the effect of greatly reducing time and making it easier to check programs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるブロック構成図、第
2図は工作物の側面を展開した平面の設定の一例を示す
説明図、第3図はその工作物の加丁説明図、第4図は従
来の数値制御装置の制御過程構成を示すブロック構成図
、第5図(a)、(t))は従来の工作物の加r説明図
である。 図において、 Cは回転軸、      X、Zは直線2軸、Yは仮悲
直線軸、    (3)は補間回路、(4)は軸移動量
算出回路、(11)は座標変換回路。 なお、各図中、同一符号は同−又は和名部分を示す。 代  理  人   大  岩  増  雄第2図 14ReFl□jit1%jLfC!t第3図 第5図 手続補正書(自発) 昭和  年  月  日 2、発明の名称 故(11’iル制御装置 3、補正をする者 事件との関係 特許出願人 住 所     東京都千代田区丸の内二丁目2番3号
名 称  (601)三菱電機株式会社代表者志岐守哉 4、代理人 住 所     東京都千代田区丸の内二丁目2番3号
5、補jトの対象 り1fflli +’;の発明の詳細な説1す)の欄、
および14面。 6、補IFの内容 (1)明細、1:第2頁第17行の「プログラム」とい
う記載を「プログラマ」と補正する。 (2〕明細、1;第5頁第2行の「検出」という記、戒
を「算出」と補正する。 (3)明細書第6頁第7行の「その地」という記載を「
その他」と補正する。 (4)明細書第8頁第18行の「用いることかできる」
という記載を「用いることもできる」と補正する。 (5)図面中筒3図を別紙の通り補正する。 7、添付9類の目録 図面               1通以  上 第3区
FIG. 1 is a block configuration diagram according to an embodiment of the present invention, FIG. 2 is an explanatory diagram showing an example of the setting of a plane in which the side surface of a workpiece is developed, and FIG. 3 is an explanatory diagram of cutting and cutting the workpiece. FIG. 4 is a block configuration diagram showing the control process configuration of a conventional numerical control device, and FIGS. 5(a) and 5(t) are explanatory diagrams of conventional machining of a workpiece. In the figure, C is a rotation axis, X and Z are two linear axes, Y is a temporary linear axis, (3) is an interpolation circuit, (4) is an axis movement amount calculation circuit, and (11) is a coordinate conversion circuit. In each figure, the same reference numerals indicate the same or Japanese names. Agent Masuo Oiwa Figure 2 14ReFl□jit1%jLfC! t Figure 3 Figure 5 Procedural amendment (voluntary) Showa year, month, day 2, Due to the name of the invention (11'i control device 3, relationship with the case of the person making the amendment Patent applicant's address Marunouchi, Chiyoda-ku, Tokyo) 2-2-3 Name (601) Mitsubishi Electric Corporation Representative Moriya Shiki 4, Agent address 2-2-3-5 Marunouchi, Chiyoda-ku, Tokyo, 1fflli +'; Detailed explanation of the invention 1) column,
and 14 sides. 6. Contents of supplementary IF (1) Specification, 1: The description "program" on page 2, line 17 is corrected to "programmer." (2) Specification, 1; The word “detection” and precept in the second line of page 5 are amended to “calculation”. (3) The word “the place” in the seventh line of page six of the specification is amended to “calculation”.
"Other" is corrected. (4) “Can be used” on page 8, line 18 of the specification
The statement "can also be used" will be amended to read "can also be used." (5) Correct the third figure in the drawing as shown in the attached sheet. 7.Attachment 1 or more catalog drawings of Category 9 District 3

Claims (1)

