JPS6319933B2 - - Google Patents

Info

Publication number
JPS6319933B2
JPS6319933B2 JP13213680A JP13213680A JPS6319933B2 JP S6319933 B2 JPS6319933 B2 JP S6319933B2 JP 13213680 A JP13213680 A JP 13213680A JP 13213680 A JP13213680 A JP 13213680A JP S6319933 B2 JPS6319933 B2 JP S6319933B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
pole faces
coating layer
main magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13213680A
Other languages
Japanese (ja)
Other versions
JPS5758244A (en
Inventor
Minoru Hashimoto
Koki Yokoyama
Masahiro Fukazawa
Akizo Hideyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP13213680A priority Critical patent/JPS5758244A/en
Publication of JPS5758244A publication Critical patent/JPS5758244A/en
Publication of JPS6319933B2 publication Critical patent/JPS6319933B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/842Coating a support with a liquid magnetic dispersion
    • G11B5/845Coating a support with a liquid magnetic dispersion in a magnetic field

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、垂直磁気記録媒体を製造するときに
用いられる磁場配向装置に係り、特に、高い配向
率を有した記録媒体を製造し得るようにした垂直
磁気記録媒体製造用磁場配向装置に関する。 磁気記録は、一般に記録媒体の面内長手方向の
磁化を用いる方式によつている。しかし、この面
内長手方向の磁化を用いる記録方式にあつては、
記録の高密度化を図ろうとすると、記録媒体内の
減磁界が増加するため、記録密度をそれ程向上さ
せることはできない。 そこで、このような不具合を解消するために、
近年、記録媒体の表面と垂直な方向の磁化を用い
る垂直磁気記録方式が提案されている。この垂直
磁気記録方式では、記録密度が高まる程、記録媒
体中の減磁界が減少するので、本質的に高密度記
録に適した記録方式と云える。 しかして、このような垂直磁気記録方式を採用
するには、表面とは垂直な方向に磁化容易軸を有
する磁気記録媒体を必要とする。このような要望
を満す記録媒体として、従来、記録膜をCo−Cr
スパツタ膜で形成するものや記録膜を磁性微粒子
の塗布層で形成するものが提案されている。 ところで、記録膜を磁性微粒子の塗布層で形成
するものであつては、次のような製造方法が考え
られる。すなわち、磁性微粒子として、たとえば
BaFe12O19等の六方晶系フエライトを用いる。六
方晶系フエライトを用いる理由は、このフエライ
トは平板状をなしており、しかも磁化容易軸が板
面に垂直であるため、磁場配向処理もしくは機械
的処理によつて容易に垂直配向を行ない得るから
である。このような六方晶系フエライトの磁性微
粒子とバインダとを混合し、これを非磁性テープ
の表面に塗布した後、この塗布層を磁場中にその
表面が磁界の方向と直交するように配置すること
によつて各磁性微粒子の磁化容易軸を磁界の方向
に一致させて配列させた後、塗料を乾燥させれ
ば、垂直磁気記録に適した記録媒体を得ることが
できる。 しかし、上述したいわゆる塗布法によつて垂直
磁気記録媒体を製造する場合には、次のような点
を考慮する必要がある。すなわち、従来の面内磁
気記録方式に較べて垂直磁気記録方式の利点を明
らかにするには、記録最小単位をサブミクロンの
オーダにする必要があり、そのためには、サブミ
クロン以下の磁性微粒子を用いる必要がある。こ
のような微小寸法の磁性微粒子は、単磁区構造、
すなわち微小な磁石となるため、互いに磁気的に
結合し易い。したがつて、バインダ内で均一に分
散するよう注意を払う必要がある。 また、均一な分散がなされた所望の磁性塗料が
得られた場合であつても、このような磁性塗料を
基体上に塗布して磁場配向器によつて垂直配向さ
せる場合において下記の如き現象が往々にして起
こり易い。すなわち、NS極を対向配置させた磁
場配向器の磁極間に磁性塗料を塗布した基体をそ
の表面が磁界と直交するように配置すると、塗料
中の磁性微粒子は磁化容易軸が磁界の方向と一致
するように回転して配向する。このように配向さ
せた後、磁場の印加を停止するかあるいは基体を
磁場外へそのまゝ取り出そうとすると、塗膜の両
面に残存する磁極のために上記配向磁場の磁界の
方向とは反対方向に反磁場が生じ、この反磁場の
磁界の方向と角度をなす磁性微粒子が面内方向に
トルクを受け、この結果、磁場配向器によつて得
られた垂直配向が著しく阻害されたものとなる。
垂直磁気記録媒体の記録特性は、塗膜中の磁性微
粒子の磁化容易軸が基体表面に対して垂直に位置
しているものの比率(配向率)に密接に関係し、
配向率が高い程、高い再生出力と高密度記録が可
能となる。このようなことから、配向工程時にお
いて、高配向率が得られる磁場配向装置の出現が
強く望まれているのが実情である。 本発明は、このような事情に鑑みてなされたも
ので、その目的とするところは、高配向率を有し
た記録媒体を製造し得る垂直磁気記録媒体製造用
磁場配向装置を提供することにある。 以下、本発明の詳細を図示の実施例によつて説
明する。 図において、1はそのNS極を対向させた永久
磁石(電磁石でも可)からなる配向用主磁石であ
り、この主磁石1の両側には、上記主磁石1の磁
極面1a,1b間を通して、表面が磁性微粒子を
含む未乾燥塗膜層2で覆われたテープ状基体3を
一定張力のもとで一定速度で図中矢印4で示す方
向へ走行させる走行案内機構5,6,7が設けら
れている。なお、上記走行案内機構5,6,7は
テープ状基体3の表面が磁極面1a,1b間の磁
界の方向に対して垂直となる関係に上記テープ状
基体3を走行させるようにしている。しかして、
磁石1と案内機構5との間で磁石1に近接した位
置には、磁石1の磁極面1a,1b間に進入する
前の塗膜層2に対して塗膜層2の表面と平行する
方向の交流磁場を印加する補助磁石8が設けられ
ている。この補助磁石8は、前記テープ状基体3
の両端面をその両磁極面で非接触に挾持するよう
に配置された磁芯9と、この磁芯9の外周に巻装
された図示しないソレノイドとで構成され、上記
ソレノイドの両端は図示しない交流電源に接続さ
れている。 一方、主磁石1と走行案内機構7との間には、
磁極面1a,1b間を通過する前記塗膜層2の表
面に向けて温風を吹付け、層内の塗料を乾燥させ
る吹付けノズル11が設けてあり、この吹付けノ
ズル11は図示しない温風供給源に接続されてい
る。なお、図中12は温風が吹付けられる範囲を
規制する断熱材製の規制板を示している。 このような構成であると、一表面が磁性微粒子
Pを含む未乾燥膜層2で覆われたテープ状基体3
を走行案内機構5,6,7で図に示すように走行
させると、上記未乾燥塗膜層2内の磁性微粒子P
は、補助磁石8で発生した交流磁場内を通過する
とき、上記磁場によつて基体面と平行する方向に
激しく回動する。この回動によつて各磁性微粒子
Pの磁化容易軸が揃えられるとともに上記回動に
よつて塗料の流動性が一時的に増加する。このよ
うに塗料の流動性が増加した状態で主磁石1の磁
極面1a,1b間に進入すると、塗膜層2内の磁
性微粒子Pのほとんどがその磁化容易軸を磁界の
方向へ向け、いわゆる配向する。そして、この状
