JPS63199845A - Production of sintered stainless steel - Google Patents

Production of sintered stainless steel

Info

Publication number
JPS63199845A
JPS63199845A JP62030963A JP3096387A JPS63199845A JP S63199845 A JPS63199845 A JP S63199845A JP 62030963 A JP62030963 A JP 62030963A JP 3096387 A JP3096387 A JP 3096387A JP S63199845 A JPS63199845 A JP S63199845A
Authority
JP
Japan
Prior art keywords
stainless steel
powder
chromium
sintered
sintered stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62030963A
Other languages
Japanese (ja)
Inventor
Yoshinobu Takeda
義信 武田
Yoshiaki Ito
嘉朗 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62030963A priority Critical patent/JPS63199845A/en
Publication of JPS63199845A publication Critical patent/JPS63199845A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a sintered stainless steel having excellent corrosion resistance by mixing a specific ratio of pure Cr powder having a specific grain size with stainless steel alloy powder and sintering the molded of said mixed powder under specific conditions. CONSTITUTION:0.2-5wt.% pure Cr power having <=10mu average grain size is mixed into the stainless steel alloy powder to form the molded body. Said molded body is then sintered at 1,100-1,300 deg.C in a decompressive atmosphere. By stir method, pure Cr can be diffused into the grain boundaries of the sintered stainless steel and the sintered stainless steel having the excellent corrosion resistance is produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐食性に優れた焼結ステンレス鋼の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing sintered stainless steel with excellent corrosion resistance.

〔従来の技術〕[Conventional technology]

近年、ステンレス鋼組成を有する合金粉が噴霧法により
工業的に量産されるようになり、このステンレス鋼合金
粉を粉末冶金(P/M )法によシ焼結した焼結ステン
レス鋼が実用化されている。
In recent years, alloy powder having a stainless steel composition has been industrially mass-produced by the spraying method, and sintered stainless steel made by sintering this stainless steel alloy powder by the powder metallurgy (P/M) method has been put into practical use. has been done.

この焼結ステンレス鋼は、被剛性や塑性加工性が悪いス
テンレス鋼と違い、機械部品等をそのままの形で製造で
きる利点があるが、同一組成の溶製ステンレス鋼と比較
すると耐食性が著しく劣る欠点があった。
Unlike stainless steel, which has poor rigidity and plastic workability, this sintered stainless steel has the advantage of being able to manufacture mechanical parts as is, but the disadvantage is that it has significantly lower corrosion resistance than molten stainless steel of the same composition. was there.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

焼結ステンレス鋼が耐食性に劣る原因のひとつとして、
粒界からクロムが減少して粒界の耐食性が損なわれてい
ることが挙げられる。特に焼結ステンレス鋼の場合は、
元の粉末粒子表面が焼結後にも残るため界面が多い上に
、焼結中に粉末粒子表面から蒸気圧の高いクロムが脱離
しやすい、又粉末中や焼結雰囲気中の炭素とクロムが反
応してクロム炭化物となりやすい等の理由により、粒界
から固溶クロムが減少するものと考えられる。
One of the reasons why sintered stainless steel has poor corrosion resistance is
One example of this is that chromium is reduced from the grain boundaries, impairing the corrosion resistance of the grain boundaries. Especially in the case of sintered stainless steel,
Since the original powder particle surface remains after sintering, there are many interfaces, and chromium with high vapor pressure is easily released from the powder particle surface during sintering, and chromium reacts with carbon in the powder and in the sintering atmosphere. It is thought that solid solution chromium decreases from the grain boundaries for reasons such as the tendency to form chromium carbides.

本発明は、かかる従来の事情に鑑み、優れた耐食性を有
する焼結ステンレス鋼を製造する方法を提供することを
目的としている。
SUMMARY OF THE INVENTION In view of the conventional circumstances, an object of the present invention is to provide a method for manufacturing sintered stainless steel having excellent corrosion resistance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の焼結ステンレス鋼の製造方法は、ステンレス鋼
合金粉に平均粒径10μm以下の純クロム粉を0.2〜
5重量%混合し、この混合粉の成形体を、減圧雰囲気中
において1100t:’〜13001:l’で焼結する
ことを特徴とする。
In the method for producing sintered stainless steel of the present invention, pure chromium powder with an average particle size of 10 μm or less is added to stainless steel alloy powder by 0.2 to 0.2 μm.
It is characterized by mixing 5% by weight and sintering a molded body of this mixed powder at 1100 t:' to 13001:1' in a reduced pressure atmosphere.

