JPS63202970A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63202970A
JPS63202970A JP62034439A JP3443987A JPS63202970A JP S63202970 A JPS63202970 A JP S63202970A JP 62034439 A JP62034439 A JP 62034439A JP 3443987 A JP3443987 A JP 3443987A JP S63202970 A JPS63202970 A JP S63202970A
Authority
JP
Japan
Prior art keywords
source
conductor layer
low concentration
gate
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62034439A
Other languages
Japanese (ja)
Inventor
Hideo Shiiki
椎木 英雄
Yoshito Nakamura
義人 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Electronic Device Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Microelectronics Corp filed Critical Toshiba Corp
Priority to JP62034439A priority Critical patent/JPS63202970A/en
Priority to KR1019880001743A priority patent/KR910003274B1/en
Publication of JPS63202970A publication Critical patent/JPS63202970A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7849Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being provided under the channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To keep stable element characteristics without decreasing an output withstand voltage, by forming a protecting conductor layer on the upper part of a low concentration region so as to cover it, and connecting electrically the protecting conductor layer to a source in the manner in which the layer potential becomes almost equal to the source potential when a channel turns OFF. CONSTITUTION:A part of a source wiring layer 7 extends to the right part in a figure, and a extension part 7' is formed. This extension part 7' crosses the upper part of a gate 9, and covers the upper part of a low concentration part 4. The extension part 7' as a protecting conductor layer prevents impurity from penetrating into the low concentration region 4 from the outside. Thereby, the stability of element characteristics can be maintained. As this protecting conductor layer, i.e., the extension part 7' is a part of the source wiring layer 7, and kept at the same potential as the source 2, an output withstand voltage is not decreased by arranging the protecting conductor layer.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は半導体装置、特にL D D (Lightl
y D。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to semiconductor devices, particularly LDD (Light
yD.

ped Drain )構造をもったM OS F E
 T (MetalOxide Sem1conduc
tor Field EffeetiveTransi
stor)に関する。
MOSFE with ped drain) structure
T (MetalOxide Sem1conduc
torFieldEffectiveTransi
stor).

(従来の技術) 近年、MOSFETの需要が非常に高まっておリ、また
、益々高集積化が要求されている。MOSFETは一般
に、半導体基板上に形成されたソースと、ドレインと、
そしてこれらの間に形成されるチャネルを制御するため
に絶縁膜を介して設けられたゲートとから構成される。
(Prior Art) In recent years, the demand for MOSFETs has increased significantly, and higher integration is also required. MOSFET generally has a source and a drain formed on a semiconductor substrate,
and a gate provided through an insulating film to control a channel formed between these.

このようなMOSFETの中で、特にソース・ドレイン
間の耐圧(以下、出力耐圧という)を高くするために、
ドレインに隣接した部分にドレインより低濃度の不純物
を拡散した低濃度領域を設けるLDD構造をもったもの
が開発されてきている。
Among these MOSFETs, in order to particularly increase the breakdown voltage between the source and drain (hereinafter referred to as output breakdown voltage),
A device having an LDD structure has been developed in which a low concentration region is provided adjacent to the drain in which impurities are diffused at a concentration lower than that of the drain.

第3図は、このようなLDD構造をもった従来の一般的
なMOSFETの構造断面図である。N型のシリコンか
らなる半導体基板1の上に、P型の不純物を拡散したソ
ース2およびドレイン3が設けられ、更に、このトレイ
ン3に隣接して低濃度領域4が設けられている。このソ
ース2とドレイン3との間に形成されるチャネルを制御
するために、絶縁層5を介してアルミニウムからなるゲ
ート6が設けられている。また、同じアルミニウムによ
って、ソース配線層7およびドレイン配線層8か形成さ
れている。
FIG. 3 is a structural sectional view of a conventional general MOSFET having such an LDD structure. A source 2 and a drain 3 in which P-type impurities are diffused are provided on a semiconductor substrate 1 made of N-type silicon, and furthermore, a low concentration region 4 is provided adjacent to the train 3 . In order to control the channel formed between the source 2 and drain 3, a gate 6 made of aluminum is provided with an insulating layer 5 interposed therebetween. Also, the source wiring layer 7 and the drain wiring layer 8 are formed of the same aluminum.