態でさらに走行すると塗膜層2内の磁性微粒子P
は吹付けノズル11からの温風加熱に伴なう塗料
の乾燥によつて配向状態のまま固定化され、ここ
に垂直磁気記録媒体が製造される。 そして、この場合には、配向用の主磁石1の磁
場内へ進入する前の塗膜層2に補助磁石8で交流
磁場を印加し、これにより塗膜層2の流動性を一
時的に増大させるようにしているので主磁石1の
磁場内へ進入した時点でほとんど全ての磁性微粒
子Pの磁化容易軸を磁極面1a,1b間の磁界の
方向と同方向へ配向させることができる。また、
主磁石1の磁極面1a,1b間を通過し終るまで
の間に塗膜層2を乾燥させるようにしているので
基体面と垂直な方向へ配向された磁性微粒子P
は、上記配向状態のままで固定化されることにな
り、磁場外へ移動した場合でも反磁界の影響を受
けて配向状態が変化するようなことはない。した
がつて、この磁場配向装置を用いると、非常に高
配向率の垂直磁気記録媒体を製造することが可能
となる。 次に、このような本発明装置を使つて垂直磁気
記録媒体を製造した実験例を説明する。 まず、バリウム塩、鉄塩、コバルト塩、チタン
塩を含む水溶液にアルカリを滴下し、共沈物を得
た後、アルカリ除去を行ない加熱して、Co−Ti
置換のバリウムフエライト微粒子を得た。これら
は結晶粒径0.1μm以下で板状性をもち、又この粉
体の磁気特性は飽和磁化60(em u/g)、抗磁力
1000(Oe)であつた。次に表1の組成の磁成塗料
を作製して、15μ厚のポリエチレンテレフタレー
トフイルムに塗布した。
The present invention relates to a magnetic field orientation apparatus used when manufacturing perpendicular magnetic recording media, and particularly to a magnetic field orientation apparatus for manufacturing perpendicular magnetic recording media that can manufacture recording media with a high orientation rate. Magnetic recording generally relies on a method that uses magnetization in the in-plane longitudinal direction of a recording medium. However, in a recording method that uses magnetization in the in-plane longitudinal direction,
If an attempt is made to increase the recording density, the demagnetizing field within the recording medium will increase, so the recording density cannot be improved that much. Therefore, in order to eliminate such problems,
In recent years, perpendicular magnetic recording methods have been proposed that use magnetization in a direction perpendicular to the surface of a recording medium. In this perpendicular magnetic recording method, the demagnetizing field in the recording medium decreases as the recording density increases, so it can be said to be a recording method essentially suitable for high-density recording. However, in order to employ such a perpendicular magnetic recording method, a magnetic recording medium having an axis of easy magnetization in a direction perpendicular to the surface is required. Conventionally, as a recording medium that satisfies these demands, the recording film was made of Co-Cr.
There have been proposed methods in which the recording film is formed from a sputtered film and a recording film formed from a coated layer of magnetic fine particles. By the way, if the recording film is to be formed from a coating layer of magnetic fine particles, the following manufacturing method can be considered. That is, as magnetic fine particles, for example
A hexagonal ferrite such as BaFe 12 O 19 is used. The reason for using hexagonal ferrite is that this ferrite has a flat plate shape and the axis of easy magnetization is perpendicular to the plate surface, so it can be easily vertically aligned by magnetic field alignment treatment or mechanical treatment. It is. After mixing such magnetic fine particles of hexagonal ferrite and a binder and coating the mixture on the surface of a non-magnetic tape, this coated layer is placed in a magnetic field so that the surface is perpendicular to the direction of the magnetic field. By arranging the easy axis of magnetization of each magnetic fine particle to match the direction of the magnetic field, and then drying the paint, a recording medium suitable for perpendicular magnetic recording can be obtained. However, when manufacturing a perpendicular magnetic recording medium by the above-mentioned so-called coating method, the following points need to be taken into consideration. In other words, in order to clarify the advantages of perpendicular magnetic recording compared to conventional longitudinal magnetic recording, it is necessary to make the minimum recording unit on the order of submicrons. It is necessary to use it. Such small-sized magnetic particles have a single domain structure,