れを粉砕すればクロム拡散結合ステンレス鋼合金粉が得
られる。このクロム拡散結合ステンレス鋼合金粉を成形
して上記と同様に焼結してもよく、その場合クロムの偏
析に対して有効であるばかシか、クロムの粒界拡散を早
めて焼結時間を短縮する効果を期待できる。
By crushing this, a chromium diffusion bonded stainless steel alloy powder can be obtained. This chromium diffusion bonded stainless steel alloy powder may be shaped and sintered in the same manner as above, in which case it may be effective against chromium segregation or the sintering time may be increased by accelerating the grain boundary diffusion of chromium. You can expect a shortening effect.

〔作 用〕[For production]

本発明方法においては、純クロム粉を含むステンレス合
金粉又はクロム拡散結合ステンレス鋼合金粉の成形体を
減圧雰囲気中で焼結することによって、焼結ステンレス
鋼の粒界に純粋なりロムが拡散され、減少したクロムが
補充される。
In the method of the present invention, by sintering a compact of stainless steel alloy powder or chromium diffusion-bonded stainless steel alloy powder containing pure chromium powder in a reduced pressure atmosphere, pure ROM is diffused into the grain boundaries of the sintered stainless steel. , the reduced chromium is replenished.

焼結ステンレス鋼の粒界には、元の粉末の粒界(Pri
or Particle Boundary)と再結晶
による粒界(Grain Boundary)とがある
が、クロムの粒界拡散は体積拡散よシも極めて容易であ
るから、これら両方の粒界に焼結と同時にクロムを拡散
させ補充することができる。又、耐食性に寄与する粒界
近。
The grain boundaries of sintered stainless steel include the grain boundaries of the original powder (Pri
Particle boundaries) and grain boundaries due to recrystallization, but grain boundary diffusion of chromium is extremely easy compared to volume diffusion, so chromium is diffused into both of these grain boundaries at the same time as sintering. Can be replenished. Also, near grain boundaries, which contribute to corrosion resistance.

傍のクロム量としては僅か数μm以下で十分であるから
、クロムの拡散のために長時間を要せず、通常の焼結時
間内で十分なり、ロムを補充できる。
Since it is sufficient that the amount of chromium in the vicinity is only a few μm or less, a long period of time is not required for the diffusion of chromium, and the normal sintering time is sufficient to replenish the chromium.

使用する純クロム粉は、少量を均一に分散させるために
、平均粒径が1101I以下であることが必要である。
The pure chromium powder used must have an average particle size of 1101I or less in order to uniformly disperse a small amount.

又、純クロム粉の添加量を0.2〜5重量%とするのは
、0.2重量%未満では粒界に十分な量のクロムを補充
できず、5重量%をこえると粒界にクロム粒子が残留し
て機械的特性を阻害する等の悪影響が現われるためであ
る。
Also, the reason why the amount of pure chromium powder added is 0.2 to 5% by weight is that if it is less than 0.2% by weight, sufficient amount of chromium cannot be replenished to the grain boundaries, and if it exceeds 5% by weight, it will not be able to replenish the grain boundaries. This is because chromium particles remain and cause adverse effects such as impairing mechanical properties.

成形体の焼結温度を1100℃〜1300t:’とする
理由は、1100C未満では焼結が不十分で密度が上が
らず、又添加したCrの拡散も不十分なため耐食性が十
分改善されないからである。又、1300Cをこえると
耐食性の向上が期待できないばかりでなく、炉の寿命が
短かくなり経済性に劣るからである。
The reason why the sintering temperature of the compact is set to 1100°C to 1300t:' is that if it is less than 1100°C, sintering will be insufficient and the density will not increase, and the added Cr will not diffuse sufficiently, so the corrosion resistance will not be sufficiently improved. be. Moreover, if the temperature exceeds 1300C, not only no improvement in corrosion resistance can be expected, but also the life of the furnace will be shortened, resulting in poor economic efficiency.