第4図は、アルミニウムのかわりにポリシリコンからな
るゲート9を用いた例である。最近、ゲート電極には第
3図に示すようなアルミニウムより第4図に示すポリシ
リコンの方が、よく用いられるようになってきている。
FIG. 4 shows an example in which a gate 9 made of polysilicon is used instead of aluminum. Recently, polysilicon as shown in FIG. 4 has been more commonly used for gate electrodes than aluminum as shown in FIG.

これは、ポリシリコンのゲートがアルミニウムのゲート
に比べて、集積化に優れ、応答性も良く、しかも低消費
電流で動作しつるというメリットがあるためである。
This is because polysilicon gates have advantages over aluminum gates in that they have better integration, better response, and operate with lower current consumption.

(発明か解決しようとする問題点) プラスチックモールドタイプの半導体装置においては、
水分が半導体チップ内に侵入し、低濃度の不純物拡散層
の濃度を変化させてしまうことがしばしばある。これは
水分の侵入により発生した可動イオンが周囲の電界によ
って移動して一部に集中し、この集中したイオンによる
電界によって濃度変化が生じるためである。このような
現象はLDD構造のMOSFETにおいては、ON抵抗
の増加、出力電流の減少という形であられれる。
(Problem to be solved by invention) In plastic mold type semiconductor devices,
Moisture often enters the semiconductor chip and changes the concentration of the low concentration impurity diffusion layer. This is because mobile ions generated by the intrusion of water move and concentrate in one area due to the surrounding electric field, and the electric field caused by the concentrated ions causes a concentration change. In a MOSFET having an LDD structure, this phenomenon occurs in the form of an increase in ON resistance and a decrease in output current.

第3図に示すようなアルミニウムをゲートに用いた装置
では、アルミニウムによるゲート6によって、外部から
の不純物の侵入を防ぐことができるが、第4図に示すよ
うなポリシリコンをゲートに用いた装置では、低濃度領
域4を十分に保護できず、外部からの不純物の侵入によ
って」−述のような問題を生じてしまうことになる。前
述のように、最近ではポリシリコンをゲートとして用い
る装置が多く、このような素子特性の不安定性は大きな
問題となってきている。
In a device using aluminum for the gate as shown in FIG. 3, the gate 6 made of aluminum can prevent impurities from entering from the outside, but in a device using polysilicon for the gate as shown in FIG. In this case, the low-concentration region 4 cannot be sufficiently protected, and impurities may enter from the outside, causing the problems described above. As mentioned above, recently many devices use polysilicon as a gate, and instability of such device characteristics has become a major problem.

ポリシリコンをゲートとして用いる装置にお・けるこの
ような問題を解決するための手段として、第5図に示す
ような構造が提案されている。これは、アルミニウムか
らなるドレイン配線層8を少し延ばし、この延展部8′
によって低濃度領域4の上方を覆い、延展部8゛を保護
導体層として用い、外部からの不純物の侵入を防止しよ
うとするものである。しかしながら、このような構造を
採ると、素子の出力耐圧値が低下する事実が実験的に確
認されており、新たな問題となる。近年では、バイポー
ラCMO8化によってこのような問題を解決する試みも
みられるが、コストが高くなるため実用的な問題が生じ
る。
As a means to solve these problems in devices using polysilicon as gates, a structure as shown in FIG. 5 has been proposed. This extends the drain wiring layer 8 made of aluminum a little, and this extended portion 8'
This is intended to cover the upper part of the low concentration region 4 and use the extended portion 8' as a protective conductor layer to prevent impurities from entering from the outside. However, it has been experimentally confirmed that when such a structure is adopted, the output breakdown voltage value of the element decreases, which poses a new problem. In recent years, attempts have been made to solve this problem by using bipolar CMO8, but this increases the cost and causes practical problems.