In other words, since they become minute magnets, they are easily magnetically coupled to each other. Therefore, care must be taken to ensure uniform distribution within the binder. Furthermore, even if a desired magnetic paint with uniform dispersion is obtained, the following phenomenon may occur when such a magnetic paint is applied onto a substrate and vertically aligned using a magnetic field orientator. It often happens. In other words, when a substrate coated with magnetic paint is placed between the magnetic poles of a magnetic field orientator with NS poles facing each other, and its surface is placed perpendicular to the magnetic field, the axis of easy magnetization of the magnetic fine particles in the paint coincides with the direction of the magnetic field. Rotate and orient as shown. After being oriented in this way, if you stop applying the magnetic field or try to take the substrate out of the magnetic field, the magnetic poles remaining on both sides of the coating will cause the magnetic field to move in the opposite direction to the direction of the oriented magnetic field. A demagnetizing field is generated, and the magnetic particles forming an angle with the direction of the magnetic field of this demagnetizing field are subjected to a torque in the in-plane direction, and as a result, the vertical orientation obtained by the magnetic field orientator is significantly inhibited. .
The recording characteristics of perpendicular magnetic recording media are closely related to the ratio (orientation rate) of the easy magnetization axes of the magnetic particles in the coating film that are perpendicular to the substrate surface.
The higher the orientation rate, the higher the reproduction output and the higher density recording possible. For these reasons, the reality is that there is a strong desire for a magnetic field orientation device that can obtain a high orientation rate during the orientation process. The present invention has been made in view of the above circumstances, and its purpose is to provide a magnetic field orientation apparatus for manufacturing perpendicular magnetic recording media that can manufacture recording media with a high orientation rate. . Hereinafter, details of the present invention will be explained with reference to illustrated embodiments. In the figure, reference numeral 1 is a main magnet for orientation consisting of a permanent magnet (an electromagnet is also possible) with its NS poles facing each other. Travel guide mechanisms 5, 6, and 7 are provided for causing a tape-shaped substrate 3 whose surface is covered with an undried coating layer 2 containing magnetic fine particles to travel in the direction indicated by arrow 4 in the figure at a constant speed under constant tension. It is being The traveling guide mechanisms 5, 6, and 7 are configured to cause the tape-shaped substrate 3 to travel in such a manner that the surface of the tape-shaped substrate 3 is perpendicular to the direction of the magnetic field between the magnetic pole faces 1a and 1b. However,
At a position close to the magnet 1 between the magnet 1 and the guide mechanism 5, there is a direction parallel to the surface of the coating layer 2 before entering between the magnetic pole faces 1a and 1b of the magnet 1. An auxiliary magnet 8 is provided to apply an alternating magnetic field of . This auxiliary magnet 8 is connected to the tape-shaped base 3
