JPS64182B2 - - Google Patents

Info

Publication number
JPS64182B2
JPS64182B2 JP23410982A JP23410982A JPS64182B2 JP S64182 B2 JPS64182 B2 JP S64182B2 JP 23410982 A JP23410982 A JP 23410982A JP 23410982 A JP23410982 A JP 23410982A JP S64182 B2 JPS64182 B2 JP S64182B2
Authority
JP
Japan
Prior art keywords
cam
grindstone
coordinate system
grinding wheel
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23410982A
Other languages
Japanese (ja)
Other versions
JPS59124561A (en
Inventor
Hideaki Kawamura
Toshiaki Ootsuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP23410982A priority Critical patent/JPS59124561A/en
Publication of JPS59124561A publication Critical patent/JPS59124561A/en
Publication of JPS64182B2 publication Critical patent/JPS64182B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • B24B19/08Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding non-circular cross-sections, e.g. shafts of elliptical or polygonal cross-section
    • B24B19/12Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding non-circular cross-sections, e.g. shafts of elliptical or polygonal cross-section for grinding cams or camshafts
    • B24B19/125Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding non-circular cross-sections, e.g. shafts of elliptical or polygonal cross-section for grinding cams or camshafts electrically controlled, e.g. numerically controlled
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/33Director till display
    • G05B2219/33263Conversion, transformation of coordinates, cartesian or polar
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35543Cartesian to polar and vice versa
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45161Grinding machine
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45218Making cams, cones

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

【発明の詳細な説明】 本発明はカム研削方法に係り、特に直交座標系
でプログラミングができると共に、砥石径が変化
しても一々プログラムする必要がないカム研削方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cam grinding method, and particularly to a cam grinding method that allows programming in an orthogonal coordinate system and eliminates the need for programming each time the grindstone diameter changes.

ワークを回転させながら、所望のカム形状に基
いて砥石のワーク切込み方向位置を制御してカム
研削を行なうカム研削方法においては、従来ワー
ク回転位置を原点とする極座標系でカム形状をプ
ログラミングしていた。このため、プログラミン
グが煩雑となると共に、砥石径が変化する場合に
は該砥石径に応じたNCデータをその都度作成し
直さなくてはならず大変であつた。第1図は従来
のプログラミング説明図であり、101はワーク
(或いはカム)、102は砥石である。さて、従来
はワーク回転中心Prを原点とする極座標系(回
転角をC軸、原点Pr迄の距離をX軸で表現する
ものとする)を考え、微小回転角毎にカム形状に
沿つた砥石中心軌跡GR迄の距離を求め、これら
多数の角度と距離の関係を用いてカム研削用の
NCパートプログラムを作成していた。たとえ
ば、回転角20゜毎に砥石中心迄の距離を求めるも
のとし、該回転角が0゜,20゜,40゜,……360゜にお
ける砥石中心迄の距離をL1(0),L1(20),L1
(40),……L1(360)とすればNCパートプログラ
ムは G90G01XL1(0)C 0; XL1(20)C 20; XL1(40)C 40; XL1(360)C 360; となる。尚、G90は指令位置がアブソリユート値
で与えられていることを意味するG機能命令、
G01はデータが直線切削(通路)データであるこ
とを意味するG機能命令である。そして、かゝる
NCパートプログラムデータが1ブロツクづつ
NC装置に入力されると、NC装置はC軸及びX
軸の同時2軸パルス分配演算を行ないC軸の分配
パルスによりワーク(カム)101を回転させ、
X軸の分配パルスにより砥石102をX軸に沿つ
て移動させ、その切込み方向位置を制御し、最終
的に所望のカム形状を得ている。
In the cam grinding method, which performs cam grinding by controlling the position of the grindstone in the workpiece cutting direction based on the desired cam shape while rotating the workpiece, conventionally the cam shape is programmed using a polar coordinate system with the workpiece rotation position as the origin. Ta. For this reason, programming becomes complicated, and when the diameter of the grinding wheel changes, NC data corresponding to the diameter of the grinding wheel must be recreated each time, which is troublesome. FIG. 1 is an explanatory diagram of conventional programming, where 101 is a workpiece (or cam) and 102 is a grindstone. Now, conventionally, we considered a polar coordinate system with the work rotation center Pr as the origin (the rotation angle is represented by the C axis, and the distance to the origin Pr is represented by the Find the distance to the center locus GR, and use the relationship between these many angles and distances to calculate the distance for cam grinding.
I was creating an NC part program. For example, suppose that the distance to the center of the grinding wheel is determined at every 20° rotation angle, and the distance to the center of the grinding wheel at rotation angles of 0°, 20°, 40°, ...360° is L 1 (0), L 1 (20), L 1
(40), ...L 1 (360), then the NC part program is G90G01XL 1 (0)C 0; XL 1 (20)C 20; XL 1 (40)C 40; XL 1 (360)C 360; becomes. Furthermore, G90 is a G function command which means that the command position is given as an absolute value.
G01 is a G function command meaning that the data is straight cutting (passage) data. And it smells
NC part program data one block at a time
When input to the NC device, the NC device will
Simultaneous two-axis pulse distribution calculation is performed on the axes, and the workpiece (cam) 101 is rotated by the C-axis distribution pulse.
The grindstone 102 is moved along the X-axis by the distribution pulse of the X-axis, and its position in the cutting direction is controlled to finally obtain a desired cam shape.