そこで本発明は、出力耐圧値を低下させることなく、安
定した素子特性を維持できる半導体装置を提供すること
を目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a semiconductor device that can maintain stable element characteristics without reducing the output breakdown voltage value.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、半導体基板上に、ソースと、ドレインと、こ
のドレインに隣接して設けられ低濃度の不純物を含む低
濃度領域と、ソース・ドレイン間に形成されるチャネル
を制御するためのゲートと、を備える半導体装置におい
て、 低濃度領域を覆うようにその上方に保護導体層を形成し
、少なくともチャネルがOFFとなった    □とき
に、この保護導体層がソースとほぼ同電位となるように
電気的に接続したものである。
(Means for Solving the Problems) The present invention provides a source, a drain, a low concentration region provided adjacent to the drain and containing a low concentration impurity, and a region formed between the source and the drain on a semiconductor substrate. In a semiconductor device, a protective conductor layer is formed above the low concentration region so as to cover the low concentration region, and when at least the channel is turned off, the protective conductor layer It is electrically connected to have almost the same potential as the source.

(作 用) 上述の構造によれば、外部からの不純物の侵入は、保護
導体層によって防止することができる。
(Function) According to the above-described structure, the intrusion of impurities from the outside can be prevented by the protective conductor layer.

したがって、低濃度領域の不純物濃度の不安定化を抑止
することができ、素子特性の安定化を図ることかできる
。また、本願発明者は、この保護導体層を、ソースとほ
ぼ同電位に保つことにより出力耐圧の低下を抑制しうる
ことを発見し、実験的に確認した。したがって、少なく
とも高出力耐圧が要求されるチャネルのOFF時に、保
護導体層をソースとほぼ同電位に保つようにしたもので
ある。
Therefore, it is possible to prevent the impurity concentration in the low concentration region from becoming unstable, and it is possible to stabilize the device characteristics. In addition, the inventor of the present invention discovered and experimentally confirmed that by keeping this protective conductor layer at substantially the same potential as the source, a decrease in output breakdown voltage can be suppressed. Therefore, the protective conductor layer is kept at approximately the same potential as the source at least when the channel is turned off, which requires a high output breakdown voltage.

(実施例) 以下、本発明を図示する実施例に基づいて説明する。第
1図は、本発明の第1の実施例に係るMOSFETの構
造断面図である。従来装置と同様に、N型のシリコンか
らなる半導体基板1の上に、P型の不純物を拡散したソ
ース2およびドレイン3が設けられ、更に、このドレイ
ン3に隣接して低濃度領域4が設けられている。このソ
ース2とドレイン3との間に形成されるチャネルを制御
するために、絶縁層5の中にポリシリコンからなるゲー
ト9が設けられている。また、ソース2およびドレイン
3の」二には、アルミニウムからなるソース配線層7お
よびドレイン配線層8が電気的に接続されている。この
装置の特徴は、ソース配線層7の一部が図の右方へと延
び、延展部7′を形成している点である。この延展部7
′は、ゲート9の上方を横切り低濃度領域4の上方を覆
うように形成されている。この延展部7−は保護導体層
として、外部から低濃度領域4に不純物が侵入するのを
妨げる。したがって、素子特性の安定性が確保される。
(Example) The present invention will be described below based on an illustrative example. FIG. 1 is a structural sectional view of a MOSFET according to a first embodiment of the present invention. Similar to the conventional device, a source 2 and a drain 3 in which P-type impurities are diffused are provided on a semiconductor substrate 1 made of N-type silicon, and a low concentration region 4 is further provided adjacent to the drain 3. It is being In order to control the channel formed between the source 2 and drain 3, a gate 9 made of polysilicon is provided in the insulating layer 5. Further, a source wiring layer 7 and a drain wiring layer 8 made of aluminum are electrically connected to the two ends of the source 2 and drain 3. A feature of this device is that a part of the source wiring layer 7 extends to the right in the figure to form an extended portion 7'. This extension part 7
' is formed to cross over the gate 9 and cover the low concentration region 4 . The extended portion 7- serves as a protective conductor layer and prevents impurities from entering the low concentration region 4 from the outside. Therefore, stability of element characteristics is ensured.