It consists of a magnetic core 9 arranged so that both end faces of the magnetic core 9 are held non-contact by both magnetic pole faces, and a solenoid (not shown) wound around the outer periphery of this magnetic core 9, and both ends of the solenoid are not shown. Connected to AC power. On the other hand, between the main magnet 1 and the traveling guide mechanism 7,
A blowing nozzle 11 is provided that blows hot air toward the surface of the coating layer 2 passing between the magnetic pole surfaces 1a and 1b to dry the paint within the layer. Connected to a wind source. In addition, in the figure, 12 indicates a regulating plate made of a heat insulating material that regulates the range to which hot air is blown. With such a configuration, the tape-shaped substrate 3 whose one surface is covered with the undried film layer 2 containing the magnetic fine particles P
When the is run as shown in the figure by the running guide mechanisms 5, 6, and 7, the magnetic fine particles P in the undried coating layer 2 are
When passing through the alternating current magnetic field generated by the auxiliary magnet 8, the magnetic field violently rotates in a direction parallel to the base surface. This rotation aligns the axes of easy magnetization of each magnetic fine particle P, and the rotation temporarily increases the fluidity of the paint. When the paint enters between the magnetic pole faces 1a and 1b of the main magnet 1 with its fluidity increased in this way, most of the magnetic fine particles P in the paint layer 2 orient their easy magnetization axes in the direction of the magnetic field, so-called Orient. When the vehicle further travels in this state, the magnetic fine particles P in the coating layer 2
is fixed in an oriented state by the drying of the paint by heating with hot air from the spray nozzle 11, and a perpendicular magnetic recording medium is manufactured here. In this case, an auxiliary magnet 8 applies an alternating magnetic field to the coating layer 2 before it enters the magnetic field of the main magnet 1 for orientation, thereby temporarily increasing the fluidity of the coating layer 2. Therefore, when entering the magnetic field of the main magnet 1, the easy axis of magnetization of almost all of the magnetic fine particles P can be oriented in the same direction as the direction of the magnetic field between the magnetic pole faces 1a and 1b. Also,
Since the coating layer 2 is dried before passing between the magnetic pole faces 1a and 1b of the main magnet 1, the magnetic fine particles P are oriented in a direction perpendicular to the base surface.
is fixed in the above-mentioned orientation state, and even if it moves out of the magnetic field, the orientation state will not change due to the influence of the demagnetizing field. Therefore, by using this magnetic field orientation device, it is possible to manufacture a perpendicular magnetic recording medium with an extremely high orientation rate. Next, an experimental example in which a perpendicular magnetic recording medium was manufactured using such an apparatus of the present invention will be described. First, an alkali is added dropwise to an aqueous solution containing barium salt, iron salt, cobalt salt, and titanium salt to obtain a coprecipitate, which is then heated to remove the alkali and Co-Ti
Substituted barium ferrite fine particles were obtained. These have a crystal grain size of 0.1 μm or less and plate-like properties, and the magnetic properties of this powder are saturation magnetization of 60 (em u/g) and coercive force.
It was 1000 (Oe). Next, a magnetic paint having the composition shown in Table 1 was prepared and applied to a 15 μm thick polyethylene terephthalate film.

