JPS63204612A - Formation of soi single crystal - Google Patents

Formation of soi single crystal

Info

Publication number
JPS63204612A
JPS63204612A JP3567487A JP3567487A JPS63204612A JP S63204612 A JPS63204612 A JP S63204612A JP 3567487 A JP3567487 A JP 3567487A JP 3567487 A JP3567487 A JP 3567487A JP S63204612 A JPS63204612 A JP S63204612A
Authority
JP
Japan
Prior art keywords
seeds
film
single crystal
seed
grain boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3567487A
Other languages
Japanese (ja)
Other versions
JPH0413849B2 (en
Inventor
Hiromitsu Namita
博光 波田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP3567487A priority Critical patent/JPS63204612A/en
Publication of JPS63204612A publication Critical patent/JPS63204612A/en
Publication of JPH0413849B2 publication Critical patent/JPH0413849B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To make it possible to control the generating position of a crystal grain boundary, by a method wherein, when an SOI film is going to be formed into a single crystal, the formation of single crystal is performed using a wavelike seeds in which linear seeds are slantly arranged in the scanning direction of the energy beam, with which a polysilicon film or an amorphous silicon film is fused, is annealed. CONSTITUTION:Seeds 1 and a silicon oxide film 5 are formed by oxidizing the surface of a silicon substrate 4 using a selective oxidizing method, and a polysilicon film 6 and a silicon oxide film cap 7 are deposited using a CVD method. Wavelike seeds is used, and for example, when the plane direction <001> is used on the silicon substrate 4, the seeds having the combination of <110> and <110> orientation is formed, and a recrystallization is conducted using a linear electron beam. The electron beam is scanned in the direction <100> in the case of the seed of combination of <110> and <110>. When a recrystallizing operation is performed under the above-mentioned condition, the solid-liquid interface is formed in the shape as shown in the diagram as 2, and a crystal grain boundary 3 is generated on the part which solidifies last. As a result, the position where the crystal grain boundary is present can be controlled.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はポリシリコン膜あるいは非晶質シリコン膜の溶
融・固化を行なうことによりSOI膜を単結晶化する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for monocrystalizing an SOI film by melting and solidifying a polysilicon film or an amorphous silicon film.

(従来の技術) Sol結晶成長において単結晶を得る場合、シードを用
いることにより、SOI膜の結晶方位を基板の方位と同
じにそろえることが可能である。
(Prior Art) When obtaining a single crystal through Sol crystal growth, it is possible to align the crystal orientation of the SOI film to the same orientation as the substrate by using a seed.

そのため、シードは広く用いられているが、その形状は
基本的には線状または点状のものである。
Therefore, seeds are widely used, but their shape is basically linear or dotted.

(堀田他、電子通信学会技術研究報告ED86−72P
63) (発明が解決しようとする問題点) しかしながら、上記の従来の技術には次のような問題点
がある。線状または点状のシードにより成長できる単結
晶の大きさは有限であり、ある成長距離を過ぎると結晶
粒界が発生する。しかし、この結晶粒界は、複数回の成
長で常に同一位置には発生せず、その位置はかなりラン
ダムである。
(Hotta et al., Institute of Electronics and Communication Engineers Technical Research Report ED86-72P
63) (Problems to be Solved by the Invention) However, the above-mentioned conventional technology has the following problems. The size of a single crystal that can be grown using a linear or dotted seed is finite, and grain boundaries occur after a certain growth distance. However, these grain boundaries do not always occur at the same position during multiple growths, and their positions are quite random.

このようにランダムな位置に結晶粒界が発生する(問題
点を解決するための手段) 本発明はポリシリコン膜あるいは非晶質シリコン膜の溶
融・固化を行なうことによりSOI膜を単結晶化する場
合、前記ポリシリコン膜あるいは非晶質シリコン膜の溶
融を行なうためのエネルギービームの走査方向に対し斜
めに配置した線状シードを組合せた波状のシードを用い
て単結晶化を行なうことを特徴としている。
Crystal grain boundaries occur at random positions in this way (Means for solving the problem) The present invention converts an SOI film into a single crystal by melting and solidifying a polysilicon film or an amorphous silicon film. In this case, single crystallization is performed using a wavy seed combined with a linear seed arranged obliquely to the scanning direction of the energy beam for melting the polysilicon film or the amorphous silicon film. There is.