また、この保護導体層、すなわち、延展部7−はソース
配線層7の一部分であるため、常にソース2と同電位に
保たれる。したがって、この保護導体層を設けたことに
より出力耐圧が低下することはない。
Further, since this protective conductor layer, that is, the extension portion 7 - is a part of the source wiring layer 7 , it is always kept at the same potential as the source 2 . Therefore, the output breakdown voltage does not decrease due to the provision of this protective conductor layer.

第6図は、保護導体層を有するMOSFETの出力耐圧
を示す図である。棒グラフAは、第5図に示す従来の構
造、すなわち、ドレイン配線層8の一部分を保護導体層
として用いた装置における出力耐圧の頻度分布を示し、
棒グラフBは、第1図に示す本発明に係る構造、すなわ
ち、ソース配線層7の一部分を保護導体層として用いた
装置における同分布を示す。グラフからも明らかなよう
に、従来の構造では、出力耐圧が50V程度に低下して
しまうのに対し、本発明に係る構造では、出力耐圧は9
0V程度確保できることが、実験により確認された。こ
の理由は、第5図に示す構造では、チャネルOFF時に
延展部8′に負の電位が印加され、これによって低濃度
領域4の上部に正の電荷が誘引されるためと考えられる
。第1図に示す本発明に係る構造では、MOSFETで
はソース2が基板1に接続されて用いられるため、延展
部7−は基板1と同電位になり、上述のような現象が起
こらず、高出力耐圧を維持できるものと考えられる。
FIG. 6 is a diagram showing the output withstand voltage of a MOSFET having a protective conductor layer. Bar graph A shows the frequency distribution of output breakdown voltage in the conventional structure shown in FIG. 5, that is, a device using a part of the drain wiring layer 8 as a protective conductor layer.
Bar graph B shows the same distribution in the structure according to the present invention shown in FIG. 1, that is, a device in which part of the source wiring layer 7 is used as a protective conductor layer. As is clear from the graph, in the conventional structure, the output withstand voltage drops to about 50V, whereas in the structure according to the present invention, the output withstand voltage drops to about 9V.
It has been confirmed through experiments that approximately 0V can be secured. The reason for this is thought to be that, in the structure shown in FIG. 5, a negative potential is applied to the extension portion 8' when the channel is turned off, thereby attracting positive charges to the upper part of the low concentration region 4. In the structure according to the present invention shown in FIG. 1, since the source 2 of the MOSFET is connected to the substrate 1, the extended portion 7- has the same potential as the substrate 1, and the above-mentioned phenomenon does not occur. It is thought that the output withstand voltage can be maintained.

第2図は、本発明の第2の実施例に係るMOSFETの
構造断面図である。第1の実施例との相違は、アルミニ
ウムからなる保護導体層10が、ソース配線層7あるい
はドレイン配線層8から独立しており、所定位置におい
てコンタクトホール11を介してゲート9に接続されて
いる点である。
FIG. 2 is a structural sectional view of a MOSFET according to a second embodiment of the present invention. The difference from the first embodiment is that the protective conductor layer 10 made of aluminum is independent from the source wiring layer 7 or the drain wiring layer 8, and is connected to the gate 9 through a contact hole 11 at a predetermined position. It is a point.

すなわち、保護導体層10はゲート9と同電位に ・保
たれることになるが、チャネルOFF時にはゲート9は
ソース2と同電位となるため、第1の実施例と同じ効果
を奏することができる。
That is, the protective conductor layer 10 is kept at the same potential as the gate 9, but when the channel is OFF, the gate 9 is at the same potential as the source 2, so the same effect as in the first embodiment can be achieved. .

