JPS63203017A - Multiplier and divider circuit in 2m galois field - Google Patents

Multiplier and divider circuit in 2m galois field

Info

Publication number
JPS63203017A
JPS63203017A JP62033493A JP3349387A JPS63203017A JP S63203017 A JPS63203017 A JP S63203017A JP 62033493 A JP62033493 A JP 62033493A JP 3349387 A JP3349387 A JP 3349387A JP S63203017 A JPS63203017 A JP S63203017A
Authority
JP
Japan
Prior art keywords
multiplier
divisor
circuit
bit
multiplication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62033493A
Other languages
Japanese (ja)
Inventor
Toru Amano
天野 通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62033493A priority Critical patent/JPS63203017A/en
Publication of JPS63203017A publication Critical patent/JPS63203017A/en
Pending legal-status Critical Current

Links

Landscapes

  • Error Detection And Correction (AREA)
  • Detection And Correction Of Errors (AREA)

Abstract

PURPOSE:To simplify the operation where multiplication/division of the 2<m> Galois field is processed by addition/subtraction of a logarithmic conversion value by applying the processing that a multiplier/divisor or a number inverting each bit and a multiplicand/dividend and '1' is added to the result of addition if carry takes place. CONSTITUTION:A multiplier/divisor bit inverting circuit 100 receives m-bit multiplier/divisor b1-bm subject to logarithmic conversion, outputs the inputted multiplier/divisor, outputs the inputted multiplier/divisor as it is in the case of the multiplication and gives an output in the case of the division while each bit of the multiplier/divisor is inverted. An adder circuit 200 receives outputs e1-em of the circuit 100 and m-bit multiplicand/dividend a1-am subject to logarithmic conversion and applies the addition to both the inputs. When a carry is caused in the result of addition from the circuit 200 and '1' is set in a carry output Cm+1, '1' is added to the result of said addition by inputting the said signal to a carry input C0 to output solutions d1-dm of the multiplication/ division.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、2ガロア体における乗除算を行なう回路に関
し、特に乗除数及び非乗除数の原始要素を底とする対数
変換値の加減算により乗除算を行なう回路に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a circuit that performs multiplication and division in a two-Galois field, and in particular, the present invention relates to a circuit that performs multiplication and division in a two-Galois field, and in particular, multiplication and division by addition and subtraction of logarithmically transformed values whose bases are primitive elements of multipliers and non-multipliers. It relates to circuits that perform calculations.

〔従来の技術〕[Conventional technology]

従来、この種の2ガロア体における乗除算回路では9m
+1ビットの加算回路によ#)mビットの乗除数とmビ
ットの非乗除数の加減算を行ない9桁上がりピットを含
むm+1ビットの解からリードオンリメモリ等によりm
ビットの2ガロア体内の対応する解に変換していた。
Conventionally, this type of multiplication/division circuit in two Galois fields has a length of 9 m.
+1-bit adder circuit adds and subtracts m-bit multiplier and m-bit non-multiplier/divider, and from m+1-bit solution including 9 carry pits, read-only memory etc.
It was converted into a corresponding solution in a 2-Galois body of bits.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した。従来の2ガロア体における乗除算回路は9乗
除数と非乗除数の加減算を行なった後9m+1ビットか
らmビットへの符号変換を行なうという2度の操作を必
要とし、ハードウェアも複雑となる欠点がある。
As mentioned above. Conventional multiplication/division circuits in 2-Galois fields require two operations: addition and subtraction of 9 multipliers and non-multipliers, and then code conversion from 9m+1 bits to m bits, and the hardware is complicated. There is.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明はこのような欠点を解消するために。 The present invention aims to eliminate these drawbacks.