ところで、第1図点線に示すように砥石102
の径が変化すると、砥石中心の通路も同図1点鎖
線に示すように変化するため、従来は種々の砥石
径に応じたNCパートプログラムを用意して砥石
径の変化に対処していた。
By the way, as shown by the dotted line in Figure 1, the grindstone 102
When the diameter of the grinding wheel changes, the path at the center of the grinding wheel also changes as shown by the dashed line in the figure. Conventionally, NC part programs were prepared for various grinding wheel diameters to deal with changes in the grinding wheel diameter.

以上のように、従来は極座標系でプログラミン
グしなくてはならないためプログラミングが煩雑
となると共に、砥石径補正ができず砥石径が変る
ごとにNCパートプログラムを作成し直さなくて
はならずプログラミングが大変であつた。
As mentioned above, in the past, programming had to be done in a polar coordinate system, which made programming complicated, and the grinding wheel diameter could not be corrected, so the NC part program had to be recreated each time the grinding wheel diameter changed, which made programming difficult. It was very difficult.

以上から、本発明は極座標系でなく直交座標系
でプログラミングできると共に、砥石径補正が簡
単にできるカム研削方法を提供することを目的と
する。
In light of the above, an object of the present invention is to provide a cam grinding method that allows programming in a rectangular coordinate system rather than a polar coordinate system, and also allows easy correction of the grindstone diameter.

第2図は本発明の実施例ブロツク図、第3図は
流れ図である。NCテープ201には直交座標系
でカム形状がプログラムされている。たとえば、
第4図に示すようにカム形状が円弧AC1,AC2
と直線LN1,LN2より構成されている場合には周
知の円弧研削通路データと直線研削通路データと
がNCテープ201に記憶されている。NC処理
装置202は起動がかゝるとメモリ(ROM)2
03に記憶されているコントロールプログラムの
制御によりテープリーダ204を介してNCテー
プ201から順次1ブロツクずつNCデータを読
みとる。そして、読み取られたデータが直線研削
の通路データ(指令位置をXc,Ycとする)であ
れば、現在位置Xa,Yaと指令位置Xc,Ycを用
いてインクリメンタル値Xci,Yciを次式 Xci=Xc−Xa Yci=Yc−Xa (1) により演算する。ついで、 ΔX(i)=Fx・ΔT (2) ΔY(i)=Fy・ΔT (3) の演算を行なつて所定時間ΔT秒(たとえば8m
sec)の間におけるX軸、Y軸方向移動量ΔX(i)、
ΔY(i)を求め、データメモリ205に記憶する。
尚、ΔTはパラメータメモリ206に設定されて
おり、又、Fx,Fyは指令送り速度(線速度)を
Fとすれば次式により定まるX軸,Y軸方向の速
度である。
FIG. 2 is a block diagram of an embodiment of the present invention, and FIG. 3 is a flowchart. A cam shape is programmed into the NC tape 201 using an orthogonal coordinate system. for example,
As shown in Figure 4, the cam shape is circular arc AC1, AC2
and straight lines LN 1 and LN 2 , well-known arcuate grinding path data and linear grinding path data are stored on the NC tape 201. When the NC processing unit 202 is started up, the memory (ROM) 2
NC data is sequentially read one block at a time from the NC tape 201 via the tape reader 204 under the control of a control program stored in the NC tape 201. Then, if the read data is linear grinding path data (command positions are Xc, Yc), use the current positions Xa, Ya and command positions Xc, Yc to calculate the incremental values Xci, Yci using the following formula: Xci= Calculate by Xc−Xa Yci=Yc−Xa (1). Next, calculate ΔX(i)=Fx・ΔT (2) ΔY(i)=Fy・ΔT (3) and set the predetermined time ΔT seconds (for example, 8 m
sec), the amount of movement in the X-axis and Y-axis directions ΔX(i),
ΔY(i) is determined and stored in the data memory 205.
Note that ΔT is set in the parameter memory 206, and Fx and Fy are velocities in the X-axis and Y-axis directions determined by the following equations, where F is the commanded feed rate (linear velocity).