以上゛、本発明を2つの実施例に基づいて説明したが、
本発明は要するに低濃度領域を保護導体層で覆い、この
保護導体層を少なくともチャネルがOFFとなったとき
にソースとほぼ同電位に保つような構造であれば、どの
ような構造を採ってもかまわない。また、前述の実施例
はPチャネル型のものであるが、Nチャネル型のものに
も同様に適用可能である。
The present invention has been described above based on two embodiments, but
In short, the present invention covers the low concentration region with a protective conductor layer, and any structure can be used as long as the protective conductor layer is kept at approximately the same potential as the source at least when the channel is turned off. I don't mind. Furthermore, although the above-mentioned embodiments are of P-channel type, they are equally applicable to N-channel type.

〔発明の効果〕〔Effect of the invention〕

以上のとおり本発明によれば、MOSFETの低濃度領
域を保護導体層で覆い、この保護導体層を少なくともチ
ャネルがOFFとなったときにソースと同電位に保つよ
うにしたため、外部からの不純物の侵入を防止すること
により、素子特性の安定化を図ることができ、かつ、高
出力耐圧を確保できる。
As described above, according to the present invention, the low concentration region of the MOSFET is covered with a protective conductor layer, and this protective conductor layer is kept at the same potential as the source at least when the channel is turned off. By preventing intrusion, element characteristics can be stabilized and high output withstand voltage can be ensured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例に係る半導体装置の断面
構造図、第2図は本発明の第2の実施例に係る半導体装
置の断面構造図、第3図は従来のアルミニウムをゲート
に用いた半導体装置の断面構造図、第4図は従来のポリ
シリコンをゲートに用いた半導体装置の断面構造図、第
5図は従来の保護導体層を設けた半導体装置の断面構造
図、第6図は本発明に係る装置と従来の装置との出力耐
圧の比較を示すグラフである。 ]・・・半導体基板、2・・・ソース、3・・・ドレイ
ン、4・・・低濃度領域、5・・・絶縁層、6・・・ア
ルミニウムゲート、7・・・ソース配線層、7″・・・
延展部、8・・・ゲート配線層、8′・・・延展部、9
・・・ポリシリコンゲート、10・・・保護導体層、1
1・・・コンタクトホール。 出願人代理人  佐  藤  −雄 = 11− 躬3図 も4図 18開口aG3−202970  (5)七力耐圧(V
FIG. 1 is a cross-sectional structural diagram of a semiconductor device according to a first embodiment of the present invention, FIG. 2 is a cross-sectional structural diagram of a semiconductor device according to a second embodiment of the present invention, and FIG. 4 is a sectional structural diagram of a semiconductor device using conventional polysilicon for the gate; FIG. 5 is a sectional structural diagram of a semiconductor device provided with a conventional protective conductor layer; FIG. 6 is a graph showing a comparison of the output breakdown voltage between the device according to the present invention and the conventional device. ]... Semiconductor substrate, 2... Source, 3... Drain, 4... Low concentration region, 5... Insulating layer, 6... Aluminum gate, 7... Source wiring layer, 7 ″...
Extension part, 8... Gate wiring layer, 8'... Extension part, 9
...Polysilicon gate, 10...Protective conductor layer, 1
1...Contact hole. Applicant's agent: Sato -Yu = 11- Mitsu 3 Figure 4 Figure 18 opening aG3-202970 (5) Seven-force withstand pressure (V
)

Claims (1)