(作用) SOI結晶成長においてシードから固液界面が進行する
と固液界面は波状のファセットを形成する。固液界面が
ファセットを形成すると、固液界面の進行方向に対して
波状ファセットの谷の部分から結晶粒界が発生する。し
かし、この波状ファセットの大きさや谷の位置は一定し
ないので結晶粒界の発生する位置はランダムである。こ
れに対し、シードを波状とすることにより、固液界面も
このシードの形状と同様な決まった波状の形状を形成す
る。すると、最後に固化する固液界面の進行方向に対し
て谷の部分より結晶粒界が発生する。よってこの方法に
より結晶粒界の発生する位以下、本発明の実施例をもと
に図面を参照しながら詳細に説明する。第1図は本発明
の実施例のシード部分の平面図、第2図は断面図を表わ
す。
(Function) When the solid-liquid interface advances from the seed during SOI crystal growth, the solid-liquid interface forms wavy facets. When the solid-liquid interface forms a facet, a grain boundary is generated from the trough portion of the wavy facet in the direction of movement of the solid-liquid interface. However, since the size of the wavy facets and the position of the valleys are not constant, the positions where grain boundaries occur are random. On the other hand, by making the seed wavy, the solid-liquid interface also forms a determined wavy shape similar to the shape of the seed. Then, grain boundaries are generated from the valley portion in the direction of movement of the solid-liquid interface that finally solidifies. Therefore, the generation of grain boundaries by this method will be described in detail based on embodiments of the present invention with reference to the drawings. FIG. 1 is a plan view of a seed portion of an embodiment of the present invention, and FIG. 2 is a sectional view.

シリコン基板4の表面を選択酸化法を用いて酸化するこ
とによりシード1とシリコン酸化膜5を形成した。シー
ドの幅は5μm、酸化膜厚は1μmとした0次にCVD
法を用いてポリシリコン膜6およびシリコン酸化膜キャ
ップ7をそれぞれ0.5μm堆積した。
Seed 1 and silicon oxide film 5 were formed by oxidizing the surface of silicon substrate 4 using a selective oxidation method. Zero-order CVD with seed width of 5 μm and oxide film thickness of 1 μm
A polysilicon film 6 and a silicon oxide film cap 7 were each deposited to a thickness of 0.5 μm using the method.

シードは第1図に示したような波状とし、例えばシリコ
ン基板4に(001)面方位のものを用いた場合は<1
10>および<1io>方向のシードを組合せて15μ
m周期で形成した。
The seed has a wavy shape as shown in Fig. 1, and for example, if the (001) plane orientation is used for the silicon substrate 4, <1
15μ by combining seeds in the 10> and <1io> directions.
It was formed with m periods.

再結晶化はOj+nX 5mmの線状の形状をもつ電子
ビームを用いて行なった。この時の電子ビーム照射条件
としては例えば加速電圧15kV、ビーム電流87mA
、走査速度70cm/see、基板温度600℃とした
。電子ビームの走査方向は、前述の<110>および<
1io >方向を組合せたシードの場合は、<100>
方向とした。
Recrystallization was performed using an electron beam having a linear shape of Oj+nX 5 mm. The electron beam irradiation conditions at this time are, for example, an acceleration voltage of 15 kV and a beam current of 87 mA.
, a scanning speed of 70 cm/see, and a substrate temperature of 600°C. The scanning direction of the electron beam is the same as <110> and <110> described above.
For seeds that combine 1io > directions, <100>
direction.

この様な条件で再結晶化を行なうと、固液界面は2のよ
うな形状となりその結果、最後に固化する部分に結晶粒
界3が発生した。したがって、本℃加えた場合には膜の
状態は非晶質から多結晶へと変化する。
When recrystallization was performed under such conditions, the solid-liquid interface had a shape as shown in 2, and as a result, grain boundaries 3 were generated in the portion that was to be solidified last. Therefore, when this temperature is applied, the state of the film changes from amorphous to polycrystalline.