Fx=F・Xci/√22 (4) Fy=F・Yci/√22 (5) しかる後、NC処理装置202は Xa±ΔX(i)→Xa (6) Ya±ΔYi→Ya (7) の演算を行なつてΔT秒後の現在位置Xa,Yaを
求める。尚、(6),(7)式においてマイナス符号は移
動方向が負方向のとき、プラス符号は正方向のと
きである。
Fx=F・Xci/√ 2 + 2 (4) Fy=F・Yci/√ 2 + 2 (5) After that, the NC processing device 202 converts Xa±ΔX(i)→Xa (6) Ya±ΔYi→Ya Perform the calculation in (7) to find the current positions Xa and Ya after ΔT seconds. In equations (6) and (7), a minus sign indicates when the movement direction is negative, and a plus sign indicates when the movement direction is positive.

ついで、ワーク(カム)回転中心位置をXo,
YoとすればNC処理装置202は次式 Xp=√(−)2+(−)2 (8) Cp(t)=tan-1(Ya−Yo)/(Xa−Xo) (9) により、直交座標系における現在位置(Xa,
Ya)を、カム回転中心位置(Xo,Yo)を原点
とする極座標に変換する。尚、Xo,Yoはパラメ
ータとして予めパラメータメモリ206に記憶し
ておく。以上によりXp(t),Yp(t)が求まれば
ΔT秒前の現在位置Xp(t−1)、Cp(t−1)と
の差分ΔXp(t)、ΔCp(t)を次式 ΔXp(t)=Xp(t)−Xp(t−1) (10) ΔCp(t)=Cp(t)−Cp(t−1) により演算する。そして、(10),式により求めた
差分ΔXp(t)、ΔCp(t)をパルス分配器207,
208に入力する。
Next, set the workpiece (cam) rotation center position to Xo,
If Yo, then the NC processing device 202 uses the following formula : The current position (Xa,
Ya) into polar coordinates with the origin at the cam rotation center position (Xo, Yo). Note that Xo and Yo are stored in advance in the parameter memory 206 as parameters. If X p (t) and Y p (t) are obtained from the above, the differences between the current positions X p (t-1) and C p (t-1) ΔT seconds ago are ΔX p (t) and ΔC p ( t) is calculated using the following equation: ΔX p (t)=X p (t)−X p (t−1) (10) ΔC p (t)=C p (t)−C p (t−1). Then, the pulse distributor 207 ,
208.