【特許請求の範囲】 1、半導体基板上に、ソースと、ドレインと、前記ドレ
インに隣接して設けられ前記ドレインの不純物濃度より
低い濃度で不純物を含む低濃度領域と、前記ソースと前
記ドレインとの間に形成されるチャネルを制御するため
のゲートと、を備える半導体装置において、前記低濃度
領域を覆うようにその上方に形成され、少なくとも前記
チャネルがOFFとなったときに、前記ソースとほぼ同
電位となるように電気的に接続された保護導体層を設け
たことを特徴とする半導体装置。 2、保護導体層が、ソースに対する配線層に接続されて
いることを特徴とする特許請求の範囲第1項記載の半導
体装置。 3、保護導体層が、ゲートに対する配線層に接続されて
いることを特徴とする特許請求の範囲第1項記載の半導
体装置。 4、半導体基板がシリコンからなり、ゲートがポリシリ
コンからなることを特徴とする特許請求の範囲第1項乃
至第3項のいずれかに記載の半導体装置。 5、保護導体層がアルミニウムからなることを特徴とす
る特許請求の範囲第4項記載の半導体装置。
[Claims] 1. On a semiconductor substrate, a source, a drain, a low concentration region provided adjacent to the drain and containing an impurity at a concentration lower than the impurity concentration of the drain, and the source and the drain. a gate for controlling a channel formed between the semiconductor devices, the gate being formed above the low concentration region so as to cover the low concentration region, and at least when the channel is turned off, the gate is substantially connected to the source. A semiconductor device comprising a protective conductor layer electrically connected to have the same potential. 2. The semiconductor device according to claim 1, wherein the protective conductor layer is connected to a wiring layer for the source. 3. The semiconductor device according to claim 1, wherein the protective conductor layer is connected to a wiring layer for the gate. 4. The semiconductor device according to any one of claims 1 to 3, wherein the semiconductor substrate is made of silicon and the gate is made of polysilicon. 5. The semiconductor device according to claim 4, wherein the protective conductor layer is made of aluminum.
JP62034439A 1987-02-19 1987-02-19 Semiconductor device Pending JPS63202970A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62034439A JPS63202970A (en) 1987-02-19 1987-02-19 Semiconductor device
KR1019880001743A KR910003274B1 (en) 1987-02-19 1988-02-19 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62034439A JPS63202970A (en) 1987-02-19 1987-02-19 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS63202970A true JPS63202970A (en) 1988-08-22

Family

ID=12414258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62034439A Pending JPS63202970A (en) 1987-02-19 1987-02-19 Semiconductor device

Country Status (2)

Country Link
JP (1) JPS63202970A (en)
KR (1) KR910003274B1 (en)

Also Published As

Publication number Publication date
KR910003274B1 (en) 1991-05-25
KR880010507A (en) 1988-10-10

Similar Documents

Publication Publication Date Title
US5338965A (en) High voltage structures with oxide isolated source and RESURF drift region in bulk silicon
US6943408B2 (en) Semiconductor bidirectional switching device
JPH04369271A (en) Thin film transistor
JPH04241466A (en) Field effect type transistor
KR19990022793A (en) High Voltage Lateral Metal Oxide Semiconductor Field Effect Transistor with Semiconductor Chip Connection Area
EP0562352B1 (en) High voltage structures with oxide isolated source and RESURF drift region in bulk silicon
US6469352B2 (en) Two-terminal semiconductor overcurrent limiter
KR920022534A (en) Static type semiconductor memory device, field effect transistor and manufacturing method thereof
US5744840A (en) Electrostatic protection devices for protecting semiconductor integrated circuitry
US5243234A (en) Dual gate LDMOSFET device for reducing on state resistance
US5596216A (en) Semiconductor device with diode and capable of device protection
JPS63202970A (en) Semiconductor device
JPH1197698A (en) Thin-film transistor
US5523601A (en) High-breakdown-voltage MOS transistor
JPH098317A (en) Thin film transistor
JPH0763075B2 (en) Semiconductor integrated circuit device
JP3118893B2 (en) Vertical MOS transistor
JPH01111378A (en) Vertical mosfet
JP2002176347A (en) Overcurrent limiting semiconductor device
JP2859029B2 (en) High voltage MOS transistor output protection device
JP3074064B2 (en) Lateral MOS field effect transistor
JP2511018B2 (en) Insulation gate type thyristor electrode wiring structure
JPH0468576A (en) Semiconductor device
JPH0810764B2 (en) Insulated gate type semiconductor device
JP2907504B2 (en) Semiconductor device