【表】 磁性塗料塗布後のフイルムを図に示した装置内
を通過させて垂直磁気記録媒体を得た。 なお、このときの配向磁場の大きさは交流磁場
600Oe,1000Oe、直流磁場1000Oe,2000Oe,
3000Oe,4000Oeとした。 上記によつて得たそれぞれの試料について、
VSM測定を行ない、垂直角形比を求めたところ、
表2に示す結果を得た。
[Table] The film coated with magnetic paint was passed through the apparatus shown in the figure to obtain a perpendicular magnetic recording medium. Note that the magnitude of the orientation magnetic field at this time is the alternating magnetic field.
600Oe, 1000Oe, DC magnetic field 1000Oe, 2000Oe,
3000Oe and 4000Oe. For each sample obtained as above,
When VSM measurement was performed and the vertical squareness ratio was determined,
The results shown in Table 2 were obtained.

【表】 なお、表2における比較例1は、表1に示した
塗料を使用し、かつ図に示した装置で補助磁石8
によつて交流磁場を印加しなかつた場合の結果を
示し、また比較例2は同様に交流磁場を印加しな
いとともに主磁石1の磁場外において塗膜層2を
乾燥させた場合の結果を示すものである。 この表2から明らかなように、本発明装置によ
つて得られた媒体の垂直配向度は磁場強度依存性
があるものの、比較例1,2に比べてその配向度
が大幅に改善されていることがわかる。
[Table] In addition, Comparative Example 1 in Table 2 uses the paint shown in Table 1 and uses the device shown in the figure to operate the auxiliary magnet 8.
Comparative Example 2 shows the results when no alternating magnetic field was applied, and Comparative Example 2 similarly shows the results when the coating layer 2 was dried outside the magnetic field of the main magnet 1. It is. As is clear from Table 2, although the degree of vertical orientation of the medium obtained by the apparatus of the present invention is dependent on the magnetic field strength, the degree of orientation is significantly improved compared to Comparative Examples 1 and 2. I understand that.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例に係る磁場配向装置の概
略側面図である。 1……主磁石、8……補助磁石。
The figure is a schematic side view of a magnetic field orientation device according to an embodiment of the present invention. 1...Main magnet, 8...Auxiliary magnet.