対数変換されたmビットの乗除数を入力して乗算と除算
の切替信号の制御により乗算の時には入力した乗除数を
そのまま出力し、除算の時には乗除数の各ビットを反転
して出力する乗除数ピット反転回路と、該乗除数ビット
反転回路出力と対数変換されたmビットの非乗除数とを
入力して加算を行い、キャリー入力とキャリー出力とを
持つ加算回路とを有し、該加算回路のキャリー出力をキ
ャリー入力に接続して該加算回路入力の乗除数と非乗除
数の加算結果に桁上がりが生じた時は加算結果に1を加
えるようにしたことを特徴とする。
A multiplier that inputs a logarithmically converted m-bit multiplier and then outputs the input multiplier as it is by controlling the multiplication and division switching signal, and outputs the input multiplier as it is during multiplication, and inverts each bit of the multiplier during division. a pit inversion circuit; and an addition circuit which performs addition by inputting the multiplier/divisor bit inversion circuit output and a logarithmically converted m-bit non-multiplier/divisor and has a carry input and a carry output, the addition circuit The carry output of the adding circuit is connected to the carry input, and when a carry occurs in the addition result of the multiplication/division number and the non-multiplication/division number input to the adder circuit, 1 is added to the addition result.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例のブロック図である。100
は乗除数ビット反転回路で、対数変換されたmビットの
乗除数b1〜bmを入力して乗算と除算の切替信号Cの
制御により乗算の時には入力した乗除数をそのまま出力
し、除算の時には乗除数の各ビットを反転して出力する
。200は加算回路で1乗除数ピット反転回路100の
出力e、〜輻と対数変換されたmビットの非乗除数a1
〜alTlとを入力して両入力の加算を行なう。
FIG. 1 is a block diagram of one embodiment of the present invention. 100
is a multiplier/divisor bit inversion circuit which inputs logarithmically converted m-bit multipliers b1 to bm and outputs the input multiplier/divider as is when performing multiplication by controlling the multiplication/division switching signal C; Inverts each bit of a number and outputs it. 200 is an adder circuit, which is the output e of the 1-power divisor pit inversion circuit 100, and the m-bit non-multiplier divisor a1 which has been logarithmically converted from the ˜radius.
~alTl are input and both inputs are added.

加算回路200からは加算結果に桁上がりが生じてキャ
リー出力Cm+1に1が立った場合は同信号をキャリー
入力C8に入力することで前記加算結果に1が加えられ
て乗除算の解d1〜dmが出力される。
If a carry occurs in the addition result from the adder circuit 200 and 1 is set at the carry output Cm+1, the same signal is input to the carry input C8, and 1 is added to the addition result to obtain the multiplication/division solutions d1 to dm. is output.

第2図は乗除数ビット反転回路iooの一実施例を示す
。対数変換されたmビットの乗除数す、〜bmの各ビッ
ト毎に乗算と除算の切替信号Cとの排他的論理和をとり
9mピットの乗除数ビット反転回路出力01〜emを出
力する。
FIG. 2 shows an embodiment of the multiplier/divisor bit inversion circuit ioo. For each bit of the logarithmically converted m-bit multiplier/divisor S, ~bm, the exclusive OR with the multiplication/division switching signal C is taken, and outputs 01-em of the 9m-pit multiplier/divisor bit inversion circuit are output.

2ニア、零を、<2・ヵ。ア体、おけ全乗除算を乗除数
及び非乗除数の原始要素を底とする対数変換値により行
うに際し、上記回路構成で行なえるとする根拠を以下に
示す。
2 near, zero, <2.ka. When performing total multiplication and division in the A field using logarithmically transformed values whose bases are the primitive elements of the multiplier and the non-multiplier and divisor, the basis that it can be performed with the above circuit configuration is shown below.

今、2ガロア体の原始要素をαとすると、零以外の2ガ
ロア体の要素は下記によシ示される。
Now, if the primitive element of the 2-Galois field is α, the elements of the 2-Galois field other than zero are shown below.

GF(2”)−(α0+ ”+ α2+ α5+ ””
”+ α2−2+m−1 α  ) また、下式が定義されている。
GF(2”)-(α0+ ”+ α2+ α5+ ””
"+ α2-2+m-1 α) Furthermore, the following formula is defined.

α2m+i = αi+1  α2m1−1 = α0
 、、、、、、、、、  (1゜但し、iはO<i<2
−2  を満足する整数。
α2m+i = αi+1 α2m1-1 = α0
, , , , , , (1゜However, i is O<i<2
An integer that satisfies -2.