【特許請求の範囲】[Claims] 回転軸と該回転軸に対して直角で互いに直交する直線2
軸を有する複合多軸工作機械を制御する数値制御装置に
おいて、加工プログラムから入力された円筒状の工作物
の側面を展開した平面上の移動指令に基いて、補間単位
時間後の座標値を求める補間回路と、上記座標値を円筒
座標値に変換する座標変換回路と、変換された該円筒座
標値と前回変換された該円筒座標値との差分に基いて上
記各軸毎の上記補間単位時間当りの移動量を算出する軸
移動量算出回路とを備え、円筒側面上の移動指令を円筒
座標系の移動指令に変換して同時3軸補間により切削加
工することを特徴とする数値制御装置。
A rotation axis and straight lines 2 that are perpendicular to the rotation axis and orthogonal to each other.
In a numerical control device that controls a complex multi-axis machine tool with axes, coordinate values after an interpolation unit time are determined based on movement commands on a plane that expands the side surface of a cylindrical workpiece input from a machining program. an interpolation circuit; a coordinate conversion circuit that converts the coordinate values into cylindrical coordinate values; and the interpolation unit time for each axis based on the difference between the converted cylindrical coordinate value and the previously converted cylindrical coordinate value. A numerical control device comprising an axis movement amount calculation circuit that calculates the amount of movement per hit, converting a movement command on a cylindrical side surface into a movement command in a cylindrical coordinate system, and performing cutting processing by simultaneous three-axis interpolation.
JP16595486A 1986-07-15 1986-07-15 Numerical controller Pending JPS6320601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16595486A JPS6320601A (en) 1986-07-15 1986-07-15 Numerical controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16595486A JPS6320601A (en) 1986-07-15 1986-07-15 Numerical controller

Publications (1)

Publication Number Publication Date
JPS6320601A true JPS6320601A (en) 1988-01-28

Family

ID=15822171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16595486A Pending JPS6320601A (en) 1986-07-15 1986-07-15 Numerical controller

Country Status (1)

Country Link
JP (1) JPS6320601A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991018335A1 (en) * 1990-05-24 1991-11-28 Fanuc Ltd Cylinder interpolation system
US8330563B2 (en) 2008-02-19 2012-12-11 Denso Corporation High-frequency member assembly with waveguide
US8564477B2 (en) 2008-03-31 2013-10-22 Kyocera Corporation High-frequency module and method of manufacturing the same, and transmitter, receiver, transceiver, and radar apparatus comprising the high-frequency module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991018335A1 (en) * 1990-05-24 1991-11-28 Fanuc Ltd Cylinder interpolation system
US8330563B2 (en) 2008-02-19 2012-12-11 Denso Corporation High-frequency member assembly with waveguide
US8564477B2 (en) 2008-03-31 2013-10-22 Kyocera Corporation High-frequency module and method of manufacturing the same, and transmitter, receiver, transceiver, and radar apparatus comprising the high-frequency module

Similar Documents

Publication Publication Date Title
US4757457A (en) Numerical control method and apparatus with feedrate difference
WO1982003473A1 (en) Tool diameter compensation system
JPH04169905A (en) Coordinate transform system for three-dimensional laser
JPH0123269B2 (en)
JPS63229506A (en) Output system for axis speed
JPS6320601A (en) Numerical controller
JPS62163109A (en) Numerical controller
JPS5981705A (en) Compensating method of nc machine tool
US3731175A (en) Servo system for velocity and position control
WO1992019418A1 (en) Copy control device
WO1991002624A1 (en) Profile control apparatus
WO1991002625A1 (en) Profile control apparatus
WO1984003245A1 (en) Method of restarting profiling machining
JPS60231207A (en) Command generating system of multi-axis servo system
JPH0716850B2 (en) Axis switching device
JPS58219606A (en) Automatic shape working system
EP0420990B1 (en) Profile control device
JPS5942254A (en) Profiling system
JP7175340B2 (en) Machine tools, information processing devices and information processing programs
JPS6359604A (en) Method for changing working route in numerical controller
JPS64182B2 (en)
JPH0579460B2 (en)
JPS6056848A (en) Machining data producing system
JP2614714B2 (en) Roughing method by copying
JPS59202008A (en) Position correcting method