〔実施例〕〔Example〕

実施例1 噴霧法で製造した5O8410合金粉に、平均粒径1.
5 ttmの純Cr粉を夫々0.1.0.4.1.0.
3.0及び6.0重量%添加し、ボールミルで1時間混
合した。
Example 1 5O8410 alloy powder produced by a spraying method had an average particle size of 1.
5 ttm pure Cr powder with 0.1.0.4.1.0.
3.0 and 6.0% by weight were added and mixed in a ball mill for 1 hour.

各混合粉を6 ton/crrI2の圧力で直径4 Q
 +u及び厚さ5目に夫々型押し、各成形体を真空度1
O−4Torrで1250Cにて1時間焼結して夫々焼
結ステンレス鋼を製造した。
Each mixed powder was heated to a diameter of 4 Q at a pressure of 6 ton/crrI2.
Emboss +u and thickness 5, respectively, and vacuum degree 1 of each molded body
Each sintered stainless steel was produced by sintering at 1250C at O-4 Torr for 1 hour.

これらの各焼結ステンレス鋼をJIS Z 2371に
基く72時間の塩水噴霧試験に供し、得られた酸化増量
と添加クロム量との関係を第1図に示した。尚、比較の
ために、クロム粉を添加しない以外は上記実施例と同様
に製造したP/MSUS鋼及び溶製鋼の5US410L
についても上記と同様の塩水噴霧試験を行ない、結果を
第1図に合せて示した。
Each of these sintered stainless steels was subjected to a 72-hour salt spray test based on JIS Z 2371, and the relationship between the oxidation weight gain and the amount of added chromium is shown in FIG. For comparison, P/MSUS steel and molten steel 5US410L were manufactured in the same manner as in the above example except that chromium powder was not added.
A salt spray test similar to that described above was also conducted, and the results are shown in Figure 1.

純クロム粉を添加して製造した本発明の焼結ステンレス
鋼材は通常のP/MSUS鋼よりも耐食性が改善され、
特に添加クロム量が2〜6重量%の場合には溶製鋼に近
い耐食性を示すことが分る。
The sintered stainless steel material of the present invention manufactured by adding pure chromium powder has improved corrosion resistance compared to ordinary P/MSUS steel,
In particular, it can be seen that when the amount of added chromium is 2 to 6% by weight, corrosion resistance close to that of molten steel is exhibited.

実施例2 噴霧法で製造したSUS 4°10合金粉に、平均粒径
1.5μmの純Cr粉を1.0重量%添加し、軽油を若
干力iえてボールミルで1時間混合した後、yf−トに
厚さ約101mにして入れ、 θ00Cで1時間の仮焼
結を行なった。得られた孔質焼結体をショークラッシャ
ーで粉砕し、篩分けして一100メツシュのCr拡散結
合SUS合金粉とした。この合金粉を実施例1と同様に
成形し、1150r、 120Or、1250C及び1
3001:の各温度で真空度1O−4Torrで1時間
焼結して夫々焼結ステンレス鋼を製造した。
Example 2 1.0% by weight of pure Cr powder with an average particle size of 1.5 μm was added to SUS 4°10 alloy powder produced by the spraying method, mixed with light oil for 1 hour in a ball mill, and then yf - It was placed in a tray to a thickness of about 101 m and pre-sintered at θ00C for 1 hour. The obtained porous sintered body was crushed with a show crusher and sieved to obtain 1100 mesh Cr diffusion bonded SUS alloy powder. This alloy powder was molded in the same manner as in Example 1 to obtain 1150r, 120Or, 1250C and 1
Sintered stainless steel was produced by sintering at each temperature of 3001: for 1 hour at a vacuum degree of 10-4 Torr.