さらに、要素の原始要素αを底とする対数変換値の各ビ
ットを反転した数() は次式となる。
Furthermore, the number () obtained by inverting each bit of the logarithmically transformed value whose base is the primitive element α of the element is given by the following formula.

(α、、)−1−α′”−2−1,<α0)−’=(α
°)・・・・・・(2)次に、要素の乗算はα3・α1
=αj+にで表わされ。
(α,,)−1−α′”−2−1,<α0)−′=(α
°)・・・・・・(2) Next, the multiplication of elements is α3・α1
=αj+.

j+k<2”の時は下式となり、 GF(2m)に含ま
れる。
When j+k<2'', the following formula is obtained and it is included in GF (2m).

j  k   j4−k       ・・・・・・・
・・・・・・・・ (3)α ・ α = α j+k〉20時は、(1)式を使って下式のようにる。
j k j4-k ・・・・・・・・・
・・・・・・・・・ (3) When α ・ α = α j+k〉20, use formula (1) as shown below.

j+k  2m+ (j+に一2m) −j+に一2m
+1 、、、、、、 (4゜α   =α      
       =αまた。要素の除算は(2)式を使う
ことで下式となる。
j+k 2m+ (12m to j+) -12m to j+
+1 , , , , (4゜α = α
= α again. Division of elements can be done using equation (2) as shown below.

αj−αに一αj−に=αJ+(2−1−k)+1−α
2+j−にココテ、  j〉kO時、 0’! #) 
2”+j−k>2” ノ時は。
αj−α to αj−=αJ+(2−1−k)+1−α
When 2+j-, j〉kO, 0'! #)
When 2"+j-k>2".

αj、αに=(:12m+(2rr+−j−に−2m)
+1 2m+j−1(+1 、、、(5゜=α j<k (D時、 ツ’! 、!l) 2m+j−k<
 2m(D時td 。
αj, α = (: 12m + (2rr + -j- -2m)
+1 2m+j-1 (+1 ,,, (5゜=α j<k (at D, tsu'!,!l) 2m+j-k<
2m (D time td.