パルス分配器207,208はΔXp(t)、ΔCp
(t)が入力されゝば同時2軸のパルス分配演算
を行ない、分配パルスPx、PcをX軸及びC軸用
のサーボユニツト209,210に入力し、サー
ボモータ211,212を回転し、ワーク101
を回転させながら切込み方向の砥石位置を制御す
る。各パルス分配器207,208は又、X軸方
向の分配パルスPxの数Nx及びC軸方向の分配パ
ルスPcの数NcがそれぞれΔXp(t)、ΔCp(t)に
等しくなつたかどうかを監視しており、 Nx=ΔXp(t)、Nc=ΔCp(t) (12) になるとパルス分配完了信号DENX,DENCを
NC処理装置202に出力する。DENX,DENC
が発生したことによりNC処理装置202は、目
標位置に到達したかどうかを判別し、到達しなけ
れば再び(6),(7)式によりΔT秒後の現在位置Xa,
Yaを求め、(8)〜(11)式によりΔXp(t)、ΔCp(t)
を演算して、これらをパルス分配器207,20
8に入力する。以後、同様な処理が行われ、目標
位置迄到達すればNC処理装置202はテープリ
ーダ204を介して次のブロツクのNCデータを
NCテープ201から読み取り、同様に制御をす
ることになる。尚、以上の説明では直線研削デー
タの場合について説明したが、円弧研削データの
場合にもほぼ同様な制御が行われる。
Pulse distributors 207 and 208 have ΔX p (t), ΔC p
(t) is input, the pulse distribution calculation for two axes is performed simultaneously, the distribution pulses Px and Pc are input to the servo units 209 and 210 for the X-axis and C-axis, the servo motors 211 and 212 are rotated, and the workpiece is 101
The grindstone position in the cutting direction is controlled while rotating. Each pulse distributor 207, 208 also determines whether the number Nx of distributed pulses Px in the X-axis direction and the number Nc of distributed pulses Pc in the C-axis direction have become equal to ΔX p (t) and ΔC p (t), respectively. When Nx = ΔX p (t), Nc = ΔC p (t) (12), pulse distribution completion signals DENX and DENC are sent.
Output to the NC processing device 202. DENX, DENC
As a result of this occurrence, the NC processing unit 202 determines whether the target position has been reached, and if the target position has not been reached, the current position Xa,
Find Ya and use equations (8) to (11) to calculate ΔX p (t), ΔC p (t)
are calculated and these are sent to the pulse distributors 207 and 20.
Enter 8. Thereafter, similar processing is performed, and when the target position is reached, the NC processing device 202 reads the NC data of the next block via the tape reader 204.
It will be read from the NC tape 201 and controlled in the same way. Incidentally, in the above explanation, the case of linear grinding data has been explained, but almost the same control is performed also in the case of circular grinding data.

ところで、砥石径が変化する場合には、本発明
では、砥石径を用いて直交座標系の形状データを
補正し、補正して得られた指令位置Xci′,Yci′を
(1),(4),(5)式におけるXci,Yciとして前述と同
様の処理を行なつて砥石径補正をしている。尚、
形状データの補正換言すれば指令位置データの補
正は第5図Aを参照すると以下の如く行われる。
すなわち、2つの直線L1,L2の交叉角αが90゜以
上180゜以下であれば現ブロツクb1の移動指令と共
に次のブロツクb1の移動指令を先読みしておき、
現ブロツクb1の直線L1を砥石径r1だけオフセツト
した直線L1′と、次ブロツクb2の直線L2を砥石径
r1だけオフセツトした直線L2′を求め、各直線
L1′とL2′の交点S1′の座標を砥石径補正された目標
位置としている(指令された目標位置はS1)。又、
2つの直線L1,L2の交叉角αが90゜以下であれば
第5図Bに示すように、直線L1′とL2′の交点S1′が
補正された第1目標位置となり、直線L2′とL1
交点S2′が補正された第2目標位置となる。更に、
直線と円弧、円弧と円弧が連結する場合も同様に
補正された目標位置を演算する。
By the way, when the diameter of the grinding wheel changes, in the present invention, the shape data of the orthogonal coordinate system is corrected using the diameter of the grinding wheel, and the command positions Xci' and Yci' obtained by the correction are
The grinding wheel diameter is corrected by performing the same processing as described above for Xci and Yci in equations (1), (4), and (5). still,
Correction of shape data In other words, correction of command position data is performed as follows with reference to FIG. 5A.
That is, if the intersecting angle α of the two straight lines L 1 and L 2 is between 90° and 180°, the movement command for the next block b 1 is read in advance along with the movement command for the current block b 1 .
The straight line L 1 ' of the current block b 1 is offset by the grinding wheel diameter r 1 , and the straight line L 2 of the next block b 2 is the grinding wheel diameter.
Find the straight line L 2 ′ offset by r 1 , and
The coordinates of the intersection S 1 ′ of L 1 ′ and L 2 ′ are set as the target position with the grindstone diameter corrected (the commanded target position is S 1 ). or,
If the intersection angle α of the two straight lines L 1 and L 2 is 90° or less, the intersection S 1 ' of the straight lines L 1 ' and L 2 ' becomes the corrected first target position, as shown in Figure 5B. , the intersection S 2 ' of straight lines L 2 ' and L 1 becomes the corrected second target position. Furthermore,
Corrected target positions are calculated in the same way when a straight line and a circular arc or a circular arc and a circular arc are connected.