Claims (1)

【特許請求の範囲】[Claims] 1 両磁極面を対向させて設けられ上記両磁極面
間に直流磁場を発生させる配向用の主磁石と、こ
の主磁石の前記磁極面間に一表面が磁性微粒子を
含んだ未乾燥塗膜層で覆われた基体をこの基体表
面が上記磁極面間の磁界の方向に対して垂直とな
るように案内する案内機構と、前記主磁石の近傍
に設けられ上記主磁石の磁極面間に進入する前の
前記塗膜層にこの塗膜層の表面と平行する方向の
交流磁場を印加する補助磁石と、前記主磁石の磁
極面間を通過する前記基体上の塗膜層を乾燥させ
る手段とを具備してなることを特徴とする垂直磁
気記録媒体製造用磁場配向装置。
1. A main magnet for alignment that is provided with both magnetic pole faces facing each other and generates a DC magnetic field between the two magnetic pole faces, and an undried coating layer on one surface of which contains magnetic fine particles between the magnetic pole faces of this main magnet. a guide mechanism that guides the base covered with the base so that the surface of the base is perpendicular to the direction of the magnetic field between the magnetic pole faces; and a guide mechanism that is provided near the main magnet and enters between the magnetic pole faces of the main magnet. an auxiliary magnet for applying an alternating magnetic field in a direction parallel to the surface of the coating layer to the previous coating layer; and means for drying the coating layer on the substrate that passes between the magnetic pole faces of the main magnet. 1. A magnetic field orientation apparatus for manufacturing perpendicular magnetic recording media, comprising:
JP13213680A 1980-09-22 1980-09-22 Magnetic field orientation device for manufacturing vertical magnetic recording medium Granted JPS5758244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13213680A JPS5758244A (en) 1980-09-22 1980-09-22 Magnetic field orientation device for manufacturing vertical magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13213680A JPS5758244A (en) 1980-09-22 1980-09-22 Magnetic field orientation device for manufacturing vertical magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS5758244A JPS5758244A (en) 1982-04-07
JPS6319933B2 true JPS6319933B2 (en) 1988-04-25

Family

ID=15074205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13213680A Granted JPS5758244A (en) 1980-09-22 1980-09-22 Magnetic field orientation device for manufacturing vertical magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5758244A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103530B2 (en) * 1982-05-20 1994-12-14 富士写真フイルム株式会社 Manufacturing method of magnetic recording medium
JPS5968826A (en) * 1982-10-12 1984-04-18 Toshiba Corp Manufacture of vertical magnetic recording medium
JPS60138733A (en) * 1983-12-27 1985-07-23 Toshiba Corp Production of magnetic recording medium

Also Published As

Publication number Publication date
JPS5758244A (en) 1982-04-07

Similar Documents

Publication Publication Date Title
JPS6292132A (en) Manufacture of magnetic recording medium
JPS6341135B2 (en)
JPH0127487B2 (en)
JPS6343811B2 (en)
JPS6319933B2 (en)
JPH0221050B2 (en)
JPH0156452B2 (en)
JPS6341134B2 (en)
JPS6342031A (en) Method and apparatus for production of perpendicular magnetic recording medium
JPH0221049B2 (en)
JPS5812140A (en) Magnetic tape transcribing system
JPS6341132B2 (en)
JPS621113A (en) Magnetic recording medium
JPS5812135A (en) Production of magnetic recording medium
JPS6250888B2 (en)
JPH0370854B2 (en)
JPH01235029A (en) Production of magnetic recording medium
JPH06309661A (en) Orienting method of magnetic recording medium
JPH02263323A (en) Apparatus for producing magnetic recording medium
JPS5968826A (en) Manufacture of vertical magnetic recording medium
JPS6341133B2 (en)
JPH0489624A (en) Production of perpendicular magnetic recording medium
JPH03295028A (en) Manufacture of magnetic recording medium
JPS5914131A (en) Magnetic tape transcribing device
JPH0468686B2 (en)