得られた各焼結ステンレス鋼を実施例1と同様な塩水噴
霧試験に供し、72時間後の酸化増量を求めた。結果を
第2図に示した。参考のために、実施例1の5O341
0合金粉と純Cr粉をそのまま成形し、1250 Cに
て真空度10−’Torrで1時間焼結した例の酸化増
量を第2図に合せて示した。
Each of the obtained sintered stainless steels was subjected to the same salt spray test as in Example 1, and the oxidation weight gain after 72 hours was determined. The results are shown in Figure 2. For reference, 5O341 of Example 1
Figure 2 also shows the oxidation weight gain of an example in which 0 alloy powder and pure Cr powder were molded as they were and sintered at 1250 C for 1 hour in a vacuum of 10-' Torr.

本実施例の方が実施例1の例よシもやや耐食性に優れて
いること、及び焼結温度1200t:’以上で耐食性が
向上していることが分る。
It can be seen that this example has slightly better corrosion resistance than the example of Example 1, and that the corrosion resistance is improved at a sintering temperature of 1200 t:' or higher.

実施例3 噴霧法で製造した5OS410合金粉に、平均粒径1゜
5μm15μm110μm114μm及び20μmの純
Cr粉を1.0重量%添加し、ボールミルで1時間混合
した。各混合粉を6 ton/crr12の圧力で直径
4Q*m及び厚さlQ*mに型押し、各成形体を真空度
1O−4Torrで1250t:”にて1時間焼結して
夫々焼結ステンレス鋼を製造した。
Example 3 1.0% by weight of pure Cr powder having an average particle size of 1°, 5 μm, 15 μm, 110 μm, 114 μm, and 20 μm was added to 5OS410 alloy powder produced by a spraying method, and mixed in a ball mill for 1 hour. Each mixed powder was stamped into a diameter of 4Q*m and a thickness of 1Q*m at a pressure of 6 tons/crr12, and each molded body was sintered at 1250 tons with a vacuum degree of 10-4 Torr for 1 hour to form sintered stainless steel. manufactured steel.

得られた各焼結ステンレス鋼を実施例1と同様な塩水噴
霧試験に供し、72時間後の酸化増量を求めた。結果を
第3図に示す。Cr粉の平均粒径が10μmをこえると
耐食性が低下することが分る。
Each of the obtained sintered stainless steels was subjected to the same salt spray test as in Example 1, and the oxidation weight gain after 72 hours was determined. The results are shown in Figure 3. It can be seen that when the average particle size of the Cr powder exceeds 10 μm, the corrosion resistance decreases.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、焼結ステンレス鋼の粒界に純粋なりロ
ムが拡散され、減少したクロムを補充することができる
ので、優れた耐食性を有する焼結ステンレス鋼を製造す
ることができる。
According to the present invention, pure chromium is diffused into the grain boundaries of sintered stainless steel, and reduced chromium can be replenished, so that sintered stainless steel with excellent corrosion resistance can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における焼結ステンレス鋼について添加
クロム量と塩水噴霧試験での酸化増量との関係を示すグ
ラフであり、第2図は同じく焼結温度と酸化増量との関
係を示すグラフであり、第3図は同じく添加クロム粉の
粒径と酸化増量との関係を示すグラフである。
Figure 1 is a graph showing the relationship between the amount of added chromium and the oxidation weight gain in the salt spray test for the sintered stainless steel of the present invention, and Figure 2 is a graph showing the relationship between the sintering temperature and the oxidation weight gain. Similarly, FIG. 3 is a graph showing the relationship between the particle size of the added chromium powder and the weight gain due to oxidation.

Claims (3)