αj÷αに−α2+コーk             
    ・・・・・・・・・・・・・・・  (6)以
上、(3)〜(6)式より前記の回路構成で2ガロア体
における乗除算が出来ることがわかる。
αj÷α to −α2+kok
(6) From the above equations (3) to (6), it can be seen that multiplication and division in a two-Galois field can be performed with the circuit configuration described above.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は9乗除数または乗除数の各
ビットを反転した数と非乗除数とを加算し、加算結果に
桁上がりが生じた時は加算結果に1を加える操作を行な
うように加算回路のキャリー出力をキャリー入力に接続
する回路構成とすることにより、2ガロア体における乗
除算を乗除数及び非乗除数の原始要素を底とする対数変
換値の加減算により行なう場合の加減算を単一の操作で
かつ簡単な回路構成により実現できる効果がある。
As explained above, the present invention adds a 9-power divisor or a number obtained by inverting each bit of the multiplier/divisor and a non-multiplier divisor, and when a carry occurs in the addition result, 1 is added to the addition result. By configuring the circuit to connect the carry output of the adder circuit to the carry input, it is possible to perform addition and subtraction when multiplication and division in a two-Galois field is performed by adding and subtracting logarithmically transformed values whose bases are the primitive elements of the multiplier and the non-multiplier and divisor. There are effects that can be achieved with a single operation and a simple circuit configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のブロック図、第2図は乗除
数ビット反転回路の一実施例である。 100・・・乗除数ビット反転回路、200・・・加算
回路。 第2図
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 is an embodiment of a multiplier/divisor bit inversion circuit. 100... Multiplier/divisor bit inversion circuit, 200... Addition circuit. Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、BCH誤り訂正符号の復号時のシンドロームからエ
ラーロケーション多項式を算出する過程等でなされる零
を除く2^mガロア体における乗除算を、乗除数及び非
乗除数の原始要素を底とする対数変換値の加減算により
行なう回路において、対数変換されたmビットの乗除数
を入力して乗算と除算の切替信号の制御により乗算の時
には入力した乗除数をそのまま出力し、除算の時には乗
除数の各ビットを反転して出力する乗除数ビット反転回
路と、該乗除数ビット反転回路出力と対数変換されたm
ビットの非乗除数を入力して加算を行なうキャリー入力
とキャリー出力とを持つmビットの加算回路とを有し、
該加算回路のキャリー出力をキャリー入力に接続して該
加算回路入力の乗除数と非乗除数の加算結果に桁上がり
が生じた時は加算結果に1を加えることを特徴とする2
^mガロア体における乗除算回路。
1. Multiplication and division in the 2^m Galois field excluding zero, which is done in the process of calculating the error location polynomial from the syndrome during decoding of the BCH error correction code, is converted into a logarithm whose base is the primitive element of the multiplier and non-multiplier. In a circuit that performs addition and subtraction of converted values, a logarithmically converted m-bit multiplier is input, and by controlling the multiplication/division switching signal, the input multiplier is output as is during multiplication, and each of the multipliers is output during division. A multiplier/divisor bit inversion circuit that inverts and outputs bits, and a logarithmically converted m of the multiplier/divisor bit inversion circuit output.
It has an m-bit adder circuit having a carry input and a carry output for performing addition by inputting a non-multiplying divisor of bits,
The carry output of the adder circuit is connected to the carry input, and when a carry occurs in the addition result of the multiplier/divider and the non-multiplier/divider input to the adder circuit, 1 is added to the addition result.
^m Multiplication/division circuit in Galois field.
JP62033493A 1987-02-18 1987-02-18 Multiplier and divider circuit in 2m galois field Pending JPS63203017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62033493A JPS63203017A (en) 1987-02-18 1987-02-18 Multiplier and divider circuit in 2m galois field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62033493A JPS63203017A (en) 1987-02-18 1987-02-18 Multiplier and divider circuit in 2m galois field

Publications (1)

Publication Number Publication Date
JPS63203017A true JPS63203017A (en) 1988-08-22

Family

ID=12388081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62033493A Pending JPS63203017A (en) 1987-02-18 1987-02-18 Multiplier and divider circuit in 2m galois field

Country Status (1)

Country Link
JP (1) JPS63203017A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014157975A (en) * 2013-02-18 2014-08-28 Toshiba Corp Carriage for cleanness measurement and cleanness measurement system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014157975A (en) * 2013-02-18 2014-08-28 Toshiba Corp Carriage for cleanness measurement and cleanness measurement system

Similar Documents

Publication Publication Date Title
JPS60144834A (en) Arithmetic circuit for finite field
JPS645334B2 (en)
JPH0728782A (en) Operating circuit and operating method
JPH04246723A (en) Multiplier
JPS63203017A (en) Multiplier and divider circuit in 2m galois field
JPS5939774B2 (en) Exponential function calculation method
JPS63107319A (en) Polynomial division circuit on expanded galois field
JP2581534B2 (en) Arithmetic circuit
JPH01267728A (en) Multiplier
JPH0778748B2 (en) Galois field arithmetic unit
JPS63104526A (en) Arithmetic circuit for finite body
JPS63167527A (en) Greatest common measure polynomial calculation circuit on expanded galois field and polynomial mutual division arithmetic circuit
KR940006819B1 (en) Squaring circuit of error position calculator
JPS6024650A (en) Operating circuit on galois field
JPS62122333A (en) Syndrome circuit
JPS6248812A (en) System of calculating inverse element
JPS62222718A (en) Error correction method
JP3626611B2 (en) Data arithmetic unit
JPH06314979A (en) Galois field multiplier circuit
JPS6399623A (en) Operational circuit for finite body
JPS6324724A (en) Encoding and decoding circuit
JPS60129834A (en) Multiplier and divider
KR890002471B1 (en) Operated simplification circuit in the galois field gf(2,8)
JPS61201330A (en) Divider
Marconetti et al. A fully programmable Reed Solomon 8-bit codec based on a re-shaped Berlekamp Massey algorithm