従つて、NCテープに砥石径が零或いは基準値
である場合のカム形状をプログラムして記憶させ
ておくと共に、第2図のメモリ213に砥石番号
と砥石径の対応関係を入力しておき、且つ操作盤
214より使用する砥石の砥石番号を入力すれ
ば、NC処理装置202はメモリ213より対応
する砥石半径を読み出し、NCデータがNCテー
プより読み出される毎に前述の砥石径補正を行な
つてXci′,Yci′を求め、それぞれXci,Yciとし
て前述の処理を行なう。
Therefore, the cam shape when the grinding wheel diameter is zero or the reference value is programmed and stored on the NC tape, and the correspondence relationship between the grinding wheel number and the grinding wheel diameter is input into the memory 213 in FIG. In addition, when the grinding wheel number of the grinding wheel to be used is input from the operation panel 214, the NC processing device 202 reads the corresponding grinding wheel radius from the memory 213, and performs the above-mentioned grinding wheel diameter correction every time the NC data is read from the NC tape. Find Xci' and Yci', and perform the above-mentioned processing as Xci and Yci, respectively.

以上、本発明によればカム研削形状を直交座標
でプログラミングし、ΔT秒毎の直交座標系にお
ける位置を求め、しかる後該位置を、カム回転中
心を原点とする極座標系に変換して極座標系にお
けるΔT秒毎の位置変位量を求め、該位置変位量
を用いてワーク(カム)回転及び砥石位置を制御
するようにしたからプログラミングが簡単になつ
た。又、カム形状を直交座標系でプログラムした
から、極座標変換前に砥石径補正を直交座標系で
行なうことができ、砥石径が変化してもその都度
プログラミングする必要がない。尚、本発明によ
ればカム形状が直線が円弧で表現される場合(第
4図)に有効であるが、必ずしも直線や円弧で表
現される場合だけでなくカム形状を微小の直線セ
グメントで近似した場合にも適用できる。
As described above, according to the present invention, the cam grinding shape is programmed using orthogonal coordinates, the position in the orthogonal coordinate system is determined every ΔT seconds, and the position is then converted to a polar coordinate system with the cam rotation center as the origin. The amount of positional displacement every ΔT seconds is determined, and the rotation of the workpiece (cam) and the position of the grindstone are controlled using the amount of positional displacement, which simplifies programming. Furthermore, since the cam shape is programmed in the orthogonal coordinate system, the grinding wheel diameter can be corrected in the orthogonal coordinate system before polar coordinate conversion, and there is no need to program each time the grinding wheel diameter changes. Although the present invention is effective when the cam shape is expressed by a straight line or a circular arc (Fig. 4), the cam shape is not necessarily expressed by a straight line or a circular arc, and the cam shape can be approximated by minute straight line segments. It can also be applied when

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の研削方法説明図、第2図は本発
明のブロツク図、第3図は処理の流れ図、第4図
はカム形状説明図、第5図は砥石径補正説明図で
ある。 101……ワーク(カム)、102……砥石、
201……NCテープ、202……NC処理装置、
203……ROM、205……データメモリ、2
06……パラメータメモリ、207,208……
パルス分配器、213……メモリ、214……操
作盤。
FIG. 1 is an explanatory diagram of a conventional grinding method, FIG. 2 is a block diagram of the present invention, FIG. 3 is a process flowchart, FIG. 4 is an explanatory diagram of a cam shape, and FIG. 5 is an explanatory diagram of grindstone diameter correction. 101... Work (cam), 102... Grindstone,
201...NC tape, 202...NC processing device,
203...ROM, 205...data memory, 2
06...Parameter memory, 207,208...
Pulse distributor, 213...memory, 214...operation panel.