【特許請求の範囲】[Claims] (1)ステンレス鋼合金粉に平均粒径10μm以下の純
クロム粉を0.2〜5重量%混合し、この混合粉の成形
体を減圧雰囲気中において1100℃〜1300℃で焼
結することを特徴とする焼結ステンレス鋼の製造方法。
(1) Mix 0.2 to 5% by weight of pure chromium powder with an average particle size of 10 μm or less to stainless steel alloy powder, and sinter the compact of this mixed powder at 1100°C to 1300°C in a reduced pressure atmosphere. Characteristic manufacturing method of sintered stainless steel.
(2)ステンレス鋼合金粉に平均粒径10μm以下の純
クロム粉を0.2〜5重量%混合し、この混合粉を圧力
を加えることなく仮焼結した後、これを粉砕したクロム
拡散結合ステンレス鋼合金粉の成形体を減圧雰囲気中に
おいて1100℃〜1300℃で焼結することを特徴と
する焼結ステンレス鋼の製造方法。
(2) Chromium diffusion bonding by mixing 0.2 to 5% by weight of pure chromium powder with an average particle size of 10 μm or less with stainless steel alloy powder, pre-sintering this mixed powder without applying pressure, and then crushing it. A method for producing sintered stainless steel, comprising sintering a compact of stainless steel alloy powder at 1100°C to 1300°C in a reduced pressure atmosphere.
(3)上記仮焼結の温度が600℃〜900℃であるこ
とを特徴とする、特許請求の範囲第(2)項に記載の焼
結ステンレス鋼の製造方法。
(3) The method for manufacturing sintered stainless steel according to claim (2), wherein the temperature of the preliminary sintering is 600°C to 900°C.
JP62030963A 1987-02-13 1987-02-13 Production of sintered stainless steel Pending JPS63199845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62030963A JPS63199845A (en) 1987-02-13 1987-02-13 Production of sintered stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62030963A JPS63199845A (en) 1987-02-13 1987-02-13 Production of sintered stainless steel

Publications (1)

Publication Number Publication Date
JPS63199845A true JPS63199845A (en) 1988-08-18

Family

ID=12318326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62030963A Pending JPS63199845A (en) 1987-02-13 1987-02-13 Production of sintered stainless steel

Country Status (1)

Country Link
JP (1) JPS63199845A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114453579A (en) * 2022-01-06 2022-05-10 安徽昊方机电股份有限公司 Preparation method of corrosion-resistant SUS420 material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114453579A (en) * 2022-01-06 2022-05-10 安徽昊方机电股份有限公司 Preparation method of corrosion-resistant SUS420 material
CN114453579B (en) * 2022-01-06 2023-09-12 安徽昊方机电股份有限公司 Preparation method of corrosion-resistant SUS420 material

Similar Documents

Publication Publication Date Title
JPS6366362B2 (en)
JPH0237401B2 (en)
JPH02153063A (en) Making of nitriding-alloy
JPH02145703A (en) High strength alloy steel powder for powder metallurgy
JPS63199845A (en) Production of sintered stainless steel
JP4060092B2 (en) Alloy steel powder for powder metallurgy and sintered body thereof
US3754905A (en) Exothermic structuring of aluminum
JP3261457B2 (en) High temperature oxidation resistant alloy material and method for producing the same
EP0443683B1 (en) Powdered starting material for a nickel-based alloy for manufacturing a porous anode of a fuel cell, method producing such a material, method for manufacturing an anode for fuel cells, the anode obtained and also a fuel cell which contains such an anode
JPS6199640A (en) Manufacture of composite target material
JPH0751721B2 (en) Low alloy iron powder for sintering
US4518427A (en) Iron or steel powder, a process for its manufacture and press-sintered products made therefrom
JPH0689363B2 (en) High strength alloy steel powder for powder metallurgy
JPS60150558A (en) Production method of fuel electrode for melted carbonate type fuel cell
JPS6389602A (en) Production of alloy steel powder for powder metallurgy
JPH06212324A (en) Tic grain dispersed sintered ti alloy and its production
JPH02173224A (en) Manufacture of sintered aluminum bronze alloy
JPH055141A (en) Copper or copper-silver alloy metal oxide composite material and production thereof
JPS61127848A (en) Manufacture of sintered alnico magnet
JPH075921B2 (en) Method for producing composite alloy steel powder with excellent compressibility
JPH0517801A (en) Production of diffusion type low-alloy steel powder having excellent compressibility
JP2566980B2 (en) Manufacturing method of corrosion resistant alloy steel
JP3300420B2 (en) Alloy for sintered sealing material
JP3519152B2 (en) WC particle-dispersed W-reinforced Ni-based alloy and composite material using the same
WO1987007308A3 (en) Process for making composite bearing material and bearing material produced thereby