(発明の効果) 本発明のSO■単結晶形成法によれば、基板の結晶方位
とほとんど同一の方位を有し、結晶粒界の存在する位置
が制御されたSOI結晶を得ることができる。したがっ
てこのSOI結晶をデバイス形成のための基板として用
いるこにより、デバイス設計が容易となり、特性のばら
つきも小さくすることができる。
(Effects of the Invention) According to the method for forming SO1 single crystals of the present invention, it is possible to obtain SOI crystals having almost the same crystal orientation as the substrate crystal orientation and in which the positions of grain boundaries are controlled. Therefore, by using this SOI crystal as a substrate for device formation, device design can be facilitated and variations in characteristics can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例のシード部分の平面図、第2図
は本発明の実施例のシード部分の断面図を表わす。 図において、 1・・・シード 2・・・固液界面 3・・・結晶粒界 4・・・シリコン基板
FIG. 1 is a plan view of a seed portion according to an embodiment of the present invention, and FIG. 2 is a sectional view of the seed portion according to an embodiment of the present invention. In the figure, 1... Seed 2... Solid-liquid interface 3... Grain boundary 4... Silicon substrate

Claims (1)

【特許請求の範囲】[Claims] ポリシリコン膜あるいは非晶質シリコン膜の溶融・固化
を行なうことによりSOI膜を単結晶化する場合、前記
ポリシリコン膜あるいは非晶質シリコン膜の溶融を行な
うためのエネルギービームの走査方向に対し斜めに配置
した線状シードを組合せた波状のシードを用いて単結晶
化を行なうことを特徴としたSOI単結晶形成法。
When an SOI film is made into a single crystal by melting and solidifying a polysilicon film or an amorphous silicon film, the polysilicon film or the amorphous silicon film is melted in a direction oblique to the scanning direction of the energy beam for melting the polysilicon film or the amorphous silicon film. 1. A method for forming an SOI single crystal, characterized in that single crystallization is performed using a wavy seed that is a combination of linear seeds arranged in a wavy shape.
JP3567487A 1987-02-20 1987-02-20 Formation of soi single crystal Granted JPS63204612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3567487A JPS63204612A (en) 1987-02-20 1987-02-20 Formation of soi single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3567487A JPS63204612A (en) 1987-02-20 1987-02-20 Formation of soi single crystal

Publications (2)

Publication Number Publication Date
JPS63204612A true JPS63204612A (en) 1988-08-24
JPH0413849B2 JPH0413849B2 (en) 1992-03-11

Family

ID=12448423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3567487A Granted JPS63204612A (en) 1987-02-20 1987-02-20 Formation of soi single crystal

Country Status (1)

Country Link
JP (1) JPS63204612A (en)

Also Published As

Publication number Publication date
JPH0413849B2 (en) 1992-03-11

Similar Documents

Publication Publication Date Title
US5371381A (en) Process for producing single crystal semiconductor layer and semiconductor device produced by said process
Kawamura et al. Recrystallization of Si on amorphous substrates by doughnut‐shaped cw Ar laser beam
JPS5939790A (en) Production of single crystal
JPS63204612A (en) Formation of soi single crystal
JPS5939791A (en) Production of single crystal
JPS6147627A (en) Manufacture of semiconductor device
JP2793241B2 (en) SOI formation method
JPH0834175B2 (en) Method for manufacturing semiconductor device
JPS62206819A (en) Semiconductor device
JPH0236050B2 (en)
JPS60161396A (en) Manufacture of silicon thin film
JPS61240676A (en) Manufacture of semiconductor thin film crystal
JPH0556316B2 (en)
JPS58180019A (en) Semiconductor base body and its manufacture
JPS6167218A (en) Manufacture of semiconductor device
JPH0377654B2 (en)
JPS62130509A (en) Manufacture of semiconductor substrate
JPS6015916A (en) Manufacture of single crystal thin film
JPH0334847B2 (en)
JPS5978999A (en) Manufacture of semiconductor single crystal film
JPS61198712A (en) Manufacture of semiconductor device
JPH0775223B2 (en) Method for manufacturing semiconductor single crystal layer
JPS58112333A (en) Manufacture of semiconductor device
JPS627115A (en) Formation of single crystalline thin film
JPS60260124A (en) Manufacture of semiconductor substrate

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term