Claims (1)

【特許請求の範囲】 1 所望のカム形状に基いて、且つワークの回転
に応じて砥石の切込み方向位置を制御してカム研
削を行なうカム研削方法において、カム形状を直
交座標系でプログラムすると共に、該プログラム
データに基いてパルス分配して所定時間毎の移動
量を求め、該移動量を積算して直交座標系におけ
る現在位置を求め、前記現在位置を、カム回転中
心を原点とする極座標系に変換し、得られた極座
標値の所定時間毎の変化量に基いてワークの回転
と砥石の切込み方向位置を制御することを特徴と
するカム研削方法。 2 砥石径を入力し、該砥石径に基いて補正され
たデータによりパルス分配演算することを特徴と
する特許請求の範囲第1項記載のカム研削方法。
[Claims] 1. A cam grinding method in which cam grinding is performed by controlling the cutting direction position of a grindstone based on a desired cam shape and in accordance with the rotation of a workpiece, in which the cam shape is programmed in an orthogonal coordinate system and , calculate the amount of movement every predetermined time by distributing pulses based on the program data, integrate the amount of movement to find the current position in a rectangular coordinate system, and define the current position in a polar coordinate system with the cam rotation center as the origin. A cam grinding method characterized in that the rotation of the workpiece and the position of the grindstone in the cutting direction are controlled based on the amount of change in the obtained polar coordinate value every predetermined time. 2. The cam grinding method according to claim 1, wherein a grindstone diameter is input and pulse distribution calculation is performed using data corrected based on the grindstone diameter.
JP23410982A 1982-12-27 1982-12-27 Cam grinding method Granted JPS59124561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23410982A JPS59124561A (en) 1982-12-27 1982-12-27 Cam grinding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23410982A JPS59124561A (en) 1982-12-27 1982-12-27 Cam grinding method

Publications (2)

Publication Number Publication Date
JPS59124561A JPS59124561A (en) 1984-07-18
JPS64182B2 true JPS64182B2 (en) 1989-01-05

Family

ID=16965766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23410982A Granted JPS59124561A (en) 1982-12-27 1982-12-27 Cam grinding method

Country Status (1)

Country Link
JP (1) JPS59124561A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0637024B2 (en) * 1987-08-23 1994-05-18 エムテック株式会社 Orientation flat grinding method and device
JPH0692064B2 (en) * 1988-08-04 1994-11-16 日揮株式会社 Control Method of Inner Profile Grinding without Master Cam
JP2811515B2 (en) * 1992-04-25 1998-10-15 オークマ株式会社 Non-circular work grinding method and apparatus

Also Published As

Publication number Publication date
JPS59124561A (en) 1984-07-18

Similar Documents

Publication Publication Date Title
CA1202101A (en) Manipulator with controlled path motion
GB1408666A (en) Apparatus for controlling an element of a machine
JPS61173311A (en) Method and apparatus for controlling manipulator
US4570386A (en) Regulating wheel dressing system in centerless grinder
JP3207409B2 (en) Robot tool attitude control method
US5075865A (en) Method and apparatus for involute interpolation
US5765976A (en) Method of controlling the normal direction of the main shaft of the numerical control machine tool
JPS6333166B2 (en)
WO1994028472A1 (en) Speed control method in numerical controller
US4970449A (en) Numerical control apparatus
JPS64182B2 (en)
US4521721A (en) Numerical control method
US5129045A (en) Method for the control of positioning systems
JPS62163109A (en) Numerical controller
US4922431A (en) Method and apparatus of tool control in arbitrary plane operations
JPH07164359A (en) Circular arc tracking method of robot
JPH09190211A (en) System for controlling route of numerically controlled device
JPH03296109A (en) Motion controller
JPS59124560A (en) Cam grinding method
JPH0732279A (en) Robot position teaching method
JPH0474205A (en) Correction system for tool diameter
JPH0454604A (en) Three-dimensional tool diameter correcting system
JPS60163106A (en) Numerical control method
JP2806933B2 (en) Tool compensation method
JPH04322301A (en) Method for interpolating linear axis and rotation axis of numerical controller